


### **Pierre FAYET**

Int. Workshop on Heavy Quarkonium

Darmstadt, Germany, october 6<sup>th</sup>, 2011

**1974:**  $\psi(c\bar{c})$  **discovery** *SLAC* (*Richter* ...), *MIT* (*Ting* ...) **1977:**  $\Upsilon(b\bar{b})$  **discovery** *FermiLab* (*Lederman* ...)

#### NOT A NEW SUBJECT !

1977-78: Search for light Higgs bosons or axions in  $\psi(\Upsilon) \rightarrow \gamma h \text{ or } \gamma a$ ;

and more exotic particles, already  $\sim 30$  years ago :

1979: gravitinos and photinos in
$$\psi \rightarrow invisible$$
 $PLB 84(1979)421$ 1980: light U bosons in $\psi \rightarrow \gamma U \quad (\Upsilon \rightarrow \gamma U)$  $NPB 187(1981)184$ 1991: light dark matter in $\Upsilon \rightarrow \chi \chi \quad or \quad \gamma \chi \chi$  $PLB 269(1991)213$ 

experimental limits not very good yet ...  $(\rightarrow much better now !)$ 

we are used to discuss

very high energy frontier :

searching for new particles, new interactions, at very high energies

Waiting for LHC to (presumably) discover the

Brout-Englert-Higgs ... boson

(practically constrained to  $114 \leftrightarrow 145 \text{ GeV}$ )

only missing part in Standard Model

SM cannot be the end of the story, there must be

**NEW PHYSICS beyond the Standard Model** 

What kind of new physics?

New PARTICLES, new INTERACTIONS, maybe new SPACETIME DIMENSIONS ...

searched for at very high-energies, now LHC, to explore TeV scale ...

One of the main questions:

Is there a "SUPERWORLD" of new particles ?

Could half of the particles (at least) have escaped direct observations?

 $\rightarrow$  new matter ... ?  $\rightarrow$  dark matter ... ?

Need for dark matter ...

### What is (non-baryonic) DARK MATTER ?

In the late 70's, one did not talk so much about dark matter

mostly considered it could be made of

(massive but light) neutrinos  $\nu_e, \nu_\mu$  or  $\nu_\tau$ 

now referred to as "hot dark matter"

( ... seems in disagreement with data ... )

At the same time (70's)

SUPERSYMMETRIC extensions of STANDARD MODEL

*SM particles*  $\leftrightarrow$  SUPERPARTNERS

gluinos, squarks, selectrons, smuons ...

spin- $\frac{1}{2}$  NEUTRALINOS, spin- $\frac{3}{2}$  GRAVITINO

(spin-0 sneutrinos)

Pair-production of new particles

Lightest (LSP) expected stable thanks to *R*-parity

and (usually) "weakly-interacting"  $\rightarrow$  natural dark matter candidate

as soon as one was needed, other than neutrinos ...

# What is *R*-PARITY ? *PLB69(1977)489;B76(1978)575*

Continuous  $U(1)_R$  acts chirally on SUSY generator (not SM particles) but would require gluinos and photino to stay massless ...

In any case broken by gravitino mass term  $m_{3/2}$  in supergravity

 $U(1)_R$  broken (by gravitino and gluino ... mass terms ...) ( $m_{3/2}, m_i, \mu, ...$ )

 $U(1)_R$  reduced to discrete symmetry  $R_p$  $R_p = (-1)^R = \begin{cases} +1 : \text{ ordinary particles} \\ -1 : \text{ superpartners} \end{cases}$ R-parity then identified as  $(-1)^{2S} (-1)^{3B+L}$ 

related to **B** and **L**, prevents exchanges of  $\tilde{q}$ ,  $\tilde{l}$  between quarks and leptons ...

pair production of SUSY particles

R-parity  $\Rightarrow$  LSP stable, non-baryonic <u>DM</u> candidate

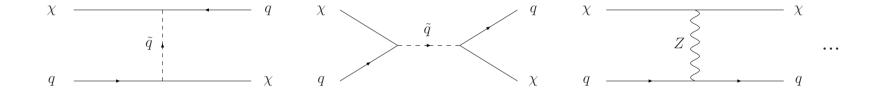
#### **NEUTRALINO**

combination of superpartners of neutral gauge and Higgs bosons

naturally "weakly-interacting" through  $\tilde{q}$ ,  $\tilde{l}$ , Z or Higgs exchanges PLB 86(1979)272 ...

$$\{W_3, W'; h_1^{\circ}, h_2^{\circ}; \dots\} \xrightarrow{SUSY} \underbrace{\{\tilde{W}_3, \tilde{W}'; \tilde{h}_1^{\circ}, \tilde{h}_2^{\circ}; \dots\}}_{\text{neutralinos}}.$$

possible alternative:


[LSP less-than-weakly-interacting for very-weakly coupled gravitino LSP decoupling very early, also possible DM candidate ]

graviton  $\stackrel{SUSY}{\longleftrightarrow}$  gravitino

#### DM relic density evaluated from annihilation cross-sections at freeze-out

(relic density  $\propto 1/(\sigma_{ann})_{FO}$ )

with  $\sigma_{ann} \approx$  weak cross sections from squark, slepton, Z or Higgs exchanges



(DM interactions with quarks)  $\iff$  (DM annihilations  $\rightarrow q\bar{q}$ )

### **neutralino** = **natural WIMP candidate**

precise relic density depends on  $\tilde{q}$  and  $\tilde{l}$  masses ( $\gtrsim$  TeV ?? from LHC ?), mixing angles, ...

### No SUSY relation between known particles and forces ....

*but* ...

#### DM candidate from lightest neutralino in SUSY SM

relation of dark matter with gauge  $(\gamma, Z, ...)$  and Higgs bosons

 $\rightarrow$ 

(graviton if gravitino DM)

#### DARK MATTER related with

mediators of (ELECTROWEAK) INTERACTIONS

Relation

**DARK MATTER**  $\leftrightarrow$  **FORCE(S)** 

**Can we produce directly DARK MATTER** 

at particle colliders?

most notably LHC ...

or quarkonium decays...

**Producing NEUTRALINOS (or DARK MATTER)** at colliders

pair-production of neutralinos (or DM candidates)

stable from *R*-parity (or similar)

 $p p \rightarrow pair of squarks or gluinos ... \rightarrow 2 neutralinos + ...$ 

Missing energy-momentum signature of SUSY ... (1977 ...)

PLB69(1977)489 ...

interact ~ "weakly" through  $\tilde{q}$  etc. exchanges PLB86(1979)272 ...

or directly  $e^+e^- \rightarrow \dots \rightarrow 2$  neutralinos  $+ \dots$  (1977...)

through  $\tilde{e}$  ... production or exchanges PLB69(1977)489;B117(1982)460 ...

or, for unstable neutralinos  $(NLSP) \rightarrow (photon + gravitino)$ :

as in "GMSB" models with very light gravitino LSP PLB70(1977)461 ...

 $\left\{ egin{array}{ll} e^+e^- &
ightarrow & 2 \ ext{neutralinos} + \hdots &
ightarrow & \gamma \ \gamma \ + \ 2 \ ext{gravitinos} + \hdots &
ightarrow &
ightarrow & \gamma \ \gamma \ + \ 2 \ ext{gravitinos} + \hdots &
ightarrow &
ightarrow$ 

search for photons + missing energy-momentum

#### Accelerators can look for Dark Matter ...

**NEUTRALINOS** and **DM** in quarkonium decays

#### invisible $\psi$ and $\Upsilon$ decays

$$\begin{cases} \psi(2S) \rightarrow \pi^{+}\pi^{-}\psi(1S) (\rightarrow inv.) \\ \Upsilon(3S(2S)) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S) (\rightarrow inv.) \end{cases}$$

 $\psi \rightarrow inv.$  (1979): search for (light) photinos and (ultralight) gravitinos PLB84(1979)421

 $\Upsilon \rightarrow inv.$  (1991): search for light dark matter particles ("cosmions") PLB269(1991)213

given that  $\Upsilon \rightarrow \nu \bar{\nu} \simeq 10^{-5}$   $(\psi \rightarrow \nu \bar{\nu} \simeq (2 \text{ to } 3) \, 10^{-8})$ 

 $\Upsilon \rightarrow inv. \ or \ \gamma + inv. \ may \ restrict \ production \ of \ light DM \ particles$   $(discussed \ later)$ 

"Expected" BR ?? can it be "predicted" from DM annihilation cross sections ??

## LIGHT DARK MATTER

(in  $\sim$  MeV to GeV range)

quite unconventional, at least for lower masses

How can it be possible ??

### **LIGHT DARK MATTER**

with C. Bæhm (2003)

NPB683(2004)219 ...

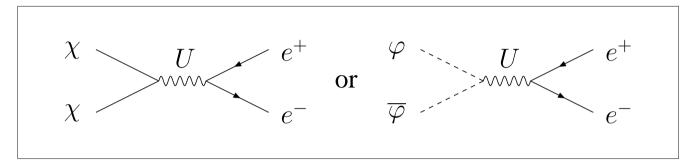
Too light dark matter particles

(say in MeV to GeV range)

normally forbidden, as could not annihilate sufficiently

 $\rightarrow$  relic abundance (much) too large ... !! ??

may be possible only with a new interaction, but ...


New interaction should be

significantly stronger than weak interactions ... !

to get sufficiently large  $\sigma_{ann}$  at lower energies

### $\rightarrow$ NEW INTERACTION induced by spin-1 U boson

#### sufficiently strong at lower energies



DM annihilations, for spin- $\frac{1}{2}$  or spin-0 particles

[ other possibility (not favored ...):

light spin-0 DM annihilations through heavy (mirror) fermion exchanges ]

### but how can it be unobserved, if stronger than weak interactions ... ??

does not seem to make sense ... !!

*the trick :* **new interaction** 

### much stronger than weak interactions at lower energies

(where weak interactions are very weak)

but much weaker at higher energies ...

(at which weak interactions become stronger)

### again, how is it possible ??

(il y a encore un truc, bien sûr ...)

le deuxième truc (since 1980 ...)

Interaction mediated by **LIGHT** spin-1 U boson

PLB 95(1980)285, NPB 187(1981)184, PRD 70(2004 023514 ...

$$propagator \ \frac{1}{q^2 - m_U^2}: \begin{cases} \frac{-1}{m_U^2} \ for \ |q| \ll m_U & (local limit at lower energies) \\ \sigma \nearrow with \ E \ (as for weak int.) \\ \text{``stronger-than-weak'' at lower energies} \\ \frac{1}{q^2} \ for \ |q| \gg m_U & (ignore \ m_U \ at \ higher \ energies) \\ \sigma \searrow with \ E \ (as \ in \ QED) \\ \rightarrow & \text{``weaker-than-weak'' at higher energies} \end{cases}$$

change of behavior at  $|q| \sim m_U \ll m_Z$ ,

**Relic density of light dark matter** 

$$\chi \chi \rightarrow e^+ e^ \chi \qquad U \qquad e^+ e^ \chi \qquad e^-$$

(other modes possible, uar
u ... , depending on  $m_{\chi}$ )

$$\sigma_{
m ann}^{ee} v_{
m rel} \simeq rac{v_{\chi}^2}{.16} \left(rac{c_{\chi} f_e}{10^{-6}}
ight)^2 \left(rac{m_{\chi} imes 1.8 \,\,{
m MeV}}{m_U^2 - 4 \, m_{\chi}^2}
ight)^2 \,\,(4\,\,{
m pb})$$

required  $c_{\chi} f_e$  for correct total annihilation c.s. ( $\sigma_{\rm ann} = \sigma_{\rm ann}^{ee}/B_{\rm ann}^{ee}$ ) at freeze out

$$\sigma_{\mathrm{ann}} \ OK \ for \qquad | \ c_{\chi} \ f_{e} | \ \simeq \ (B_{\mathrm{ann}}^{ee})^{\frac{1}{2}} \ 10^{-3} \ \frac{| \ m_{U}^{2} - 4 \ m_{\chi}^{2} |}{m_{\chi} \ (1.8 \ \mathrm{GeV})}$$

$$\simeq \ \left( B_{
m ann}^{ee} 
ight)^{rac{1}{2}} \ 10^{-6} \ rac{\mid m_U^2 - 4 \, m_\chi^2 \mid}{m_\chi \, (1.8 \ {
m MeV})}$$

Where can extra-U(1) come from ?

how a light U could be detected ?

**Light**  $U \sim (\text{MeV to GeV})$  discussed since 1980

from SUSY SM with 2 doublet Higgs (super)fields  $\begin{pmatrix} h_1^0 \\ h_1^- \end{pmatrix}$ ,  $\begin{pmatrix} h_2^+ \\ h_2^0 \end{pmatrix}$ 

allowing for possible extra- $U(1)_A$  symmetry

 $h_1 \rightarrow e^{i\alpha} h_1, \ h_2 \rightarrow e^{i\alpha} h_2$  of 2 HD models (1974)

watch out for a possible spin-0 "axion" (if  $U(1)_A$  global, 1976) !

gets "eaten away" when U acquires mass (PLB69(1977)489)  $\rightarrow$  now USSM

Still it may "resurrect" as we shall see, if U is light

A light U with axial couplings is very reminiscent of a spin-0 axion ...

(1980)

general discussion, under simple hypothesis

NPB 347 (1990) 743

extra-U(1) acts (on SM particles) as

combination of B, L, Y, with  $U(1)_A$  generator (if 2 Higgs doublets as in SUSY)

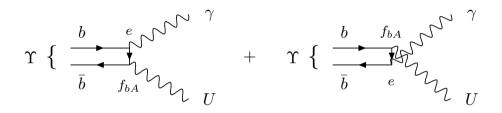
After mixing between neutral gauge bosons: U current =

**AXIAL part** (depending on Higgs sector, 2 doublets + possible singlet ...)

+ **VECTOR** part c.l. of B, L (or B - L) and electromagnetic currents

+ possible **DARK MATTER** contribution (if LDM particle)

If no axial part, U coupled to SM particles through a VECTOR current, e.g.


$$J^{\mu}_{U} \,=\, lpha \, J^{\mu}_{B-L} + \, \gamma \, J^{\mu}_{em} + \, J^{\mu}_{dark}$$

Special case, U coupled to SM through electromagnetic current (NPB 347 (1990) 743)

U = "dark photon"

### **SEARCHING FOR A LIGHT** *U* in quarkonium decays

$$\Upsilon 
ightarrow \gamma \, oldsymbol{U}$$
 ,  $\ oldsymbol{\psi} 
ightarrow \gamma \, oldsymbol{U}$  ,



does not vanish even if U couplings to b  $(f_{bA} \text{ and } f_{bV}) \rightarrow 0$  !!

very light U behaves as spin-0 pseudoscalar with effective pseudoscalar coupling:

$$f_{q,l P} = f_{q,l A} \frac{2 m_{q,l}}{m_U}$$
 NPB 187, 184, 1981, ...,

(*equivalence theorem*, as in SUSY where very light spin- $\frac{3}{2}$  gravitino  $\leftrightarrow$  spin- $\frac{1}{2}$  goldstino)

Amplitude for producing U proportional to gauge coupling

$$\mathcal{A} (A \rightarrow B + U_{\text{long}}) \propto g" \dots$$
 $\uparrow$ 
may be very small !!

but longitudinal polarisation  $\epsilon_L^\mu \simeq \frac{k^\mu}{m_U}$  singular when  $g" \to 0$ , as  $m_U \propto g" \dots \to 0$  !

$${\cal A}\,(\,A\,
ightarrow\,B\,+\,U_{
m long}\,)\,\,\propto\,\,g"\,\,{k_U^\mu\over m_U}\,< B\,|J_{\mu\,U}|\,A>\,\,=\,\,{1\over F_U}\,\,k_U^\mu\,< B\,|J_{\mu\,U}|\,A>$$

 $F_U$  = symmetry-breaking scale  $k^{\mu} \, ar{\psi} \, \gamma_{\mu} \gamma_5 \, \psi \, 
ightarrow 2 \, m_q \, \psi \, \gamma_5 \, \psi$ 

Interaction proportional to  $\frac{2 m_q}{F_U}$ 

A very light U does not decouple for very small gauge coupling !

behaves as "eaten-away" pseudoscalar Goldstone boson a

effective pseudoscalar coupling:  $f_{q,l P} = f_{q,l A} \frac{2 m_{q,l}}{m_U}$ 

$$\Rightarrow \qquad B(\Upsilon o \gamma \ U) \;\;\simeq\;\; B(\Upsilon o \gamma \ a)$$

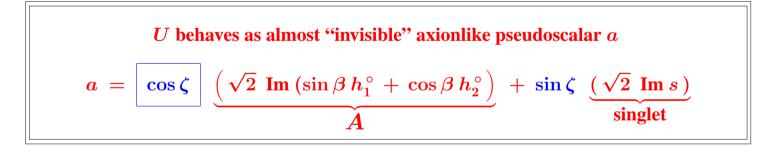
same experiments can search for light spin-1 gauge boson, or spin-0 pseudoscalar, or scalar

decays: 
$$\begin{cases} U \rightarrow \nu \bar{\nu} \text{ (or light dark matter particles)} \\ U \rightarrow e^+e^-, \ \mu^+\mu^-, \ q\bar{q}, \ \tau^+\tau^- \text{ (depending on } m_U) \end{cases}$$

$$\Rightarrow search for \left\{ \begin{array}{ccc} \Upsilon \rightarrow \gamma + invisible \\ \Upsilon \rightarrow \gamma + e^+e^- \ (or \ \mu^+\mu^-, \ \tau^+\tau^-), \ ... \end{array} \right\}$$

Light U behaves very much as spin-0 "axionlike" (eaten-away) pseudoscalar a

 $\psi(\Upsilon) \rightarrow \gamma + inv$ . excluded standard axion in the 80's ...


to avoid excluding a U with invisible decays having "eaten away" an axionlike pseudoscalar

break  $U(1)_A$  symmetry through 2 doublets  $h_1$ ,  $h_2$  + extra singlet with much larger v.e.v.

(as in U(N)MSSM with  $\lambda H_1 H_2 S$  superpotential) PF, PLB 95, 285, <u>1980</u>; NPB 187, 184, <u>1981</u>

$$h_1 
ightarrow e^{ilpha} h_1, \,\, h_2 
ightarrow e^{ilpha} h_2, \,\, s 
ightarrow e^{-2ilpha} s$$

A gets mixed with "almost inert" singlet s



#### $r = \cos \zeta$ = INVISIBILITY PARAMETER

(reduces strength or effective strength of U or a interactions, cf. "invisible axion")

$$\psi \to \gamma U, \ \Upsilon \to \gamma U$$
 decay rates  $\propto r^2 = \cos^2 \zeta$ 

 $\psi$  and  $\Upsilon$  decays provide strong limits on axial couplings  $f_A$  of U to c or b

$$f_{q,l\,A}\simeq {2^{-rac{3}{4}}~G_F^{rac{1}{2}}~m_U\over 2~10^{-6}~m_U({
m MeV})}~ imes~ \left\{egin{array}{c} \cos\zeta\, \coteta\,\,(u,c,t)\ \cos\zeta\, aneta\,\,(d,s,b;\,e,\mu, au) \end{array}
ight.$$

or equivalent pseudoscalar couplings  $f_p$  of a

$$f_{q,l\ P}\ \simeq\ \underbrace{2^{rac{1}{4}}\,G_{F}^{rac{1}{2}}\,m_{q,l}}_{4\ 10^{-6}\ m_{q,l}( ext{MeV})} imes\ \left\{egin{array}{c} \cos\zeta\ \coteta\ (u,c,t)\ \cos\zeta\ aneta\ (d,s,b;\ e,\mu, au) \end{array}
ight.$$

For invisibly decaying U (with  $B_{inv} \simeq 1$ ):  $\psi \rightarrow \gamma U < 1.4 \ 10^{-5}, \ \Upsilon \rightarrow \gamma U < 4 \ 10^{-6}$ 

$$rx = \cos\zeta \,\coteta < .75 \,\,\Leftrightarrow \,\, |f_{cA}| < 1.5 \,\, 10^{-6} \,\, m_U(\text{MeV}) \,\,\Leftrightarrow \,\, |f_{cP}| < 5 \,\, 10^{-3}$$
  
 $r/x = \cos\zeta \, aneta < .2 \,\,\Leftrightarrow \,\, |f_{bA}| \,\,< \, 4 \,\, 10^{-7} \,\, m_U(\text{MeV}) \,\,\Leftrightarrow \,\, |f_{bP}| < 4 \,\, 10^{-3}$ 

(limits to be divided by  $\sqrt{B}_{inv}$ )

requires *a* to be **mostly singlet** 

 $\begin{array}{ll} \textit{doublet fraction} & r^2 = \cos^2 \zeta < 15\% \, / B_{inv} \\ \textit{or: } \Upsilon \textit{ limit } \Rightarrow \textit{doublet fraction} & r^2 = \cos^2 \zeta < \, 4\% \, / (\tan^2 \beta \, B_{inv}) \end{array}$ 

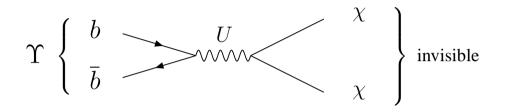
if large  $\tan \beta$ ,  $\Upsilon$  limit  $\Rightarrow$  not much chance to see  $\psi \to \gamma U_{inv}$ ...

 $B(\psi 
ightarrow \gamma U) \, B_{inv} \, \lesssim \, 10^{-6}/ an^4 eta$ 

independently of  $B_{inv}$ 

Furthermore, with  $f_{eA} = f_{bA}$  from universality constraints,

 $\Upsilon \rightarrow \gamma + U_{inv}$  decays constrain axial U couplings to electron


 $|f_{eA}| \ < \ 4 \ 10^{-7} \ m_U({
m MeV}) \, / \sqrt{B_{
m inv}(U)} \ , \quad |f_{eP}| \ < \ 4 \ 10^{-7} \, / \sqrt{B_{
m inv}(U)}$ 

For invisible decays:  
$$|f_{eP}| < \frac{1}{5}$$
 [standard Higgs coupling to electron  $(2\ 10^{-6})$ ]

PRD 75, 115017 (2007); PLB 675, 267 (2009); PRD 81, 054025 (2010)

(also limits for  $U \rightarrow e^+e^-, \ \mu^+\mu^-, ...)$ (not discussed here)

### LIGHT DARK MATTER in Y DECAYS



Invisible  $\Upsilon$  decay into LDM particles

 $\begin{cases} \Upsilon \rightarrow \chi \chi = \text{invisible} \quad (V \text{ coupling}) \\ \Upsilon \rightarrow \gamma \chi \chi = \gamma + \text{invisible} \quad (A \text{ coupling}) \end{cases}$ 

could be sizeable, for DM particles with relatively large cross sections: PLB 269(1991)213

 $\Upsilon \to \chi \chi$  and  $\gamma \chi \chi$  test vector and axial couplings to b

(no decay  $\Upsilon \rightarrow invisible$  mediated by spin-0 exchanges)

*What may be the expected rates ?* 

**Invisible \Upsilon BR cannot be "predicted" from DM annihilation cross section !** 

<u>different processes</u> involved,  $b\bar{b} \rightarrow \chi \chi$  and  $\chi \chi \rightarrow f\bar{f}$ , <u>at different energies</u> ....

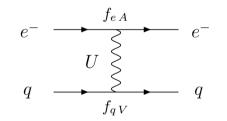
(and if LDM interactions due to spin-0 exchanges, invisible  $\Upsilon$  decay forbidden)

For invisible  $\Upsilon$  decays mediated by a light U,

$$\Upsilon o \underbrace{\chi \chi}_{ ext{inv}} < 3 \ 10^{-4} \ (BABAR) \Rightarrow |c_{\chi} f_{bV}| < 5 \ 10^{-3}$$

and from  $\psi$  decays,

 $\psi \rightarrow \chi \chi \chi < 7.2 \ 10^{-4} \ (BES II) \Rightarrow |c_{\chi} f_{cV}| < .95 \ 10^{-2}$ 


PRD 74(2006)054034, ..., PRD 81(2010)054025

#### *Other processes (and constraints)*

Dark Matter annihilations, 511 keV annihilation line,  $g_e - 2$ ,  $g_\mu - 2$ ,  $\nu$  scatterings, supernovae explosions, ...

Production in  $e^+ e^- \rightarrow \gamma U$   $e^- \rightarrow \gamma U$   $e^- \rightarrow \gamma U$ 

**Parity violations in atomic physics** 



strong limit :  $\sqrt{|f_{eA} f_{qV}|} < 10^{-7} m_U ({
m MeV})$ 

With constraints from  $\psi$ ,  $\Upsilon$  and  $K^+$  decays,

may favor vector U coupling to SM particles through  $\alpha (B-L) + \gamma Q$ 

possibly through electromagnetic current ( $\rightarrow$  "dark photon" searches, with  $U \equiv A'$ )

# CONCLUSIONS

familiar scenario:

(pair-production of <u>SUSY particles</u> at colliders, with 2 doublets  $h_1, h_2 + extra singlet$ stable LSP (neutralino ... )  $\rightarrow$  <u>dark matter</u>

Search for dark matter ... Explore high-energy frontier at LHC (NLC, ...)

Another frontier (at lower energies)!

light weakly (or very weakly) coupled new particles

including

U boson, light dark matter, axionlike particles, ...

may reveal new fundamental physics, new FORCES and/or new MATTER

from quarkonium decays ...