
Two-Photon Physics at BABAR

Pietro Biassoni Università degli Studi and INFN Milano On behalf of the BABAR Collaboration

International Workshop on Heavy Quarkonium 2011 4 - 7 October 2011 GSI, Darmstadt, Germany

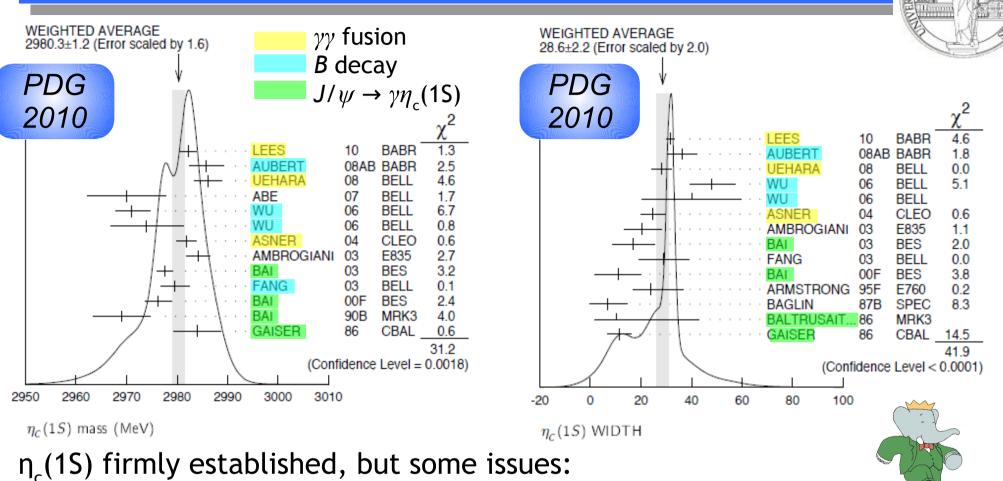
Why Two-Photon Physics?

Two-photon collisions for $q\overline{q}$:

- No-tag events (scattered e⁺e⁻ lost in the beampipe): quasi-real (q²~0) photons
- Single-tag events (either e⁺ or e⁻ scattered at high angle): form factor measurements

Experimental features:

Clean environment thanks to low combinatorial background

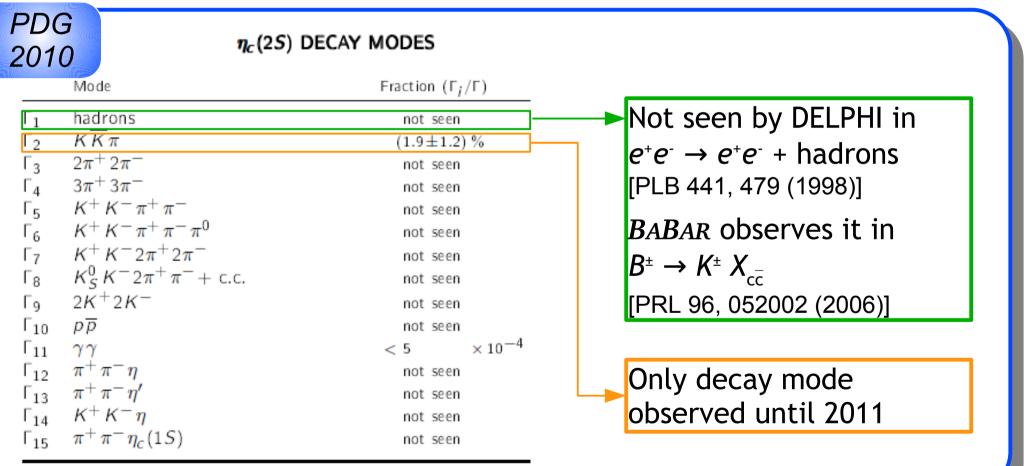

Clean signatures: missing mass and head-on collision

For no-tag events: Yang's theorem holds [Yang, Phys. Rev. 77,242 (1950)]

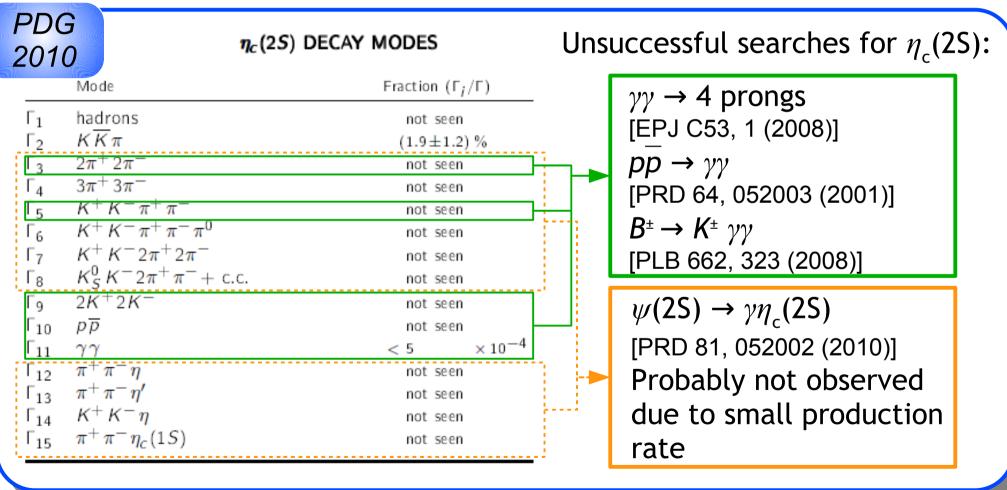
 $J^{P} = 0^{+}, 0^{-}, 2^{+}, 2^{-}, 3^{+}, 4^{-}, 4^{+}$

J > 2 suppressed by available phase-space

- Large spread in mass and width measurements
- Recent CLEO paper suggests that previous measurements in J/ψ and ψ (2S) radiative decays can be biased because of the neglected energy dependence of the M1 transition [PRL 102, 011801 (2009)]
- Sum of observed decay modes BFs is less than 50%


 η_c (2S) discovered in 2002 by Belle:

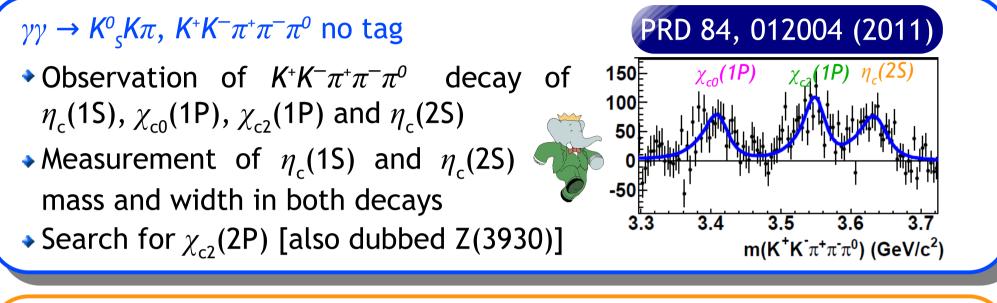
Current PDG width average has 50% uncertainty


 η_c (2S) discovered in 2002 by Belle:

Current PDG width average has 50% uncertainty

 η_c (2S) discovered in 2002 by Belle:

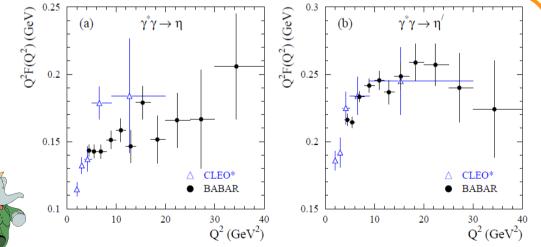
Current PDG width average has 50% uncertainty


 η_c (2S) discovered in 2002 by Belle:

Current PDG width average has 50% uncertainty

PDG 2010	$\eta_c(2S)$ DECAY MODES	New searches for $\eta_{c}(2S)$:			
$ \Gamma_{2} = K\overline{F} \\ \Gamma_{3} = 2\pi^{-1} \\ \Gamma_{4} = 3\pi^{-1} \\ \Gamma_{5} = K^{+1} \\ \Gamma_{6} = K^{+1} \\ \Gamma_{7} = K^{+1} $	deFraction (Γ_i/Γ) dronsnot seen $\overline{K}\pi$ (1.9 ± 1.2) % $^+2\pi^-$ not seen $^+3\pi^-$ not seen $^-K^-\pi^+\pi^-$ not seen $^-K^-\pi^+\pi^-\pi^0$ not seen $^-K^-2\pi^+2\pi^-$ not seen $K^-2\pi^+\pi^-+c.c.$ not seen	 γγ collisions: BABAR observation in K⁺K⁻π⁺π⁻π⁰ (this talk) [PRD 84, 012004 (2011)] Belle observation in 6 prong final state [Nakazawa @ ICHEP2010] 			
$ \begin{array}{ccc} \Gamma_{10} & p \overline{p} \\ \Gamma_{11} & \gamma \gamma \\ \Gamma_{12} & \pi^+ \\ \Gamma_{13} & \pi^+ \\ \Gamma_{14} & K^+ \end{array} $	$< 5 \times 10^{-1}$ $\pi^- \eta$ not seen $\pi^- \eta'$ not seen	ψ(2S) → γηc(2S) Recent observation by BESIII with BF two times smaller with respect to previous CLEO UL [arXiv: 1108.5789]			

Recent Two-Photon Physics Results at BABAR

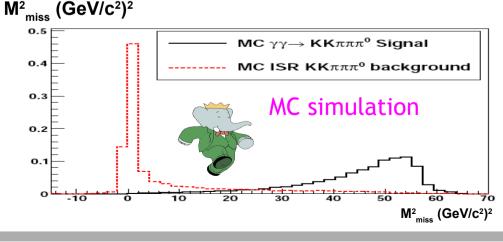


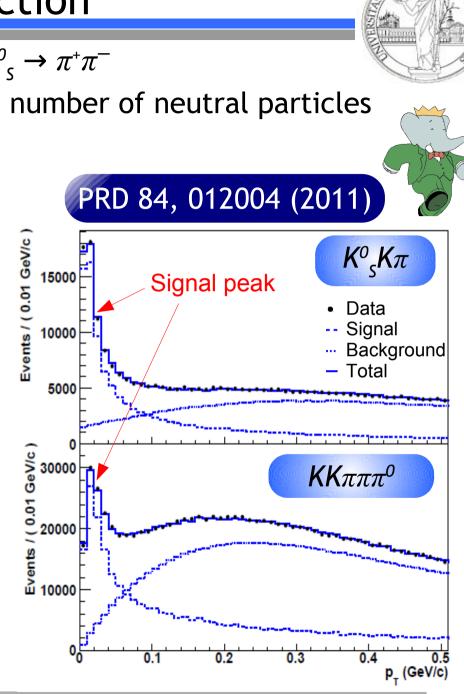
$\gamma^*\gamma \rightarrow \eta, \eta'$ single tag

- Precise measurement of $\eta^{(\prime)}$ FF
- Extension of Q² range previously measured by CLEO
- Not covered in this talk

PRD 84,052001 (2011)

Event Selection

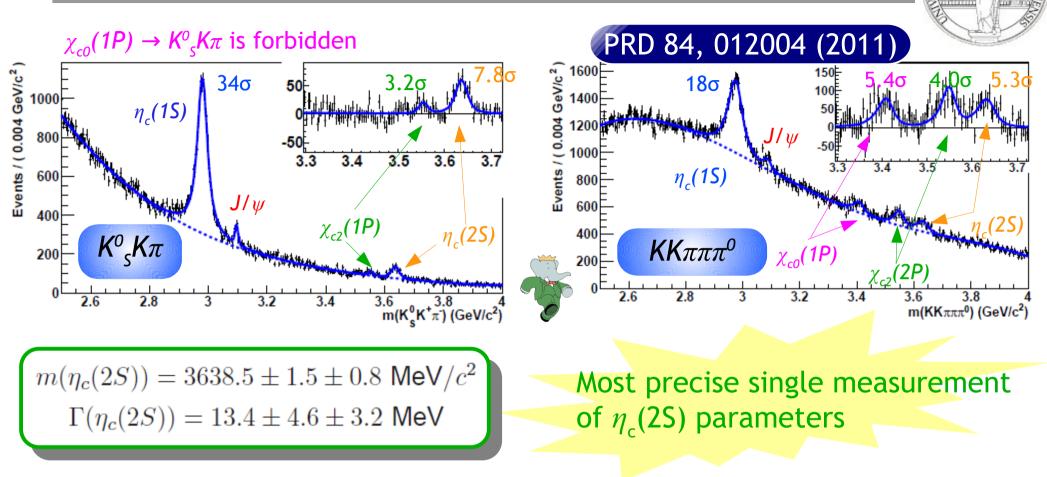

Reconstruct $K^{0}_{s}K\pi$ and $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ with $K^{0}_{s} \rightarrow \pi^{+}\pi^{-}$


Require no additional tracks and limited number of neutral particles

- There are two characteristic signatures for two-photon production:
 - Small value of the transverse momentum p_{τ} with respect to the beam axis. Require $p_{\tau} < 0.15$ GeV/c
 - High value of the missing mass.

 $M_{miss}^{2} = (p_{e+e-} - p_{rec})^{2}$

Require
$$M^2_{miss} > 2 (GeV/c^2)^2$$



Fit Strategy

Binned extended ML fit to the $K^{o}_{s}K\pi KK\pi\pi\pi^{o}$ invariant mass distribution to extract the yields and resonances parameters.

- Non-relativistic BW convolved with mass resolution function obtained from fit to signal MC samples
 PDFs
- Free parameters: signal and background yields, $\eta_c(1S)$, $\eta_c(2S)$ mass and width, background shape parameters • (1P) and (1P) parameters are fixed to PDC values
- $\chi_{c0}(1P)$ and $\chi_{c2}(1P)$ parameters are fixed to PDG values
- $\eta_{c}(2S)$ width in $KK\pi\pi\pi^{0}$ mode is fixed to the value found in $K_{s}^{0}K\pi$
- ◆ χ_{c2} (2P) parameters fixed to values found in *BABAR* $\gamma\gamma \rightarrow D\overline{D}$ analysis [PRD 81, 092003 (2010)]

Results

• Correct mass measurement for the mass shift observed for J/ψ in ISR enriched sample

- First observation of $\eta_c(1S)$, $\chi_{c0}(1P)$, $\eta_c(2S)$ and evidence for $\chi_{c2}(1P)$ in $KK\pi\pi\pi^0$
- No evidence for $\chi_{c2}(2P)$ in both decay modes

Peaking Background Estimation

Several processes can produce real $\eta_c(1S)$, $\chi_{c0}(1P)$, $\chi_{c2}(1P)$ and $\eta_c(2S)$, thus originating irreducible peaking background

Radiative J/ψ and ψ (2S) decays

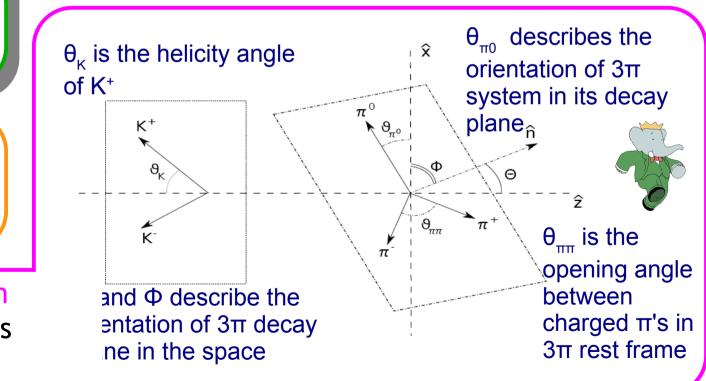
- Estimated using the number of J/ψ and ψ (2S) fitted in data, known BFs, and MC detection efficiencies
- Correct the $\eta_{\rm c}(1S)$ yield and take a systematic for other resonances

Two-photon processes with extra particle (such as $\gamma\gamma \rightarrow \eta_c(1S)\pi^0$)

- Signal is expected to show a peak at $p_{\tau} \sim 0$ GeV/c, background is almost flat in p_{τ}
- Fit the spectrum in slide 12 in intervals of p_{τ} : obtain yield distribution as a function of p_{τ}
- Fit such distribution with MC signal + flat background p_{τ} shape and give a systematic

Branching Fraction Measurement

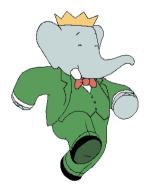
Two-photon coupling ($\Gamma_{\gamma\gamma}$) times the final state BF is proportional to


the ratio between the signal yield N and the reconstruction efficiency $\boldsymbol{\epsilon}.$

 N/ε extracted by using an unbinned maximum likelihood fit where each event is given a weight proportional to ε⁻¹. So, reduced dependence on MC sub-resonant decay model.

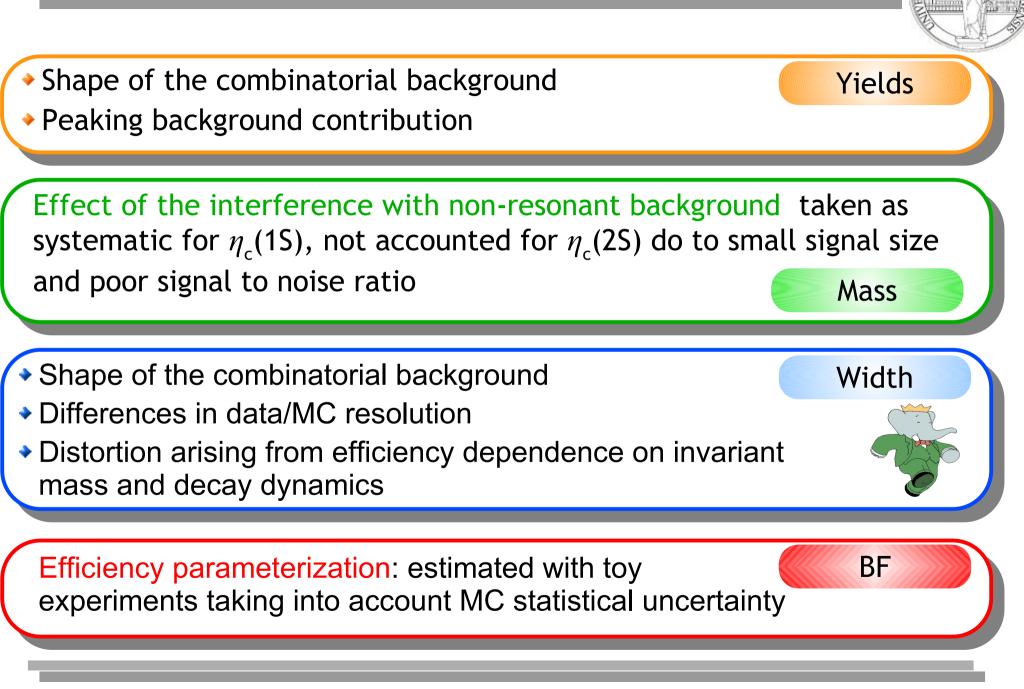
 Take into account ε dependence on the decay kinematics.

"Squared" Dalitz plot for $K_{s}^{0}K\pi$ ($K\pi$ mass and K^{+} helicity angle)


8D parameterization for $KK\pi\pi\pi^0$: 3 masses and 5 angles

Branching Fraction Results

PRD 84, 012004 (2011)

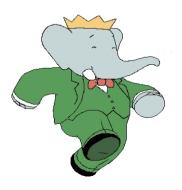

- The fit is performed separately in η_c(1S) and η_c(2S) mass regions to take into account kinematics dependence on invariant mass.
- Resonances parameters are fixed to values reported at slide 12.

Process	$\Gamma_{\gamma\gamma} \times \mathcal{B} \ (\text{keV})$
$\eta_c(1S) \rightarrow K\overline{K}\pi$	$0.386 \pm 0.008 \pm 0.021$
$\chi_{c2}(1P) \rightarrow K\overline{K}\pi$	$(1.8 \pm 0.5 \pm 0.2) \times 10^{-3}$
$\eta_c(2S) \rightarrow K\overline{K}\pi$	$0.041 \pm 0.004 \pm 0.006$
$\chi_{c2}(2P) \rightarrow K\overline{K}\pi$	$< 2.1 \times 10^{-3}$
$\eta_c(1S) \rightarrow K^+ K^- \pi^+ \eta$	
$\chi_{c0}(1P) \rightarrow K^+ K^- \pi^-$	
$\chi_{c2}(1P) \to K^+ K^- \pi^-$	
$\eta_c(2S) \rightarrow K^+ K^- \pi^+ \pi$	
$\chi_{c2}(2P) \rightarrow K^+ K^- \pi^-$	$^{+}\pi^{-}\pi^{0} < 3.4 \times 10^{-3}$

$$\frac{\mathcal{B}(\eta_c(1S) \to K^+ K^- \pi^+ \pi^- \pi^0)}{\mathcal{B}(\eta_c(1S) \to K^0_S K^\pm \pi^\mp)} = 1.42 \pm 0.06 \pm 0.27,$$
$$\frac{\mathcal{B}(\eta_c(2S) \to K^+ K^- \pi^+ \pi^- \pi^0)}{\mathcal{B}(\eta_c(2S) \to K^0_S K^\pm \pi^\mp)} = 2.2 \pm 0.4 \pm 0.5$$

Systematics

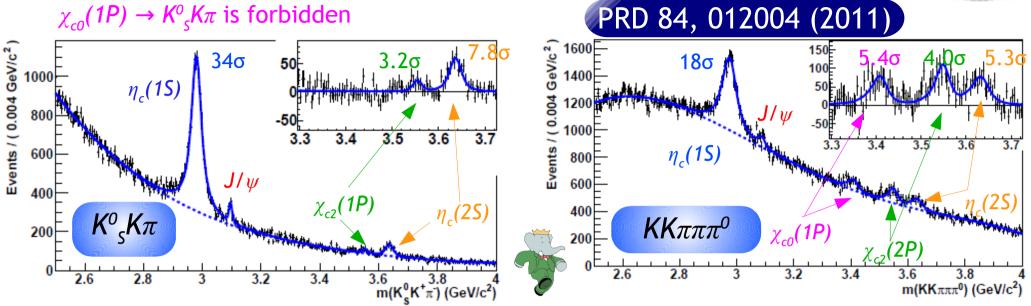
Conclusions



• We provide a measurement of the $\eta_c(2S)$ parameters in the $K^o_s K \pi$ channel with an uncertainty lower than the PDG average:

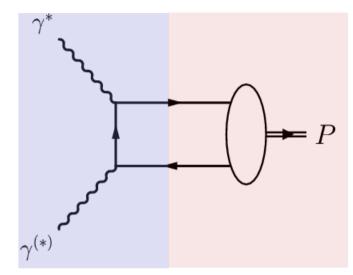
	BABAR	Belle	BESIII	PDG2010
	$\gamma\gamma$ fusion	B decays	$\psi(2S)$ Radiative	
	PRD 78, 012004	arXiv:1105.0978	arXiv:1108.5789	
$\eta_c \text{ Mass } (\text{MeV}/c^2)$	$2982.5 \pm 0.4 \pm 1.4$	$2985.4 \pm 1.5^{+0.2}_{-2.0}$	$2984.4 \pm 0.5 \pm 0.6$	2980.3 ± 1.2
η_c Width (MeV)	$32.1 \pm 1.1 \pm 1.3$	$35.1 \pm 3.1^{+1.0}_{-1.6}$	$30.5\pm1.0\pm0.9$	28.6 ± 2.2
$\eta_c(2S)$ Mass (MeV/ c^2)	$3638.5 \pm 1.5 \pm 0.8$	$3636.1^{+3.9+0.5}_{-1.5-2.0}$	$3638.5 \pm 2.3 \pm 1.0$	3637 ± 4
$\eta_c(2S)$ Width (MeV)	$13.4 \pm 4.6 \pm 3.2$	$6.6.^{+8.4+2.6}_{-5.1-0.9}$	12 (fixed)	14 ± 7

• We first observe $\eta_c(1S)$, $\chi_{co}(1P) \eta_c(2S)$ in $KK\pi\pi\pi^0$ decay.


- This is the first observation (with Belle's preliminary in 6 prongs) of an $\eta_c(2S)$ exclusive decay other than $K\overline{K}\pi$.
- The $\chi_{c2}(2P)$ resonance is searched for in both final states, but no significant signal is found.

Backup slides

Results



Decay	Efficiency	Corrected	N_{peak}	N_{ψ}	Significance	Corrected	Fitted
Mode	(%)	Yield (Evts.)	(Evts.)	(Evts.)	(σ)	Mass (MeV/c^2)	Width (MeV)
$\eta_c(1S) \rightarrow K^0_S K^{\pm} \pi^{\mp}$	10.7	$12096 \pm 235 \pm 274$	189 ± 18	214 ± 82	33.5	$2982.5 \pm 0.4 \pm 1.4$	$32.1 \pm 1.1 \pm 1.3$
$\chi_{c2}(1P) \rightarrow K^0_S K^{\pm} \pi^{\mp}$	13.1	$126\pm37\pm14$	-45 ± 11	_	3.2	3556.2 (fixed)	2 (fixed)
$\eta_c(2S) \rightarrow K^0_S K^{\pm} \pi^{\mp}$	13.3	$624\pm72\pm34$	25 ± 5	_	7.8	$3638.5 \pm 1.5 \pm 0.8$	$13.4\pm4.6\pm3.2$
$\eta_c(1S) \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$	4.2	$11132 \pm 430 \pm 442$	118 ± 32	26 ± 9	18.1	$2984.5 \pm 0.8 \pm 3.1$	$36.2 \pm 2.8 \pm 3.0$
$\chi_{c0}(1P) \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$	5.6	$1094 \pm 143 \pm 143$	-39 ± 19	75 ± 21	5.4	3415.8 (fixed)	10.2 (fixed)
$\chi_{c2}(1P) \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$	5.8	$1250 \pm 118 \pm 290$	14 ± 24	233 ± 73	4.0	3556.2 (fixed)	2 (fixed)
$\eta_c(2S) \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$	5.9	$1201 \pm 133 \pm 185$	-46 ± 17	_	5.3	$3640.5 \pm 3.2 \pm 2.5$	13.4 (fixed)

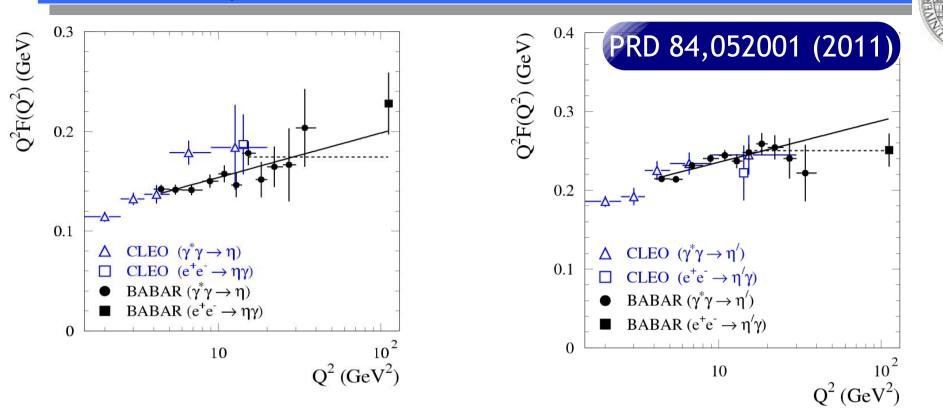
Pietro Biassoni

$\eta^{(')}$ Form Factor Measurement

 $F(Q^2) = \int T(x,Q^2) \varphi(x,Q^2) dx$

Hard scattering amplitude for $\gamma^*\gamma \rightarrow q\overline{q}$ transitio<u>n</u> which is calculable in pQCD Nonperturbative meson distribution amplitude (DA) describing transition $P \rightarrow q\bar{q}$

 ${\bf x}$ is the fraction of the meson momentum carried by one of the quarks


✓ The meson DA $\varphi(x,Q^2)$ plays an important role in theoretical descriptions of many QCD processes ($\gamma^* \rightarrow \pi^+\pi^-$, $\gamma\gamma \rightarrow \pi\pi$, $\chi_{c,0,1} \rightarrow \pi^+\pi^-$, $B \rightarrow \pi I\nu$, $B \rightarrow \pi\pi \dots$).

- Its shape (x dependence) is unknown, but its evolution with Q² is predicted by pQCD.
- The models for DA shape can be tested using data on the form factor Q² dependence.

$\eta^{(')}$ Form Factor Measurement

- The BABAR data are fit with $Q^2F(Q^2)=b+a \ln Q^2 (GeV^2)$ with $\chi^2/n=6.7/10$ for η and 14.6/10 for η'
- The fitted rise (a \approx 0.2 GeV²) is about 3 times weaker than that for π^0 .
- The fit by a constant for Q²>15 GeV² also gives reasonable quality: $\chi^2/n=5.6/5$ for η and 2.6/5 for η' .

