Interaction energies between static-light mesons

QWG 2011 - 8th International Workshop on Heavy Quarkonium Darmstadt, Germany

Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de http://people.physik.hu-berlin.de/~mowagner/

October 5, 2011
[M. Wagner, PoS LATTICE2010, 162 (2010)]
[M. Wagner, arXiv:1103.5147 [hep-lat]]

Introduction (1)

- Goal: compute the potential of (or equivalently the force between) two B mesons from first principles by means of lattice QCD:
- Treat the b quark in the static approximation.
- Consider only pseudoscalar/pseudovector mesons $\left(j^{\mathcal{P}}=(1 / 2)^{-}\right.$, denoted by S, PDG: $\left.B, B^{*}\right)$ and scalar/vector mesons $\left(j^{\mathcal{P}}=(1 / 2)^{+}\right.$, denoted by $\left.P_{-}, \mathrm{PDG}: B_{0}^{*}, B_{1}^{*}\right)$, which are among the lightest static-light mesons.
- Study the dependence of the mesonic potential $V(R)$ on
* the light quark flavor u and/or d (isospin),
* the light quark spin (the static quark spin is irrelevant),
* the type of the meson S and/or P_{-}.

Introduction (2)

- Motivation:
- First principles computation of a hadronic force.
- Possible application: determine, whether two B mesons may form bound states (tetraquarks).
- Until now
* it has mainly been studied in the quenched approximation,
* only pseudoscalar (S), but no scalar $\left(P_{-}\right) B$ mesons have been considered.
[C. Michael and P. Pennanen [UKQCD Collaboration], Phys. Rev. D 60, 054012 (1999)]
[W. Detmold, K. Orginos and M. J. Savage, Phys. Rev. D 76, 114503 (2007)]
[G. Bali and M. Hetzenegger, PoS LATTICE2010, 142 (2010)]

Outline

- Symmetries and quantum numbers of B mesons and $B B$ systems.
- Lattice setup.
- Results and their interpretation.

(Pseudo)scalar B mesons

- Symmetries and quantum numbers of static-light mesons:

$$
\begin{aligned}
& \text { - Isospin: } I=1 / 2, I_{z}= \pm 1 / 2 \text {, i.e. } B \equiv \bar{Q} u \text { or } B \equiv \bar{Q} d \text {. } \\
& \text { - Parity: } \mathcal{P}= \pm, \\
& \quad * \mathcal{P}=-\equiv S \text { (wave), } \\
& \quad * \mathcal{P}=+\equiv P_{-} \text {(wave). }
\end{aligned}
$$

- Rotations:
* Light cloud angular momentum $j=1 / 2$ (for S and P_{-}), $j_{z}= \pm 1 / 2$.
* Static quark spin: irrelevant (static quarks can also be treated as spinless color charges).
- Examples of static-light meson creation operators:
- $\bar{Q} \gamma_{5} q$ (pseudoscalar, i.e. S), $q \in\{u, d\}$,
- $\bar{Q} q$ (scalar, i.e. P_{-})
(j_{z} is not well-defined, when using these operators).

$B B$ systems (1)

- Symmetries and quantum numbers of a pair of static-light mesons (separated along the z-axis):
- Isospin: $I=0,1, I_{z}=-1,0,+1$.
- Rotations around the z-axis:
* Angular momentum of the light degrees of freedom $j_{z}=-1,0,+1$.
* Static quark spin: irrelevant (static quarks can also be treated as spinless color charges).
- Parity: $\mathcal{P}= \pm$.
- If $j_{z}=0$, reflection along the x-axis: $\mathcal{P}_{x}= \pm$.
- Instead of using $j_{z}= \pm 1$ one can also label states by $\left|j_{z}\right|=1, \mathcal{P}_{x}= \pm$.
\rightarrow Label $B B$ states by $\left(I, I_{z},\left|j_{z}\right|, \mathcal{P}, \mathcal{P}_{x}\right)$.

$B B$ systems (2)

- To extract the potential(s) of a given sector (characterized by $\left(I, I_{z},\left|j_{z}\right|, \mathcal{P}, \mathcal{P}_{x}\right)$), compute the temporal correlation function of the trial state
$(\mathcal{C} \Gamma)_{A B}\left(\bar{Q}_{C}(-R / 2) q_{A}^{(1)}(-R / 2)\right)\left(\bar{Q}_{C}(+R / 2) q_{B}^{(2)}(+R / 2)\right)|\Omega\rangle$,
where
$-\mathcal{C}=\gamma_{0} \gamma_{2}$ (charge conjugation matrix),
$-q^{(1)} q^{(2)} \in\{u d-d u \quad, \quad u u, d d, u d+d u\}$ (isospin I, I_{z}),
$-\Gamma$ is an arbitrary combination of γ matrices $\left(\operatorname{spin}\left|j_{z}\right|\right.$, parity $\left.\mathcal{P}, \mathcal{P}_{x}\right)$.

$B B$ systems (3)

- $B B$ creation operators for $I_{z}=+1$: 16 operators of type

$$
(\mathcal{C} \Gamma)_{A B}\left(\bar{Q}_{C}(-R / 2) q_{A}^{(u)}(-R / 2)\right)\left(\bar{Q}_{C}(+R / 2) q_{B}^{(u)}(+R / 2)\right) .
$$

Γ	$\left\|j_{z}\right\|, \mathcal{P}, \mathcal{P}_{x}$
1	$0,-,-$
$\gamma_{0} \gamma_{5}$	$0,+,+$
γ_{5}	$0,+,+$
γ_{0}	$0,+,-$
γ_{3}	$0,-,-$
$\gamma_{0} \gamma_{3} \gamma_{5}$	$0,+,+$
$\gamma_{3} \gamma_{5}$	$0,-,+$
$\gamma_{0} \gamma_{3}$	$0,-,-$
γ_{1}	$1,-,+$
$\gamma_{0} \gamma_{1} \gamma_{5}$	$1,+,-$
$\gamma_{1} \gamma_{5}$	$1,-,-$
$\gamma_{0} \gamma_{1}$	$1,-,+$
\ldots	\ldots

$B B$ systems (4)

- $B B$ creation operators for $I_{z}=0: 32$ operators of type
$(\mathcal{C} \Gamma)_{A B}\left(\bar{Q}_{C}(-R / 2) q_{A}^{(u)}(-R / 2)\right)\left(\bar{Q}_{C}(+R / 2) q_{B}^{(d)}(+R / 2)\right) \pm(u \leftrightarrow d)$.

Γ, \pm	$\left\|j_{z}\right\|, I, \mathcal{P}, \mathcal{P}$
$\gamma_{5},-$	$0,0,-,+$
$\gamma_{0},-$	$0,0,-,-$
$1,-$	$0,0,+,-$
$\gamma_{0} \gamma_{5},-$	$0,0,-,+$
$\gamma_{3} \gamma_{5},-$	$0,0,+,+$
$\gamma_{0} \gamma_{3},-$	$0,0,+,-$
$\gamma_{3},-$	$0,0,+,-$
$\gamma_{0} \gamma_{3} \gamma_{5},-$	$0,0,-,+$
$\gamma_{5},+$	$0,1,+,+$
$\gamma_{0},+$	$0,1,+,-$
$1,+$	$0,1,-,-$
$\gamma_{0} \gamma_{5},+$	$0,1,+,+$
\ldots	\ldots

Lattice setup

- Lattice spacing: $a \approx 0.079 \mathrm{fm}$.
- Lattice extension: $L \approx 1.90 \mathrm{fm}$ (periodic boundary conditions).
- Pion mass: $m_{\mathrm{PS}} \approx 340 \mathrm{MeV}$.

Discussion of results (1)

- Four "types of potentials":
- Two attractive, two repulsive.
- Two have asymptotic values, which are larger by $\approx 400 \mathrm{MeV}$.
- There are cases, where two potentials with identical quantum numbers are completely different (i.e. of different type)
\rightarrow at least one of the corresponding trial states must have very small ground state overlap
\rightarrow physical understanding, i.e. interpretation of trial states needed.

Discussion of results (2)

- Expectation at large meson separation $R: V(R) \approx 2 \times$ meson mass.
- Potentials with smaller asymptotic value at $\approx 2 \times m(S)$.
$-m\left(P_{-}\right)-m(S) \approx 400 \mathrm{MeV}$: approximately the observed difference between different types of potentials.
\rightarrow Two types correspond to $S \leftrightarrow S$ potentials.
\rightarrow Two types correspond to $S \leftrightarrow P_{-}$potentials.
- Can this be understood in detail on the level of the used $B B$ creation operators?

Discussion of results (3)

- Express the $B B$ creation operators in terms of static-light meson creation operators (use suitable spin and parity projectors for the light quarks).
- Examples:

$$
\begin{aligned}
& \text { *uu, } \Gamma=1 \quad \rightarrow \quad \mathcal{P}=-, \mathcal{P}_{x}=-: \\
& \quad(\mathcal{C} 1)_{A B}\left(\bar{Q}_{C}(-R / 2) q_{A}^{(u)}(-R / 2)\right)\left(\bar{Q}_{C}(+R / 2) q_{B}^{(u)}(+R / 2)\right) \\
& \quad \propto \quad S_{\uparrow} P_{\downarrow}-S_{\downarrow} P_{\uparrow}+P_{\uparrow} S_{\downarrow}-P_{\downarrow} S_{\uparrow} . \\
& \quad \begin{array}{ll}
u u, \Gamma=\gamma_{3} \quad \rightarrow \quad \mathcal{P}=-, \mathcal{P}_{x}=-: \\
& \left(\mathcal{C} \gamma_{3}\right)_{A B}\left(\bar{Q}_{C}(-R / 2) q_{A}^{(u)}(-R / 2)\right)\left(\bar{Q}_{C}(+R / 2) q_{B}^{(u)}(+R / 2)\right)
\end{array} \propto \\
& \quad \propto \quad S_{\uparrow} S_{\downarrow}+S_{\downarrow} S_{\uparrow}-P_{\uparrow} P_{\downarrow}-P_{\downarrow} P_{\uparrow} .
\end{aligned}
$$

- $S S / S P_{-}$content and asymptotic values in agreement for all 64 correlation functions/ potentials
\rightarrow asymptotic differences understood.

Discussion of results (4)

- Is there a general rule, about when a potential is repulsive and when attractive?
$-S \leftrightarrow S$ potentials:
* $(I=0, s=0)$ or $(I=1, s=1)$, i.e. $I=s \quad \rightarrow \quad$ attractive $(I=0, s=1)$ or $(I=1, s=0)$, i.e. $I \neq s \quad \rightarrow \quad$ repulsive (s : combined angular momentum of the two mesons).
* Example: $u u, \Gamma=\gamma_{3} \quad \rightarrow \quad \mathcal{P}=-, \mathcal{P}_{x}=-$:

$$
\begin{aligned}
& \left(\mathcal{C} \gamma_{3}\right)_{A B}\left(\bar{Q}_{C}(-R / 2) q_{A}^{(u)}(-R / 2)\right)\left(\bar{Q}_{C}(+R / 2) q_{B}^{(u)}(+R / 2)\right) \propto \\
& \quad \propto \quad S_{\uparrow} S_{\downarrow}+S_{\downarrow} S_{\uparrow}-P_{\uparrow} P_{\downarrow}-P_{\downarrow} P_{\uparrow} .
\end{aligned}
$$

i.e. $I=1, s=1$; the numerically obtained potential is attractive, i.e. in agreement with the above stated rule.

* All $32 S \leftrightarrow S$ correlation functions/potentials fulfill the rule.
* Agreement with similar quenched lattice studies.
[C. Michael and P. Pennanen [UKQCD Collaboration], Phys. Rev. D 60, 054012 (1999)]
[W. Detmold, K. Orginos and M. J. Savage, Phys. Rev. D 76, 114503 (2007)]

Discussion of results (5)

$-S \leftrightarrow P_{-}$potentials:

* Do not obey the above stated rule.

* It can, however, easily be generalized by including parity, i.e. symmetry or antisymmetry under exchange of S and P_{-}: trial state symmetric under meson exchange $\quad \rightarrow \quad$ attractive trial state antisymmetric under meson exchange \rightarrow repulsive (meson exchange \equiv exchange of flavor, spin and parity).
* Example: $u u, \Gamma=\gamma_{0} \quad \rightarrow \quad \mathcal{P}=+, \mathcal{P}_{x}=-$:

$$
\begin{aligned}
& \left(\mathcal{C} \gamma_{0}\right)_{A B}\left(\bar{Q}_{C}(-R / 2) q_{A}^{(u)}(-R / 2)\right)\left(\bar{Q}_{C}(+R / 2) q_{B}^{(u)}(+R / 2)\right) \propto \\
& \quad \propto \quad S_{\uparrow} P_{\downarrow}-S_{\downarrow} P_{\uparrow}-P_{\uparrow} S_{\downarrow}+P_{\downarrow} S_{\uparrow},
\end{aligned}
$$

i.e. $I=1$ (symmetric), $s=0$ (antisymmetric), antisymmetric with respect to $S \leftrightarrow P_{-}$; the numerically obtained potential is attractive, i.e. in agreement with the above stated general rule.

* All $32 S \leftrightarrow P_{-}$correlation functions/potentials (and all $32 S \leftrightarrow S$ correlation functions/potentials) fulfill the generalized rule.

Discussion of results (6)

- Improvements after having understood the extraction and interpretation of $B B$ potentials from single correlation functions:
- Linearly combine $B B$ operators to either eliminate $P_{-} \leftrightarrow P_{-}$or $S \leftrightarrow S$ combinations.
- Example:
$u d-d u, \Gamma=\gamma_{5} \quad \rightarrow \quad-S_{\uparrow} S_{\downarrow}+S_{\downarrow} S_{\uparrow}-P_{\uparrow} P_{\downarrow}+P_{\downarrow} P_{\uparrow}$
$u d-d u, \Gamma=\gamma_{0} \gamma_{5} \quad \rightarrow \quad-S_{\uparrow} S_{\downarrow}+S_{\downarrow} S_{\uparrow}+P_{\uparrow} P_{\downarrow}-P_{\downarrow} P_{\uparrow}$
\rightarrow use $\gamma_{5}+\gamma_{0} \gamma_{5}$ to obtain a better signal for the $S \leftrightarrow S$ potential
\rightarrow use $\gamma_{5}-\gamma_{0} \gamma_{5}$ to extract the $P_{-} \leftrightarrow P_{-}$potential.

Discussion of results (7)

- Improvements after having understood the extraction and interpretation of $B B$ potentials from single correlation functions:
- Use correlation matrices instead of single correlation functions to avoid mixing with $B B$ states of lower energy, which is present, because
* although the product of two specific B meson creation operators closely resembles the corresponding $B B$ state, it will still have a non-vanishing overlap to $B B$ states corresponding to B mesons with different isospin, spin and/or parity,
* twisted mass lattice QCD explicitely breaks isospin and parity (the breaking is proportional to the lattice spacing a; isospin and parity will be restored in the continuum limit).

Summary of $B B$ states and degeneracies

- Two B mesons, each can have $I_{z}= \pm 1 / 2, j_{z}= \pm 1 / 2, \mathcal{P}= \pm$ $\rightarrow 8 \times 8=64$ states.
- $S \leftrightarrow S$ potentials:
- Attractive:
 (10 states).
- Repulsive:

- $S \leftrightarrow P_{-}$potentials:
- Attractive: $\underbrace{1 \oplus 1 \oplus 3 \oplus 3}_{\left|j_{z}\right|=0} \oplus \underbrace{2 \oplus 6}_{\left|j_{z}\right|=1}$ (16 states).
- Repulsive: $\underbrace{1 \oplus 1 \oplus 3 \oplus 3}_{\left|j_{z}\right|=0} \oplus \underbrace{2 \oplus 6}_{\left|j_{z}\right|=1} \quad$ (16 states).
- $P_{-} \leftrightarrow P_{-}$potentials: identical to $S \leftrightarrow S$ potentials.
- In total 24 different potentials.

Attractive $S \leftrightarrow S$ potentials

- Attractive $S \leftrightarrow S$ potentials are relevant, when trying to determine, whether $B B$ may form a bound state.
- Three different attractive $S \leftrightarrow S$ potentials:

Summary, conclusions, future plans (1)

- Computation of $B B$ potentials (arbitrary flavor, spin and parity) with "light" dynamical quarks ($m_{\mathrm{PS}} \approx 340 \mathrm{MeV}$).
- Qualitative agreement with existing quenched results for $S \leftrightarrow S$ potentials.
- First lattice computation of $S \leftrightarrow P_{-}$and $P_{-} \leftrightarrow P_{-}$potentials.
- Clear statements about whether a potential of a given channel is attractive or repulsive.
- Statistical accuracy problematic (exponentially decaying correlation functions are quickly lost in statistical noise):
- Reasonable accuracy for attractive $S \leftrightarrow S$ potentials (interesting, when trying to determine, whether $B B$ may form a bound state).
- Other (higher) potentials:
$\rightarrow B B$ potentials are extracted at rather small temporal separations
\rightarrow slight contamination from excited states cannot be excluded.

Summary, conclusions, future plans (2)

- Further plans and possibilities:
- Other values of the lattice spacing, the spacetime volume and/or the u / d quark mass.
- Partially quenched computations, to obtain $B_{s} B_{s}$ and/or $B_{s} B$ potentials.
- Improve lattice meson potentials at small separations (where the suppression of UV fluctuations due to the lattice cutoff yields wrong results) with corresponding perturbative potentials.

$B B$ systems (A)

- Wilson twisted mass action:

$$
S_{\mathrm{F}}[\chi, \bar{\chi}, U]=a^{4} \sum_{x} \bar{\chi}(x)\left(D_{\mathrm{W}}+i \mu_{\mathrm{q}} \gamma_{5} \tau_{3}\right) \chi(x) \quad, \quad \psi(x)=e^{i \gamma_{5} \tau_{3} \omega / 2} \chi(x)
$$

- Symmetries of Wilson twisted mass lattice QCD compared to QCD:
- $\mathrm{SU}(2)$ isospin breaks down to $\mathrm{U}(1)$: I_{z} is still a good quantum number, I is not.
- Parity \mathcal{P} is replaced by $\mathcal{P}^{(\mathrm{tm})}$, which is parity combined with light flavor exchange.
- Twisted mass $B B$ sectors:

$$
\begin{aligned}
& * I_{z}= \pm 1:(I_{z},\left|j_{z}\right|, \underbrace{\mathcal{P}^{(\mathrm{tm})} \mathcal{P}_{x}^{(\mathrm{tm})}}_{=\mathcal{P} \mathcal{P}_{x}}), \\
& * I_{z}=0:(I_{z},\left|j_{z}\right|, \underbrace{\mathcal{P}^{(\mathrm{tm})}}_{=\mathcal{P} \times(2 I-1)}, \underbrace{\mathcal{P}_{x}^{(\mathrm{tm})}}_{=\mathcal{P}_{x} \times(2 I-1)}) .
\end{aligned}
$$

\rightarrow QCD sectors $\left(I, I_{z},\left|j_{z}\right|, \mathcal{P}, \mathcal{P}_{x}\right)$ are pairwise combined.

$B B$ systems (B)

- $B B$ creation operators for $I_{z}=+1$: 16 operators of type
$(\mathcal{C} \Gamma)_{A B}\left(\bar{Q}_{C}(-R / 2) \chi_{A}^{(u)}(-R / 2)\right)\left(\bar{Q}_{C}(+R / 2) \chi_{B}^{(u)}(+R / 2)\right)$.

Γ twisted	$\left\|j_{z}\right\|, \mathcal{P}^{\text {(tm, light })} \mathcal{P}_{x}^{\text {(tm,light })}$	Γ pseudo physical	$\left\|j_{z}\right\|, \mathcal{P}^{\text {(light) }}, \mathcal{P}_{x}^{\text {(light) }}$
γ_{5}	$0,+$	$\mp i$	$0,-,-$
$\gamma_{0} \gamma_{5}$	$0,+$	$+\gamma_{0} \gamma_{5}$	$0,+,+$
1	$0,+$	$\mp i \gamma_{5}$	$0,+,+$
γ_{0}	$0,-$	$+\gamma_{0}$	$0,+,-$
γ_{3}	$0,+$	$+\gamma_{3}$	$0,-,-$
$\gamma_{0} \gamma_{3}$	$0,+$	$\mp i \gamma_{0} \gamma_{3} \gamma_{5}$	$0,+,+$
$\gamma_{3} \gamma_{5}$	$0,-$	$+\gamma_{3} \gamma_{5}$	$0,-,+$
$\gamma_{0} \gamma_{3} \gamma_{5}$	$0,+$	$\mp i \gamma_{0} \gamma_{3}$	$0,-,-$
γ_{1}	$1,-$	$+\gamma_{1}$	$1,-,+$
$\gamma_{0} \gamma_{1}$	$1,-$	$\mp i \gamma_{0} \gamma_{1} \gamma_{5}$	$1,+,-$
$\gamma_{1} \gamma_{5}$	$1,+$	$+\gamma_{1} \gamma_{5}$	$1,-,-$
$\gamma_{0} \gamma_{1} \gamma_{5}$	$1,-$	$\mp i \gamma_{0} \gamma_{1}$	$1,-,+$
\ldots	\ldots	\ldots	\ldots

$B B$ systems (C)

- $B B$ creation operators for $I_{z}=0$: 32 operators of type
$(\mathcal{C} \Gamma)_{A B}\left(\bar{Q}_{C}(-R / 2) \chi_{A}^{(u)}(-R / 2)\right)\left(\bar{Q}_{C}(+R / 2) \chi_{B}^{(d)}(+R / 2)\right) \pm(u \leftrightarrow d)$.

Γ twisted, \pm	$\left\|j_{z}\right\|, \mathcal{P}^{\text {(tm,light) }}, \mathcal{P}_{x}^{\text {(tm,light) }}$	Γ pseudo physical, \pm	$\left\|j_{z}\right\|, I, \mathcal{P}^{\text {(light) }}, \mathcal{P}_{x}^{\text {(light) }}$
$\gamma_{5},+$	$0,+,+$	$+\gamma_{5},+$	$0,1,+,+$
$\gamma_{0} \gamma_{5},+$	$0,+,+$	$+i \gamma_{0},-$	$0,0,-,-$
$1,-$	$0,-,+$	$+1,-$	$0,0,+,-$
$\gamma_{0},-$	$0,+,+$	$+i \gamma_{0} \gamma_{5},+$	$0,1,+,+$
$\gamma_{5},-$	$0,+,-$	$+\gamma_{5},-$	$0,0,-,+$
$\gamma_{0} \gamma_{5},-$	$0,+,-$	$+i \gamma_{0},+$	$0,1,+,-$
$1,+$	$0,-,-$	$+1,+$	$0,1,-,-$
$\gamma_{0},+$	$0,+,-$	$+i \gamma_{0} \gamma_{5},-$	$0,0,-,+$
$\gamma_{3},+$	$1,-,-$	$+i \gamma_{3} \gamma_{5},-$	$0,0,+,+$
$\gamma_{0} \gamma_{3},+$	$1,-,-$	$+\gamma_{0} \gamma_{3},+$	$0,1,-,-$
$\gamma_{3} \gamma_{5},-$	$1,-,-$	$+i \gamma_{3},+$	$0,1,-,-$
$\gamma_{0} \gamma_{3} \gamma_{5},-$	$1,+,-$	$+\gamma_{0} \gamma_{3} \gamma_{5},-$	$0,0,-,+$
\ldots	\ldots	\ldots	\ldots

Simulation setup (A)

- Fermionic action: Wilson twisted mass, $N_{f}=2$ degenerate flavors,
$S_{\mathrm{F}}[\chi, \bar{\chi}, U]=a^{4} \sum_{x} \bar{\chi}(x)\left(D_{\mathrm{W}}+i \mu_{\mathrm{q}} \gamma_{5} \tau_{3}\right) \chi(x)$
$D_{\mathrm{W}}=\frac{1}{2}\left(\gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-a \nabla_{\mu}^{*} \nabla_{\mu}\right)+m_{0}$
(m_{0} : untwisted mass; μ_{q} : twisted mass; τ_{3} : third Pauli matrix acting in flavor space).
- Relation between the physical basis ψ and the twisted basis χ (in the continuum):

$$
\begin{aligned}
\psi & =\frac{1}{\sqrt{2}}\left(\cos (\omega / 2)+i \sin (\omega / 2) \gamma_{5} \tau_{3}\right) \chi \\
\bar{\psi} & =\frac{1}{\sqrt{2}} \bar{\chi}\left(\cos (\omega / 2)+i \sin (\omega / 2) \gamma_{5} \tau_{3}\right)
\end{aligned}
$$

(ω : twist angle; $\omega=\pi / 2$: maximal twist).

Simulation setup (B)

- $\beta=3.90, L^{3} \times T=24^{3} \times 48, \mu=0.0040$ \rightarrow lattice spacing $a \approx 0.079 \mathrm{fm}$
\rightarrow lattice extension $L \approx 1.90 \mathrm{fm}$
\rightarrow pion mass $m_{\mathrm{PS}} \approx 340 \mathrm{MeV}$.
- Inversions/contractions on 210 gauge configurations for light u / d quarks.

- $12 u$ and $12 d$ inversions per gauge configuration (stochastic timeslice sources located on the same timeslice).
- APE smearing of spatial links and Gaussian smearing of light quark fields to "optimize" the ground state overlap of trial states.
- Wilson lines of static quarks are discretized by path ordered products of ordinary links (small separations) and HYP2 smeared links (large separations).

