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Cold Nuclear Matter Effects

Effects due to the presence of a nuclear target.

Not yet well understood at RHIC.

Two common sources:

Modification of PDFs for protons bound in a nucleus – shadowing.

Taken from nPDFs which provide modifications to the PDFs 
averaged over the entire nucleus.

Break-up of J/ψ's (or cc precursor) through collisions with nucleons – 
nuclear break-up.

Inseparable from hot nuclear matter (QGP) effects using A+A 
collisions alone.

Use p+A (d+Au at RHIC) to isolate these effects.

Use some model or parametrization to propagate p+A results to 
A+A collisions.
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PHENIX d+Au Conclusions 

Assume simple functional forms of the modification vs Λ(r
T
).

Fold these functions with r
T
 

distributions from Glauber.

Here R
CP

(0-20%/60-88%) vs R
dAu

(0-

100%) is plotted w/ the functional 
forms of the modification.

Purely tests the geometric 
dependence of the data.

Forward rapidity data is inconsistent 
with even quadratic thickness 
dependence.

r T =∫ dz rT , z 

Phys. Rev. Lett. 107, 142301 (2011)
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Where to go From Here

Use the data to constrain the thickness dependence.

Assume CNM effects consist only of shadowing + nuclear break-up.

Shadowing:

Use EPS09 nPDF set (NLO) – gives average suppression.

Assume modification vs thickness is:

Allow n to vary between 1-50.

a is normalized to the EPS09 modification integrated over all centrality.

This thickness dependence is somewhat arbitrary.

Nuclear break-up

Assume modification vs thickness is:

Allow σ
br
 to vary.

z
1
 is the production point of the precursor J/ψ in the Au nucleus.

M shad rT =1−arT 
n

M br rT =e
−br r T , z 1

r T , z1=∫z1

∞

dz r t , z 

r T =∫ dz rT , z 
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EPS09

At RHIC, J/ψ production 
dominated by gluons – use 
EPS09 gluon modification 
(R

G
).

Shown for Q2 of 13 (M2 + 
<p

T
>2 for J/ψ) GeV.

x regions relevant to PHENIX 
@ 200 GeV shown as black 
bars.

Remember: EPS09 
determined mainly from DIS 
data, and is averaged over the 
nucleus.

2.4>y>1.2 0.5>y>-0.5 -1.2>y>-2.2
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Determining x and Q2

Assume 2→1 kinematics.

Not quite right, but R
G
 extracted using x and Q2 

from NLO framework from Ramona compare 
well.

x2=
M J /

2
pT

2

 sNN

e− y

Q2
=M J /

2
 pT

2
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Fits to R
dAu

Calculate R
dAu

 using a Glauber model.

Use a modified χ2 to find the optimum n & σ
br
 

independently for each y.

The modified χ2 takes into account the 
statistical & systematic uncertainties on 
the data.

Results plotted versus the average nuclear 
thickness.

Because the systematic uncertainties are 
included in the fit, the best-fit line may be 
offset from the data points.

Global uncertainty ~10-15% not shown 
in plots.

Blue points: PHENIX R
dAu

 data.

Solid line: optimum n & σ
br
 values.

Dashed lines: Δχ2=1 limits on σ
br
 for the 

optimum n.
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Χ2 Contours (y<0)
Visualize the results by plotting 
the χ2 contours.

Best fit is indicated by the 
point.

Black curve is Δχ2=1.

Quoted uncertainties on n & σ
br
 

represent the max extent of the 
Δχ2=1 curve for that parameter.

The χ2 contours at midrapidity 
are broad because the EPS09 
modification is small.

Break-up and shadowing 
essentially decoupled.
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Χ2 Contours (y>0)
Visualize the results by plotting 
the χ2 contours.

Best fit is indicated by the 
point.

Black curve is Δχ2=1.

Quoted uncertainties on n & σ
br
 

represent the max extent of the 
Δχ2=1 curve for that parameter.

The χ2 contours at midrapidity 
are broad because the EPS09 
modification is small.

Break-up and shadowing 
essentially decoupled.

Forward rapidity consistently 
requires a higher power.
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Best Fit Parameters vs. Rapidity

Best fit n & σ
br
 values plotted 

vs rapidity.

Uncertainties  represent the 
width of the Δχ2=1 contour in 
that parameter.

σ
br

 increases as you move to 

backward/forward rapidity.

Large n required at forward and 
far backward rapidity. 
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Shadowing vs r
T

What do these high powers mean?

Plot only shadowing vs r
T
.

Red curves: best fit powers.

Blue curve: n=1.

Where the modification is strong, turns 
on suddenly at r

T
~3-4 fm.

This is very different than linear!

Remember that the data does not probe 
a well-defined, unique r

T
 range!

r
T
 distributions of PHENIX 

centrality bins.

<r
T
>(  0-20%) = 3.23 fm

<r
T
>(20-40%) = 3.87 fm

<r
T
>(40-60%) = 4.53 fm

<r
T
>(60-88%) = 5.40 fm
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Fitting all Rapidities with a Common Power

Try fitting the data with a constant n 
value across all rapidities.

Minimum χ2 occurs for n=50, but good 
for all n ≥ 15.

The σ
br
 values are similar across rapidity 

with larger uncertainty.

Unable to truly distinguish between 
common/independent power with current 
uncertainties.
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Bonus: R
dAu

 p
T
 Dependence

We can also extract the p
T
 dependence 

of R
dAu

 from this method using the best-

fit n & σ
br
 values and the integrating over 

rapidity using the measured PHENIX J/ψ 
p+p y distribution.

This is a prediction of the p
T
 

dependence, as no d+Au p
T
 information 

has been introduced (only p+p p
T
 

information is used).

p
T
 dependence comes entirely from 

EPS09.

Currently, only preliminary R
dAu

 at 

midrapidity is available.

Shows good agreement with the data. 

PHENIX Preliminary
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Summary of R
dAu

 Results

Results indicate a highly nonlinear shadowing is required at 
backward/forward rapidity.

This produces shadowing which is very strong for r
T
 < 4 fm, and 

very weak for r
T
 > 4 fm.

Midrapidity is insensitive to the power due to the current errors on 
the measurements and the small amount of shadowing present.

A single shadowing power of n > 15 provides a good description of 
the data, indicating the shadowing may have a similar centrality 
dependence at all rapidity.

The σ
br
 is smallest at midrapidity and increases when moving to 

either backward or forward rapidity.

Calculation in good agreement with the preliminary PHENIX R
dAu

 vs. 

p
T
 data.
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R
AA

(CNM)

Use a Glauber model of Au+Au collisions following the same recipe as the 
d+Au calculations.

Use best-fit n & σ
br
 values from all 12 independent y fits.

The error on σ
br
 is propagated as a systematic uncertainty (boxes around 

the points).

R
AA

(CNM) ~ 0.62 for 

central events at 
midrapidity.

R
AA

(CNM) ~ 0.49 for 

central events at 
forward rapidity.
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R
AA

/R
AA

(CNM)

Divide the PHENIX R
AA

 data 

by the R
AA

(CNM) predictions.

Significant suppression 
beyond CNM effects.

Discrepancy between 
mid/forward rapidity 
remains.

Avg ratio forward/mid ~0.68 
for N

part
 > 150 
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R
AA

(CNM) Conclusions

Projected cold nuclear matter R
AA

 baseline is significant!

R
AA

/R
AA

(CNM) < 1, shows suppression beyond CNM. 

~58% @ y=0 and ~65% @ y=1.7 for central events.

Still a first look at the R
AA

 result, more work to be done.



10/4/2011 D. McGlinchey - QWG 2011 18

Thank You!Thank You!
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RHIC J/ψ Puzzle

Use quarkonia to probe screening 
length in QGP.

PHENIX has J/ψ data at 200 GeV 
Au+Au collisions. 

|y|<0.5 from 2004 RHIC run. 

1.2<|y|<2.2 from 2007 RHIC 
run (recently released 
arXiv:1103.6269[nucl-ex]).

Suppression is stronger at forward 
rapidity than midrapidity?

R
AA

 is believed to include effects 

due to a nuclear target, termed 
cold nuclear matter effects.

PHENIX, arXiv:1103.6269[nucl-ex]

RAA=
dN AuAu

J /
/dy

N colldN pp
J /

/dy
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PHENIX d+Au Conclusions (I)

Compare data with calculation 
including shadowing + σ

br
=4 mb.

Shadowing from EPS09 nPDF 
set, which only provides the 
modification averaged over the 
entire nucleus.

Assume that shadowing is 
linearly dependent on the 
thickness of the nucleus.

Solid line – central EPS09 set.

Dashed lines – EPS09 sets 
which cause the maximum 
variation in shape.

Calculation does not reproduce 
the centrality dependence of the 
forward rapidity data.

PHENIX, arXiv:1010.1246[nucl-ex]
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R
cp

 vs R
dAu

 for EPS09 + σ
br

Includes EPS09 w/ quadratic 
thickness dependence + σ

br
 

from 0-20 in 2 mb steps.

Also includes density 
fluctuations.

Adding (exponential) nuclear 
breakup makes the 
agreement at forward 
rapidity worse.

Nagle et al. arxiv:1011.4534



10/4/2011 D. McGlinchey - QWG 2011 22

Previous CNM Estimates

Predicted Au+Au CNM RAA from Glauber 
model, R. Vogt EKS98 calculation + σbreakup 
fitted to preliminary PHENIX d+Au RCP  
(Frawley, INT 2009)

Comparison of PHENIX Au+Au 
RAA/RAA(CNM) with similar data from 
NA60 for In-In and Pb-Pb (NA60, 
arXiv:0907.5004) plotted vs multiplicity.

Using PHENIX preliminary R
cp

 results from QM2009
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More on Fitting

Use a modified χ2 fitting procedure which includes the systematic 
uncertainties on the data. For k centrality bins:

Where i indicates the centrality bin, σ
B(C)

 are the type B(C) 

uncertainties, μ
i
(n,σ

br
) is the model prediction for the given n and 

σ
br
 value, ε

B(C)
 are the fractions by which the type B(C) errors 

move, and ε
s
 governs the amount of correlation in the type B 

erros.
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σ
br
 as a Function of Collision Energy

Fitted σ
br
 values are 

consistent with the trend 
observed at lower energies.

y σbr (mb)

-0.3 3.35 (+ 1.8 – 2.2) 

0.0 1.50 (+ 2.1 – 1.8)

+0.3 1.45 + (1.5 - 2.5)
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Fits vs Rapidity

Using the best-fit n & σ
br
 values 

from the independent fits to each 
rapidity.
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PHENIX d+Au Results

PHENIX R
dAu

 results from 2008 RHIC run 

are now available @ 12 rapidities and in 4 
centrality bins. (arXiv:1010.1246[nucl-ex])

PHENIX, arXiv:1010.1246[nucl-ex]

RdAu=
dN dAu

J /
/dy

N coll dN pp
J /

/dy

RCP=
RdAu i 

RdAu 60−88

Centrality is defined as 
a percentage of the 
charge collected in 
PHENIX BBC 
detectors. 
0% - most central. 
88% most peripheral.
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Implementing the Model

Implement shadowing + break-up in a Glauber model of d+Au 
collisions.

Generate a d+Au event.

Determine the centrality bin it belongs to. 

For each nucleon-nucleon collision in a d+Au event:

Calculate Λ(r
T
,z

1
) and use it to calculate M

br
 for a given σ

br
.

Calculate Λ(r
T
).

Choose a p
T
 based on the measured p+p J/ψ p

T
 distributions.

Calculate x and Q2 for the given y and p
T
.

Calculate M
shad

 for a given n.

Calculate the total modification, M
shad

*M
br
.

R
dAu

(y, n, σ
br
) is then the total modification averaged over all d+Au 

events which fall into the given centrality bin.



10/4/2011 D. McGlinchey - QWG 2011 28

Integrating the Results over Rapidity

The PHENIX R
AA

 data is integrated over the full rapidity range of each 

arm.

Before projecting our results to R
AA

, check that rapidity integration in R
dAu

.

Use the results from the finely binned, 12 rapidity case, integrate using 
the measured J/ψ p+p y distribution.

For uncertainties use the Δχ2=1 values for the best fit power (shown 
below)
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PHENIX d+Au Conclusions (I)

EPS09 with an assumed linear dependence 
on the thickness of the nucleus + σ

br
=4 mb 

did not reproduce the PHENIX data at 
forward rapidity.

PHENIX used a simple geometric model of 
the modification in d+Au to investigate 
centrality dependence.

Use a Glauber model to generate r
T
 

distributions for each centrality bin

r
T
 - transverse position of the struck nucleon 

in the Au nucleus.

Use a parametrization of the nuclear 
modification based on the density-weighted 
nuclear thickness in the Au nucleus → Λ(r

T
) 

[nucleons/fm2] 

Woods-Saxon distribution

r
T
 distributions for the PHENIX 

centrality bins

r T =∫ dz rT , z 

z
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Shadowing vs r
T

What do these high powers mean?

Plot only shadowing vs r
T
.

Red curves: best fit powers.

Blue curves: best fit power limits.

Where the modification is strong, turns 
on suddenly at r

T
~3-4 fm.

Remember that the data does not probe 
a well-defined, unique r

T
 range!

<r
T
>(  0-20%) = 3.23 fm

<r
T
>(20-40%) = 3.87 fm

<r
T
>(40-60%) = 4.53 fm

<r
T
>(60-88%) = 5.40 fm
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Integrating the Results over Rapidity

Results using the best fit n & σ
br
 

values at each of the 12 
rapidities, integrated over y 
using the measured PHENIX 
J/ψ p+p y distribution.

Results are in good agreement 
with the arm integrated R

dAu
.

Also shown are the R
CP

 data 

points and curves.
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