

Parameterizing Cold Nuclear Matter Effects at RHIC

D. McGlinchey A.D. Frawley R. Vogt*

Florida State University
*Lawrence Livermore National Laboratory

International Workshop on Heavy Quarkonium 2011 GSI, Germany 10/4/2011

Cold Nuclear Matter Effects

- Effects due to the presence of a nuclear target.
- Not yet well understood at RHIC.
- Two common sources:
 - Modification of PDFs for protons bound in a nucleus shadowing.
 - Taken from nPDFs which provide modifications to the PDFs averaged over the entire nucleus.
 - Break-up of J/ψ's (or cc precursor) through collisions with nucleons nuclear break-up.
- Inseparable from hot nuclear matter (QGP) effects using A+A collisions alone.
- Use p+A (d+Au at RHIC) to isolate these effects.
 - Use some model or parametrization to propagate p+A results to A+A collisions.

PHENIX d+Au Conclusions

• Assume simple functional forms of the modification vs $\Lambda(r_{\tau})$.

$$M(r_T, a) = 1 - a\Lambda(r_T)$$

$$M(r_T, a) = 1 - a\Lambda(r_T)^2$$

$$M(r_T, a) = e^{-a\Lambda(r_T)}$$

- Fold these functions with r_T
 distributions from Glauber.
- Here R_{CP}(0-20%/60-88%) vs R_{dAu}(0-100%) is plotted w/ the functional forms of the modification.
- Purely tests the geometric dependence of the data.
- Forward rapidity data is inconsistent with even quadratic thickness dependence.

Phys. Rev. Lett. 107, 142301 (2011)

Where to go From Here

- Use the data to constrain the thickness dependence.
- Assume CNM effects consist only of shadowing + nuclear break-up.
- Shadowing:
 - Use EPS09 nPDF set (NLO) gives average suppression.
 - Assume modification vs thickness is: $M_{shad}(r_T) = 1 a \Lambda(r_T)^n$
 - Allow n to vary between 1-50.

$$\Lambda(r_T) = \int dz \, \rho(r_T, z)$$

- a is normalized to the EPS09 modification integrated over all centrality.
- This thickness dependence is somewhat arbitrary.
- Nuclear break-up
 - Assume modification vs thickness is: $M_{br}(r_T) = e^{-\sigma_{br}\Lambda(r_T,z_1)}$
 - Allow σ_{br} to vary.

$$\Lambda(r_T, z_1) = \int_{z_1}^{\infty} dz \, \rho(r_t, z)$$

• z_1 is the production point of the precursor J/ψ in the Au nucleus.

EPS09

- At RHIC, J/ψ production dominated by gluons – use EPS09 gluon modification (R_G).
- Shown for Q² of 13 (M² + $< p_{T} >^{2}$ for J/ ψ) GeV.
- x regions relevant to PHENIX
 200 GeV shown as black bars.
- Remember: EPS09
 determined mainly from DIS
 data, and is averaged over the
 nucleus.

Determining x and Q²

- Assume 2 → 1 kinematics.
- Not quite right, but R_G extracted using x and Q² from NLO framework from Ramona compare well.

$$x_{2} = \frac{\sqrt{M_{J/\psi}^{2} + p_{T}^{2}}}{\sqrt{s_{NN}}} e^{-\frac{t}{N}}$$

$$Q^{2} = M_{J/\psi}^{2} + p_{T}^{2}$$

Fits to R_{dAu}

- Calculate R_{dAu} using a Glauber model.
- Use a modified χ^2 to find the optimum n & σ_{br} independently for each y.
 - The modified χ^2 takes into account the statistical & systematic uncertainties on the data.
- Results plotted versus the average nuclear thickness.
- Because the systematic uncertainties are included in the fit, the best-fit line may be offset from the data points.
 - Global uncertainty ~10-15% not shown in plots.

Blue points: PHENIX R_{dAII} data.

Solid line: optimum n & σ_{hr} values.

Dashed lines: $\Delta \chi^2 = 1$ limits on σ_{br} for the

optimum n.

X² Contours (y<0)

- Visualize the results by plotting the χ^2 contours.
 - Best fit is indicated by the point.
 - Black curve is $\Delta \chi^2 = 1$.
- Quoted uncertainties on n & σ_{br} represent the max extent of the $\Delta \chi^2$ =1 curve for that parameter.
- The χ^2 contours at midrapidity are broad because the EPS09 modification is small.
- Break-up and shadowing essentially decoupled.

X² Contours (y>0)

- Visualize the results by plotting the χ^2 contours.
 - Best fit is indicated by the point.
 - Black curve is $\Delta \chi^2 = 1$.
- Quoted uncertainties on n & σ_{br} represent the max extent of the $\Delta \chi^2 = 1$ curve for that parameter.
- The χ^2 contours at midrapidity are broad because the EPS09 modification is small.
- Break-up and shadowing essentially decoupled.
- Forward rapidity consistently requires a higher power.

Best Fit Parameters vs. Rapidity

- Best fit n & σ_{br} values plotted vs rapidity.
- Uncertainties represent the width of the $\Delta \chi^2$ =1 contour in that parameter.
- σ_{br} increases as you move to backward/forward rapidity.
- Large n required at forward and far backward rapidity.

Shadowing vs r_T

- What do these high powers mean?
- Plot only shadowing vs r_{T} .
 - Red curves: best fit powers.
 - Blue curve: n=1.
- Where the modification is strong, turns on suddenly at r_{τ} ~3-4 fm.
- This is very different than linear!
- Remember that the data does not probe a well-defined, unique r_r range!

 r_{T} distributions of PHENIX centrality bins.

$$< r_{\tau} > (0-20\%) = 3.23 \text{ fm}$$

 $< r_{\tau} > (20-40\%) = 3.87 \text{ fm}$
 $< r_{\tau} > (40-60\%) = 4.53 \text{ fm}$
 $< r_{\tau} > (60-88\%) = 5.40 \text{ fm}$

Fitting all Rapidities with a Common Power

- Try fitting the data with a constant n value across all rapidities.
- Minimum χ^2 occurs for n=50, but good for all n \geq 15.
- The σ_{br} values are similar across rapidity with larger uncertainty.
- Unable to truly distinguish between common/independent power with current uncertainties.

Bonus: R_{dAu} p_T Dependence

- We can also extract the p_T dependence of R_{dAu} from this method using the best-fit $n \& \sigma_{br}$ values and the integrating over rapidity using the measured PHENIX J/ ψ p+p y distribution.
- This is a prediction of the p_T dependence, as no d+Au p_T information has been introduced (only p+p p_T information is used).
- p_T dependence comes entirely from EPS09.
- Currently, only preliminary R_{dAu} at midrapidity is available.
- Shows good agreement with the data.

Summary of R_{dAu} Results

- Results indicate a highly nonlinear shadowing is required at backward/forward rapidity.
- Midrapidity is insensitive to the power due to the current errors on the measurements and the small amount of shadowing present.
- A single shadowing power of n > 15 provides a good description of the data, indicating the shadowing may have a similar centrality dependence at all rapidity.
- The σ_{br} is smallest at midrapidity and increases when moving to either backward or forward rapidity.

$R_{AA}(CNM)$

- Use a Glauber model of Au+Au collisions following the same recipe as the d+Au calculations.
- Use best-fit n & σ_{hr} values from all 12 independent y fits.
- The error on σ_{br} is propagated as a systematic uncertainty (boxes around the points).

 $R_{AA}(CNM) \sim 0.62$ for central events at midrapidity.

 $R_{AA}(CNM) \sim 0.49$ for central events at forward rapidity.

$R_{AA}/R_{AA}(CNM)$

- Divide the PHENIX R_{AA} data
- by the R_{AA}(CNM) predictions. Significant suppression beyond CNM effects. Significant suppression
- Discrepancy between mid/forward rapidity remains.
 - Avg ratio forward/mid ~0.68 for $N_{part} > 150$

$R_{\Delta\Delta}$ (CNM) Conclusions

- Projected cold nuclear matter R_{AA} baseline is significant!
- $R_{\Delta\Delta}/R_{\Delta\Delta}(CNM) < 1$, shows suppression beyond CNM.
 - ~58% @ y=0 and ~65% @ y=1.7 for central events.
- Still a first look at the R_{AA} result, more work to be done.

Thank You!

RHIC J/ψ Puzzle

- Use quarkonia to probe screening length in QGP.
- PHENIX has J/ψ data at 200 GeV Au+Au collisions.
 - |y|<0.5 from 2004 RHIC run.
 - 1.2<|y|<2.2 from 2007 RHIC run (recently released arXiv:1103.6269[nucl-ex]).
- Suppression is stronger at forward rapidity than midrapidity?
- R_{AA} is believed to include effects due to a nuclear target, termed cold nuclear matter effects.

PHENIX d+Au Conclusions (I)

- Compare data with calculation including shadowing + σ_{br} =4 mb.
 - Shadowing from EPS09 nPDF set, which only provides the modification averaged over the entire nucleus.
 - Assume that shadowing is linearly dependent on the thickness of the nucleus.
 - Solid line central EPS09 set.
 - Dashed lines EPS09 sets which cause the maximum variation in shape.
- Calculation does not reproduce the centrality dependence of the forward rapidity data.

$_{2}$ vs R_{dAu} for EPS09 + σ_{k}

fluctuations.

Adding (exponential) nuclear breakup makes the agreement at forward rapidity worse.

Previous CNM Estimates

Using PHENIX preliminary R_{cp} results from QM2009

Predicted Au+Au CNM R_{AA} from Glauber model, R. Vogt EKS98 calculation + $\sigma_{breakup}$ fitted to preliminary PHENIX d+Au R_{CP} (Frawley, INT 2009)

Comparison of PHENIX Au+Au $R_{AA}/R_{AA}(CNM)$ with similar data from NA60 for In-In and Pb-Pb (NA60, arXiv:0907.5004) plotted vs multiplicity.

More on Fitting

Use a modified χ^2 fitting procedure which includes the systematic uncertainties on the data. For k centrality bins:

$$\bar{\chi}^{2} = \left(\sum_{i=1}^{k} \frac{\left[R_{dAu_{i}} + \epsilon_{B_{i}}\sigma_{B_{i}} + \epsilon_{C}\sigma_{C_{i}} - \mu_{i}(n, \sigma_{br})\right]^{2}}{\bar{\sigma}_{A_{i}}}\right) + \epsilon_{B}^{2} + \epsilon_{s}^{2} + \epsilon_{C}^{2},$$

$$\bar{\sigma}_{A_{i}} = \sigma_{i} \left(\frac{y_{i} + \epsilon_{B_{i}}\sigma_{B_{i}} + \epsilon_{C}\sigma_{C_{i}}}{y_{i}}\right),$$

$$\epsilon_{B_{i}} = \epsilon_{B} + \epsilon_{s} \left(1 - 2\frac{\langle \Lambda(r_{T})\rangle_{i} - \langle \Lambda(r_{T})\rangle_{0}}{\langle \Lambda(r_{T})\rangle_{N} - \langle \Lambda(r_{T})\rangle_{0}}\right),$$

Where *i* indicates the centrality bin, $\sigma_{B(C)}$ are the type B(C) uncertainties, $\mu_i(n,\sigma_{br})$ is the model prediction for the given n and σ_{br} value, $\epsilon_{B(C)}$ are the fractions by which the type B(C) errors move, and ϵ_{s} governs the amount of correlation in the type B erros.

$\sigma_{_{\text{br}}}$ as a Function of Collision Energy

• Fitted σ_{br} values are consistent with the trend observed at lower energies.

У	σ _{br} (mb)
-0.3	3.35 (+ 1.8 – 2.2)
0.0	1.50 (+ 2.1 – 1.8)
+0.3	1.45 + (1.5 - 2.5)

Fits vs Rapidity

• Using the best-fit n & σ_{br} values from the independent fits to each rapidity.

PHENIX d+Au Results

PHENIX R_{dAu} results from 2008 RHIC run are now available @ 12 rapidities and in 4 centrality bins. (arXiv:1010.1246[nucl-ex])

$$R_{dAu} = \frac{dN_{dAu}^{J/\psi}/dy}{N_{coll} dN_{pp}^{J/\psi}/dy}$$

$$R_{CP} = \frac{R_{dAu}(i)}{R_{dAu}(60 - 88)}$$

Centrality is defined as a percentage of the charge collected in PHENIX BBC detectors.

0% - most central.

88% most peripheral.

Implementing the Model

- Implement shadowing + break-up in a Glauber model of d+Au collisions.
 - Generate a d+Au event.
 - Determine the centrality bin it belongs to.
 - For each nucleon-nucleon collision in a d+Au event:
 - Calculate $\Lambda(r_{_{T}},z_{_{1}})$ and use it to calculate $M_{_{br}}$ for a given $\sigma_{_{br}}$.
 - Calculate Λ(r₋).

 - Calculate x and Q^2 for the given y and p_T .
 - Calculate M_{shad} for a given n.
 - Calculate the total modification, M_{shad}*M_{br}.
 - $R_{dAu}(y, n, \sigma_{br})$ is then the total modification averaged over all d+Au events which fall into the given centrality bin.

Integrating the Results over Rapidity

- The PHENIX R_{AA} data is integrated over the full rapidity range of each arm.
- Before projecting our results to R_{AA}, check that rapidity integration in R_{dAu}.
- Use the results from the finely binned, 12 rapidity case, integrate using the measured J/ψ p+p y distribution.

• For uncertainties use the $\Delta \chi^2 = 1$ values for the best fit power (shown

below)

PHENIX d+Au Conclusions (I)

- EPS09 with an assumed linear dependence on the thickness of the nucleus + σ_{br} =4 mb did not reproduce the PHENIX data at forward rapidity.
- PHENIX used a simple geometric model of the modification in d+Au to investigate centrality dependence.
- \bullet Use a Glauber model to generate r_{τ} distributions for each centrality bin
 - \bullet r_{T} transverse position of the struck nucleon in the Au nucleus.
- Use a parametrization of the nuclear modification based on the density-weighted nuclear thickness in the Au nucleus $\rightarrow \Lambda(r_{_T})$ [nucleons/fm²]

$$\Lambda(r_T) = \int dz \, \rho(r_T, z)$$

Woods-Saxon distribution

Shadowing vs r_T

- What do these high powers mean?
- Plot only shadowing vs r_{T} .
 - Red curves: best fit powers.
 - Blue curves: best fit power limits.
- Where the modification is strong, turns on suddenly at r_{τ} ~3-4 fm.
- Remember that the data does not probe a well-defined, unique r_r range!

Integrating the Results over Rapidity

- Results using the best fit n & σ_{br} values at each of the 12 rapidities, integrated over y using the measured PHENIX J/ψ p+p y distribution.
- Results are in good agreement with the arm integrated R_{dAu}.
- Also shown are the R_{CP} data points and curves.

