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Mass spectrum of charmonium system
 Quark potential models well describe 

mass spectra below open charm threshold

 Exotic states (X, Y, Z) can be expected as 
non-standard cbar-c mesons

 All exotic states reveal as resonances 
above open charm threshold

BaBar Collaboration

Godfrey, Isgur, PRD 32 (1985).
Barnes, Godfrey, Swanson, PRD 72 (2005).
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Interaction parts cannot be determined within the scattering theory

Reliable input based on QCD becomes powerful tool to analyze spectra

Godfrey, Isgur, PRD 32 (1985).
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Qbar-Q interquark potential
 Qbar-Q potentials can be expected having the following form:

Spin-independent Spin-dependent

 Effective field theory approach (pNRQCD) for charmonium spectra : 
       Wilson loop + relativistic correction (1/mQ, v (velocity),  1/mQv expansion)

Bali, Phys. Rept. 343 (2001).
Brambilla, Pineda, Soto, Vairo, NPB 566 (2000); Rev. Mod. Phys. 77 (2005). 
Koma et al., PRL 97 (2006).
Koma et al., NPB 769 (2007). 

Reliable input based on QCD for quark potential models can be extracted

 Our approach through Nambu-Bethe-Salpeter (NBS) amplitude : 
       We define effective inter-quark potential with finite quark mass 
       which becomes faithful to QCD T-matrix

Lin et al., NPB 619 (2001).
Aoki, Hatsuda, Ishii, PTP 123 (2010).

VQ̄Q(r) = σr −
4
3

αs

r
+ Vspin(r)#SQ̄ · #SQ + VT(r)Ŝ12 + VLS(r)#L · #S + · · ·



How to define Qbar-Q interquark potential
 We start with NBS equation for invariant amplitudes at meson rest frame :

M(p, p′; P ) = K(p, p′) +
∫

d4kK(p, k)G(k; P )M(k, p′; P )

P : meson 4-momentum P=(M, 0) at center-of-mass frame
p, p’, k : relative 4-momentum of Qbar-Q system
K(p,p’) : irreducible kernel
G(k;P) : product of free quark propagator w/ assumption of constant quark mass mQ



How to define Qbar-Q interquark potential
 We start with NBS equation for invariant amplitudes at meson rest frame :

M(p, p′; P ) = K(p, p′) +
∫

d4kK(p, k)G(k; P )M(k, p′; P )

P : meson 4-momentum P=(M, 0) at center-of-mass frame
p, p’, k : relative 4-momentum of Qbar-Q system
K(p,p’) : irreducible kernel
G(k;P) : product of free quark propagator w/ assumption of constant quark mass mQ

Note :
We do not require instantaneous NBS kernel K(p,p’) in LKM method

 Non-relativistic reduction through Levy-Klein-Macke (LKM) method
Reviewed in Klein, Lee, PRD 10 (1974).

Concept of LKM method :
Replacement of free-propagator G(k;P) to non-relativistic one leads to 
rearrangement of interaction kernel of original NBS equation

−→P f(p; P ) ≡
1

2πi

∫

UHP
dp0

[
(p0 − P 0/2 + E("p) − iε)−1 + (p0 → −p0)−1

]
f(p; P )

I(p,p’) is “new” kernel and satisfying I = K + K(G − ←−P GN.R.
−→P )I

M = I + I
←−P GN.R.

−→P M



How to define Qbar-Q interquark potential
 3-dimensional LKM equation for NBS invariant amplitude:

Reviewed in Klein, Lee, PRD 10 (1974).
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∫
d4kI(p, k)

←−P GN.R.(!k; P )
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L.H.S. of LKM equation is found as equal-time NBS wave function
-> Schrödinger-type equation for NBS wave function is easily derived :

with non-local, energy-independent potential U(p,p’) satisfying U(!p, !p′) =
−→P I(p, p′)

←−P

Schrödinger-type equation for NBS wave function in r-space
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∫
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(E − H0)φE("r) =
∫

d3r′U("r, "r′)φE("r′)



How to define Qbar-Q interquark potential
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Qbar-Q interquark potential on lattice

1. Measure equal-time Nambu-Bethe-Salpeter wave function

G(2)(r, t − tsrc) =
∑

x,X,Y

〈0|q̄(x, t)Γq(x + r, t)
(
q̄(X, tsrc)Γq(Y, tsrc)

)†
|0〉

=
∑

x

∑

En

AEn〈0|q̄(x)Γq(x + r)|En〉e−En(t−tsrc)

(E0 = M, t ! tsrc)→ AE0φE0(r)e
−E0(t−tsrc)

Spacial correlation of 4-point functionφE(r) =
∑

x

〈0|q̄(x)Γq(x + r)|E; JP C〉

Aoki, Hatsuda, Ishii, PTP 123 (2010).
Ikeda, Iida, arXiv:1102.2097[hep-lat](2011).
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LQCD setup

 Quench QCD simulation

 Plaquette gauge action & Standard Wilson quark action
 β=6.0 (a=0.104 fm, a-1=1.9GeV)

 Box size : 323 x 48 -> L=3.3 (fm)
 Four different hopping parameters (κ=0.1320, 0.1420, 0.1480, 0.1520)

           -> MPS=2.53, 1.77, 1.27, 0.94 (GeV), MV=2.55, 1.81,1.35, 1.04 (GeV)
 Nconf=100

 Wall source

 Coulomb gauge fixing

Y.I., Iida, arXiv:1102.2097[hep-lat](2011).



Qbar-Q wave function

Pseudoscalar channel Vector channel

✓ NBS wave function is normalized at r=0
✓ Wave functions are localized within 1.5 fm (box size is enough large)
✓ There is little channel dependence

NBS wave function for heaviest quark mass in our simulation (κ=0.1320)

φE(r) =
∑

x

〈0|q̄(x)Γq(x + r)|E; JP C〉



Qbar-Q wave function
Quark mass dependence of NBS wave functions 
MPS=2.53, 1.77, 1.27, 0.94 (GeV), MV=2.55, 1.81,1.35, 1.04 (GeV)

Size of wave function becomes smaller as increasing mq

φE(r) =
∑

x

〈0|q̄(x)Γq(x + r)|E; JP C〉

mq mq

Pseudoscalar channels Vector channels



Qbar-Q potential from NBS wave function
Inter-quark potential with various finite quark masses
MPS=2.53, 1.77, 1.27, 0.94 (GeV), MV=2.55, 1.81,1.35, 1.04 (GeV)

V eff
C (r) − E =

1
mq

∇2φE(r)
φE(r) mq = MV/2

Coulomb + linear confinement forces are reproduced with finite quark masses
(solid curves representing Coulomb + linear functions)

Pseudoscalar channels Vector channels

Vc
(r

)-E
 (M

eV
)

Vc
(r

)-E
 (M

eV
)



Fitting results of Qbar-Q potential

V eff
spin−indep.(r) − E =

1
mq

[1
4

∇2φPS(r)
φPS(r)

+
3
4

∇2φV(r)
φV(r)

]
Spin-independent force can be constructed by linear combination of PS & V channels

MV (GeV) σ (MeV/fm) A (MeV fm)
2.55
1.87
1.35
1.04

822 (49)
766 (38)
726 (39)
699 (57)

200 (7)
228 (6)
269 (7)
324 (12)

 String tension has moderate mq dependences
 Naive extrapolation to infinite mass gives comparable value from Wilson loop
 Coulomb coefficients increase as decreasing mq

V (r) = σr −
A

r
+ Cfit function:

see also, Kawanai and Sasaki, PRL 107 (2011).



Operator dependence of Qbar-Q potential
Operator dependence of inter-quark potential is studied
by using gauge invariant smearing operator

φsmr.
E (r) =

∑

x

〈0|q̄(x)L(x, r)Γq(x + r)|E; JP C〉

mq(V eff
C (r) − E) =

∇2φsmr.
E (r)

φsmr.
E (r)

Comparison with Coulomb gauge potentials

The potentials obtained from gauge invariant smearing operators 
are comparable with Coulomb gauge potential



cbar-c potential from full QCD

 Spin-independent force shows
     Coulomb + linear form

 Lattice QCD potential is
     consistent with NRp model

Kawanai, Sasaki, in preparation.

Barnes, Godfrey, Swanson, PRD 72 (2005).

 Spin-dependent force shows 
short range but not point-like repulsion

 cbar-c potential from 2+1 flavor FULL QCD simulation at almost PHYSICAL POINT 
     generated by PACS-CS Coll. (mπ=156(7), mK=553(2) MeV)

 Iwasaki gauge action (β=1.9, a=0.091 fm) + RHQ action
     -> Mave.(1S) = 3.069(2) GeV, Mhyp.=111(2) MeV

Spin-independent force Spin-dependent force

see also, Kawanai and Sasaki, PRL 107 (2011).



Summary
 We study inter-quark interactions with finite quark mass in 

quenched QCD simulation

 Effective central Qbar-Q potentials from NBS amplitudes reveal 
Coulomb + linear forms

 Coulomb coefficients become smaller and smaller as increasing mq
 String tension also has mq dependence and is comparable with that 

of Wilson loop analysis with large mq limit

 Studies of tensor, LS, non-locality of inter-quark potential
 Three-quark potentials : ccc, ccs
 Coupled channel analysis toward above open charm threshold
 Investigation of exotic states (X, Y, Z)

Future plans : Full QCD @ physical point



Thank you very much for your attention



Relativistic kinematics
Inter-quark potentials with relativistic kinematics are studied

 Even for relativistic kinematics, Coulomb + linear potentials are obtained
 Long range parts of relativistic potentials are consistent with those of N.R. potentials
 For charmonium, non-relativistic kinematics is good enough
 For strangeness sector, non-locality of potentials may get to large, if one employes 

non-relativistic kinematics

κ=0.1320 (MV=2.55 GeV)

κ=0.1520 (MV=1.04 GeV)

κ=0.1420 (MV=1.77 GeV)

κ=0.1480 (MV=1.27 GeV)



Small difference!

We compare Standard Wilson quark action 
                     with O(a) improved action (clover action)!

!  We study cutoff dependence of the qbar-q potentail  
            by adopting O(a)-improved Wilson-clover quark action 

 Check (I) : O(a) improvement



 Check (II) : Volume dependence

L=4.5fm (!=5.8, mPS=2.47GeV, clover): red 
L=3.2fm (!=6.0, mPS=2.58GeV, standard): green!

!  Small difference between them … volume is enough 

!  We study volume dependence of the qbar-q potentail by varying lattice spacing 
for O(a)-improved Wilson-clover quark action 

(L
at

tic
e 

un
it)
!

Pseudoscalar channel!

Our setup (!=6.0, a=0.1fm, standard Wilson, (3.2fm)3) seems sufficient 
for the calculation of qbar-q potential (in quark mass region calculated here)!



Finite temperature : trial calcuation
[
−

∂

∂t
−

∇2

2µ
+ V (r; T )

]
ψ(r, t; T ) = 0

Potential from imaginary-time formalism

Prelim
inary


