Factorization
 and
 Quarkonium Production

Jian-Wei Qiu
 Brookhaven National Laboratory

Based on work done with Kang, Nayak, Sterman, and ...

International workshop on heavy quarkonium (QWG2011) GSI, Darmstadt, Germany, October 4-7, 2011

Outline of my talk

\square Production mechanisms
\square Surprises + anomalies
\square What can we learn from the surprises and anomalies?
\square Perturbative QCD factorization approach
\square Connect pQCD factorization to NRQCD factorization
\square Summary

A long history for the production

\square Discovery of J/ \quad - November revolution - 1974
\square Color singlet model: 1975 -
Only the pair with right quantum numbers
Einhorn, Ellis (1975),
Chang (1980),
Berger and Jone (1981), ...
Effectively No free parameter!

- Color evaporation model: 1977 Fritsch (1977), Halzen (1977), ...
All pairs with mass less than open flavor heavy meson threshold
One parameter per quarkonium state
- NRQCD model: 1986 -

Caswell, Lapage (1986)
Bodwin, Braaten, Lepage (1995)
QWG review: 2004, 2010

All pairs with various probabilities - NRQCD matrix elements Infinite parameters - organized in powers of v and α_{s}
\square pQCD factorization approach: 2005 - $\quad \begin{aligned} & \text { Nayak, Qiu, Sterman (2005), ,.. } \\ & \text { Kang, Qiu, Sterman (2010) }\end{aligned}$
$\mathbf{P}_{\boldsymbol{T}} \gg \mathbf{M}_{\mathbf{H}}: \mathbf{M}_{\mathrm{H}} / \mathbf{P}_{\mathrm{T}}$ power expansion $+\alpha_{\mathrm{s}}$ - expansion
Universal fragmentation functions - evolution/resummation

Color singlet model - huge HO contribution

Campbell, Maltoni, Tramontano (2007), Artoisenet, Lansburg, Maltoni (2007) Artoisenet, Campbell, Lansburg, Maltoni, Tramontano (2008)

Order of magnitude enhancement from high orders?

Color singlet model - huge associate production

Artoisenet, Lansburg, Maltoni (2007)

\square More surprises and question:
\triangleleft More than order of magnitude larger than leading order - shape?
\triangleleft Much larger than leading power single charm fragmentation

Color evaporation model

\square Good for total cross section, ok for p_{T} distribution:

Q Question:
Amundson et al, PLB 1997
Better p_{T} distribution - the shape - polarization?

NRQCD - most successful so far

\square NLO color octet contributions - becoming available:
Most hard calculations were done in China and Germany!
\square Phenomenology:

\square Fine details - shape?

NRQCD - global analysis

194 data points from 10 experiments, fix singlet $\left\langle O\left[{ }^{3} S_{1}{ }^{[1]}\right]>=1.32 \mathrm{GeV}^{3}\right.$

\rightarrow

$$
\begin{gathered}
\left.<O\left[{ }^{1} S_{0}{ }^{[8]}\right]>=(4.97 \pm 0.44) \cdot 10^{-2} \mathrm{GeV}^{3} \quad<O\left[{ }^{3} S_{1}{ }^{[8]}\right]\right\rangle=(2.24 \pm 0.59) \cdot 10^{-3} \mathrm{GeV}^{3} \\
<O\left[{ }^{3} P_{0}{ }^{[8]}\right]>=(-1.61 \pm 0.20) \cdot 10^{-2} \mathrm{GeV}^{5}
\end{gathered}
$$

Anomalies from J / Ψ polarization

\triangleleft NRQCD: Dominated by color octet - NLO is not a huge effect
\diamond CSM: Huge NLO - change of polarization?

Confusions from Upsilon polarization

\checkmark Resolution between CDF and D0?
Gong, Wang, 2008
\diamond Change of polarization from LO to NLO?
Artoisenet, et al. 2008
Lansberg, 2009

What can we learn from these surprises?

What these calculations have in common?
\diamond Perturbative production of at least one heavy quark pair
\diamond Feynman diagram expansion in powers of α_{s}
\square What is the key difference between these calculations?
\diamond The color and spin states of the heavy quark pair
What is missing in these calculations?
\diamond Where was the high p_{T} heavy quark pair produced?

\square The active heavy quark pair (transforms into quarkonium) can be produced at $1 / p_{T}, 1 / m_{Q}$, or somewhere between
\diamond The p_{T}-dependence of the production rate is sensitive to where the pair was produced!

Why high orders in CSM are so large?

\square LO in α_{s} but higher power in $1 / p_{T}$:

LO in α_{s} :

$$
\hat{\sigma}^{\mathrm{LO}} \propto \frac{\alpha_{s}^{3}\left(p_{T}\right)}{p_{T}^{8}} \quad \text { NNLP in } 1 / \mathbf{p}_{\mathrm{T}}!
$$

\square NLO in α_{s} but lower power in $1 / p_{T}$:

\square NNLO in α_{s} but leading power in $1 / p_{T}$:

$$
\hat{\sigma}^{\mathrm{NNLP}} \rightarrow \frac{\alpha_{s}^{2}\left(p_{T}\right)}{p_{T}^{4}} \otimes \alpha_{s}^{3}(\mu) \log ^{m}\left(\mu^{2} / \mu_{0}^{2}\right)
$$

Leading order in α_{s}-expansion $=\mid=$ leading power in $1 / \mathrm{p}_{\mathrm{T}}$-expansion!

PQCD power counting

\square IF $p_{T} \gg m_{Q}$, the pair produced

\diamond at $1 / P_{T}:$
 $\Longrightarrow \frac{1}{p_{T}^{6}} \sum_{n}\left[\log \left(\frac{p_{T}^{2}}{\mu_{0}^{2}}\right)\right]^{n} \quad \begin{aligned} & \text { Short-distance } \\ & \text { Production }\end{aligned}$
\diamond between:
$\left[1 / m_{Q}, 1 / P_{T}\right]$
 $\Longrightarrow \frac{1}{p_{T}^{4}} \quad \begin{aligned} & \text { Modified evolution } \\ & \text { + pair production }\end{aligned}$
\square Role of color:
\diamond Color can be perturbatively resolved between m_{Q} and P_{T}
\diamond Factorize into a singlet or octet pair
\triangleleft Color affects \boldsymbol{p}_{T}-dependence

Perturbative factorization approach

\square Basic ideas:
\triangleleft Expand cross section in powers of μ_{0}^{2} / p_{T}^{2} with $\mu_{0} \gtrsim 2 m_{Q}$
\diamond Resum logarithmic contribution into "fragmentation functions"
\diamond Apply NRQCD to input fragmentation functions at $\mu_{0} \sim 2 m_{Q}$
\square Factorization - all orders in α_{s} :

$$
\text { O } \frac{d \sigma_{J / \psi}}{d^{3} P}:
$$

Power series in α_{s} without large logarithms

Why such power correction important?

\square Leading power in hadronic collisions:

$$
d \sigma_{A B \rightarrow H}=\sum_{a, b, c} \phi_{a / A} \otimes \phi_{b / B} \otimes d \hat{\sigma}_{a b \rightarrow c X} \otimes D_{c \rightarrow H}
$$

$\square 1^{\text {st }}$ power corrections in hadronic collisions:

\square Dominated $1^{\text {st }}$ power corrections:

Key: competition between $P_{T}^{2} \gg\left(2 m_{Q}\right)^{2}$ and $D_{[Q \bar{Q}] \rightarrow H}^{(2)} \gg D_{c \rightarrow H}$

PQCD Factorization

\square Leading power - single hadron production

\square Next-to-leading power $-\mathbf{Q} \bar{Q}$ channel:

Qiu, Sterman, 1991
Kang, Qiu, and Sterman, 2010

Formalism and production of the pairs

\square Factorization formalism:

$$
\left.\begin{array}{l}
\qquad \begin{array}{ll}
d \sigma_{A+B \rightarrow H+X}\left(p_{T}\right)= & \sum_{f} d \hat{\sigma}_{A+B \rightarrow f+X}\left(p_{f}=p / z\right) \otimes D_{H / f}\left(z, m_{Q}\right) \\
+ & \sum_{[Q \bar{Q}(\kappa)]} d \hat{\sigma}_{A+B \rightarrow[Q \bar{Q}(\kappa)]+X}\left(p(1 \pm \zeta) / 2 z, p\left(1 \pm \zeta^{\prime}\right) / 2 z\right) \\
& +\mathcal{O}\left(m_{Q}^{4} / p_{T}^{4}\right) \\
\otimes \mathcal{D}_{H /[Q \bar{Q}(\kappa)]}\left(z, \zeta, \zeta^{\prime}, m_{Q}\right)
\end{array} \\
\square \text { Production of the pairs: }
\end{array} \quad \hat{p}_{Q}=\frac{1+\zeta}{2 z} \hat{p}, \quad \hat{p}_{\bar{Q}}=\frac{1-\zeta}{2 z} \hat{p}\right)
$$

\diamond at $1 / m_{Q}:$
\checkmark at $1 / P_{T}:$

$$
D_{i \rightarrow H}\left(z, m_{Q}, \mu_{0}\right)
$$

$$
d \hat{\sigma}_{A+B \rightarrow[Q \bar{Q}(\kappa)]+X}\left(\hat{p}_{[Q \bar{Q}(\kappa)]}, m_{Q}=0, \mu\right)
$$

\diamond between:
$\left[1 / m_{Q}, 1 / P_{T}\right]$

$$
\begin{aligned}
& \frac{d}{d \ln (\mu)} D_{i \rightarrow H}\left(z, m_{Q}, \mu\right)=\ldots \\
& \quad+\frac{1}{\mu^{2}} \Gamma\left(z, \zeta, \zeta^{\prime}\right) \otimes \mathcal{D}_{H /[Q \bar{Q}(\kappa)]}\left(z, \zeta, \zeta^{\prime}, m_{Q}\right)
\end{aligned}
$$

Predictive power

\square Calculation of short-distance hard parts in pQCD:
Power series in α_{s}, without large logarithms
\square Calculation of evolution kernels in pQCD:
Power series in α_{s}, scheme in choosing factorization scale μ Could affect the term with mixing powers
\square Universality of input fragmentation functions at μ_{0} :

$$
\left.\mathcal{D}_{H /[Q \bar{Q}(\kappa)]}\right]\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu_{0}\right)
$$

\square Physics of $\mu_{0} \sim 2 m_{Q}-$ a parameter:
Evolution stops when $\log \left[\frac{\mu_{0}^{2}}{\left(4 m_{Q}^{2}\right)}\right] \sim\left[\frac{4 m_{Q}^{2}}{\mu_{0}^{2}}\right]$
Different quarkonium states require different input distributions!

Cut vertices and projection operators

\square Leading power:

$$
\begin{aligned}
& \widetilde{\mathcal{P}}_{\mu \nu}(p)=\frac{1}{2}\left[-g_{\mu \nu}+\frac{p_{\mu} n_{\nu}+n_{\mu} p_{\nu}}{p \cdot n}-\frac{p^{2}}{(p \cdot n)^{2}} n_{\mu} n_{\nu}\right] \\
& \mathcal{P}_{\mu \nu}(p)=-g_{\mu \nu}+\bar{n}_{\mu} n_{\nu}+n_{\mu} \bar{n}_{\nu} \equiv d_{\mu \nu}
\end{aligned}
$$

Hard parts available $=$ that of pion production
\square Next-to-leading power - QQ-channel with $\mathrm{m}_{\mathrm{Q}}=0$:

$$
\begin{aligned}
\widetilde{\mathcal{P}}_{v}^{L}(p) & =\frac{1}{4 p \cdot n} \gamma \cdot n \\
\widetilde{\mathcal{P}}_{a}^{L}(p) & =\frac{1}{4 p \cdot n} \gamma \cdot n \gamma^{5} \\
\widetilde{\mathcal{P}}_{t}^{L}(p) & =\frac{1}{4 p \cdot n} \gamma \cdot n \gamma_{\perp}^{\alpha}
\end{aligned}
$$

PQCD - relativistic:
Upper components
NRQCD - nonrelativistic:
Lower components
For a $Q \bar{Q}$ pair:

$$
\begin{aligned}
& \mathcal{P}_{v}^{L}\left(\hat{p}_{Q}, \hat{p}_{\bar{Q}}\right)=\gamma \cdot \hat{p}=\gamma \cdot\left(\hat{p}_{Q}+\hat{p}_{\bar{Q}}\right) \\
& \mathcal{P}_{a}^{L}\left(\hat{p}_{Q}, \hat{p}_{\bar{Q}}\right)=\gamma_{5} \gamma \cdot \hat{p}=\gamma_{5} \gamma \cdot\left(\hat{p}_{Q}+\hat{p}_{\bar{Q}}\right) \\
& \mathcal{P}_{t}^{L}\left(\hat{p}_{Q}, \hat{p}_{\bar{Q}}\right)=\gamma \cdot \hat{p} \gamma_{\perp}^{\alpha}=\gamma \cdot\left(\hat{p}_{Q}+\hat{p}_{\bar{Q}}\right) \gamma_{\perp}^{\alpha}
\end{aligned}
$$

Hard part is insensitive to the difference in quarkonium states!

Short-distance hard parts

\square Even tree-level needs subtraction:

$$
\begin{aligned}
& \sigma_{q \bar{q} \rightarrow[Q \bar{Q}(c)] g}^{(3)}=\hat{\sigma}_{q \bar{q} \rightarrow[Q \bar{Q}(\kappa)] g}^{(3)} \otimes D_{[Q \bar{Q}(\kappa)] \rightarrow[Q \bar{Q}(c)]}^{(0)}+\hat{\sigma}_{q \bar{q} \rightarrow g g}^{(2)} \otimes D_{g \rightarrow[Q \bar{Q}(c)]}^{(1)} \\
& \sigma_{q \bar{q} \rightarrow[Q \bar{Q}(c)] g}^{(3)}: \\
& D_{g \rightarrow[Q \bar{Q}]}^{(1)}: \\
& \text { E } \\
& \stackrel{y}{2} \\
& \widetilde{\mathcal{P}}_{\mu \nu}(p)=\frac{1}{2}\left[-g_{\mu \nu}+\frac{p_{\mu} n_{\nu}+n_{\mu} p_{\nu}}{p \cdot n}-\frac{p^{2}}{(p \cdot n)^{2}} n_{\mu} n_{\nu}\right] \\
& H_{q \bar{q} \rightarrow[Q \bar{Q}(a 8)] g}^{(3)}=\frac{8 \pi \alpha_{s}}{\hat{s}} \frac{\hat{t}^{2}+\hat{u}^{2}}{\hat{s}^{2}} \frac{1}{\left(1-\zeta^{2}\right)\left(1-\zeta^{\prime 2}\right)} \frac{N^{2}-1}{N}\left[1+\zeta \zeta^{\prime}-\frac{4}{N^{2}}\right]
\end{aligned}
$$

Normalized to $2 \rightarrow 2$ amplitude square

Evolution of fragmentation functions

\square Independence of the factorization scale:

$$
\frac{d}{d \ln (\mu)} \sigma_{A+B \rightarrow H X}\left(P_{T}\right)=0
$$

\diamond at Leading power in $1 / \mathrm{P}_{\mathrm{T}}$:

$$
\frac{d}{d \ln \mu^{2}} D_{H / f}\left(z, m_{Q}, \mu\right)=\sum_{j} \frac{\alpha_{s}}{2 \pi} \gamma_{f \rightarrow j}(z) \otimes D_{H / j}\left(z, m_{Q}, \mu\right)
$$

\diamond next-to-leading power in $1 / \mathrm{P}_{\mathrm{T}}$:

$$
\begin{array}{r}
\frac{d}{d \ln \mu^{2}} D_{H / f}\left(z, m_{Q}, \mu\right)=\sum_{j} \frac{\alpha_{s}}{2 \pi} \gamma_{f \rightarrow j}(z) \otimes D_{H / j}\left(z, m_{Q}, \mu\right) \\
\quad+\frac{1}{\mu^{2}} \sum_{[Q \bar{Q}(\kappa)]} \frac{\alpha_{s}^{2}}{(2 \pi)^{2}} \Gamma_{f \rightarrow[Q \bar{Q}(\kappa)]}\left(z, \zeta, \zeta^{\prime}\right) \otimes \mathcal{D}_{H /[Q \bar{Q}(\kappa)]}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu\right) \\
\frac{d}{d \ln \mu^{2}} \mathcal{D}_{H /[Q \bar{Q}(c)]}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu\right)=\sum_{[Q \bar{Q}(\kappa)]} \frac{\alpha_{s}}{2 \pi} K_{[Q \bar{Q}(c)] \rightarrow[Q \bar{Q}(\kappa)]}\left(z, \zeta, \zeta^{\prime}\right) \\
\quad \otimes \mathcal{D}_{H /[Q \bar{Q}(\kappa)]]}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu\right)
\end{array}
$$

\square Evolution kernels are perturbative:
\diamond Set mass: $m_{Q} \rightarrow 0$ with a caution

NRQCD for input distributions

\square Input distributions are universal, non-perturbative:
Should, in principle, be extracted from experimental data
\square Use low energy QCD effective theory to calculate them:
$\mu_{0} \sim 2 \mathrm{~m}_{\mathrm{Q}}$ - reduce unknown functions to a few unknown numbers!
\square NRQCD - single parton distributions:
Nayak, Qiu and Sterman, 2005

$$
D_{H / f}\left(z, m_{Q}, \mu_{0}\right) \rightarrow \sum_{[Q \bar{Q}(c)]} \hat{d}_{f \rightarrow[Q \bar{Q}(c)]}\left(z, m_{Q}, \mu_{0}\right)\left\langle\mathcal{O}_{[Q \bar{Q}(c)]}^{H}(0)\right\rangle_{\mathrm{NRQCD}}
$$

- Dominated by transverse polarization
\square NRQCD - heavy quark pair distributions:
Kang, Qiu and Sterman, 2011

$$
\mathcal{D}_{H /[Q \bar{Q}(\kappa)]}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu_{0}\right) \rightarrow \sum_{[Q \bar{Q}(c)]} \hat{d}_{[Q \bar{Q}(\kappa)] \rightarrow[Q \bar{Q}(c)]}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu_{0}\right)\left\langle\mathcal{O}_{[Q \bar{Q}(c)]}^{H}(0)\right\rangle_{\mathrm{NRQCD}}
$$

- Dominated by longitudinal polarization

D No proof of such factorization yet!
Nayak, Qiu and Sterman, 2005
Single parton case was verified to two-loops (with gauge links)!

Polarization of heavy quarkonium

\square Fragmentation functions determine the polarization
Short-distance dynamics at $r \sim 1 / p_{T}$ is insensitive to the details taken place at the scale of hadron wave function $\sim 1 \mathrm{fm}$
\square Heavy quark pair fragmentation functions at LO:

NRQCD to a singlet pair:

$$
\mathcal{D}_{[Q \bar{Q}(\kappa)] \rightarrow J / \psi}=2 \mathcal{D}_{[Q \bar{Q}(\kappa)] \rightarrow J / \psi}^{T}+\mathcal{D}_{[Q \bar{Q}(\kappa)] \rightarrow J / \psi}^{L}
$$

$$
\begin{aligned}
& \mathcal{D}_{[Q Q(a 8)] \rightarrow J / \psi}^{L}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu\right)=\frac{1}{2 N^{2}} \frac{\left\langle O_{1\left({ }^{\left(s_{1} 1\right.}\right)}^{J J}\right\rangle}{3 m_{c}} \Delta\left(\zeta, \zeta^{\prime}\right) \frac{\alpha_{s}}{2 \pi} z(1-z)\left[\ln (r(z)+1)-\left(1-\frac{1}{1+r(z)}\right)\right] \\
& \mathcal{D}_{[Q \tilde{Q}(a 8)] \rightarrow J / \psi}^{T}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu\right)=\frac{1}{2 N^{2}} \frac{\left\langle O_{1\left(\mathcal{S}_{1}\right)}^{J / \omega_{c}}\right\rangle}{3 m_{c}} \Delta\left(\zeta, \zeta^{\prime}\right) \frac{\alpha_{s}}{2 \pi} z(1-z)\left[1-\frac{1}{1+r(z)}\right]
\end{aligned}
$$

where

$$
\Delta\left(\zeta, \zeta^{\prime}\right)=\frac{1}{4} \sum_{a, b} \delta(\zeta-a(1-z)) \delta\left(\zeta^{\prime}-b(1-z)\right), \quad r(z) \equiv \frac{z^{2} \mu^{2}}{4 m_{c}^{2}(1-z)^{2}}
$$

Production rate and polarization

\square LO hard parts + LO fragmentation contributions:

LO heavy quark pair fragmentation contribution reproduces the bulk of NLO color singlet contribution, and the polarization!

Polarization and high spin states

\square Competition between LP and NLP:

Contribution of high spin states:

instead of,

Universal and process independent, if NRQCD factorization is valid

Associate production in CSM

\square Complete set of diagrams:

\square Claim:
Fragmentation contribution to inclusive quarkonium production sizably underestimates the exact calculation at high p_{T} !
\square Is there any problem for the fragmentation approach?
Answer: NO!

Associate production in CSM

\square Complete set of diagrams:

\square Claim:
Fragmentation contribution to inclusive quarkonium production sizably underestimates the exact calculation at high p_{T} !
\square Is there any problem for the fragmentation approach?
Answer: NO!
The existing CSM calculation is not consistent with pQCD power counting, and is not perturbatively stable at high $p_{T}\left(\gg m_{Q}\right)$!

Definition of the associate production?

\square Unfair comparison:
\diamond CSM: extra charm can be in any part of final-state phase-space
\triangleleft Frag: extra charm can only be in a narrow cone around the J / ψ
\square CSM calculation is not perturbatively stable when $p_{T} \gg m_{Q}$:

Q-fragmentation
\square Inclusive $J / \Psi(p)$:

Need the interference

to remove the pole
when $m_{Q} \rightarrow 0$
\square Key: What is the physical observable one wants to calculate?
\diamond Inclusive $J / \Psi(p), J / \Psi(p)+D\left(p_{D}\right), J / \Psi(p)+\bar{D}\left(p_{\bar{D}}\right)+D\left(p_{D}\right), \ldots$

Summary

\square When $p_{T} \gg m_{Q}$ at collider energies, all existing models for calculating the production rate of heavy quarkonia are not perturbatively stable
\diamond LO in α_{s}-expansion may not be the LP term in $1 / \mathrm{p}_{\mathrm{T}}$-expansion \diamond Heavy flavor scattering channels are important when $p_{T} \gg m_{Q}$ (Resummation of initial-state logarithms)
\square When $p_{T} \gg m_{Q}, 1 / p_{T}$-power expansion before α_{S}-expansion Fragmentation approach takes care of both $1 / \mathrm{p}_{\mathrm{T}}$-expansion and resummation of the large logarithms
\square RHIC/LHC are offering an excellent opportunity to test the heavy quarkonium production mechanism, and QCD dynamics of heavy quarks

Thank you!

