DOUBLE J/ψ production in the k_t -factorization

Sergey P. Baranov

P.N.Lebedev Institute of Physics, Moscow

PLAN OF THE TALK

- 1. Introduction
- 2. Theoretical framework
- 3. Numerical results
- 4. Conclusions

8-th Workshop on Quarkonium, Darmstadt 2011

INTRODUCTION

The production of J/ψ pairs is interesting:

– on its own, as a QCD test

- as a possible indicator of double parton scattering (DPS)

The two mechanisms have comparable cross sections; DPS can be discriminated from SPS if the kinematics is different

THEORETICAL FRAMEWORK

COLOR-SINGLET GLUON-GLUON FUSION

Perturbative production of a heavy quark pair within QCD;

Gluon spin density matrix: $\epsilon_g^\mu \epsilon_g^{*
u} = k_T^\mu k_T^
u/|k_T|^2$

Spin projection operators to guarantee the proper quantum numbers: for Spin-triplet states $\mathcal{P}({}^3S_1) = \not \in_V(\not p_Q + m_Q)/(2m_Q)$

Probability to form a bound state is determined by the wave function: for S-wave states $|R_{\psi}(0)|^2$ is known from leptonic decay widths

 J/ψ spin density matrix (including the decay $J/\psi
ightarrow \mu^+\mu^-$):

$$\epsilon^{\mu}_{\psi}\epsilon^{*
u}_{\psi} = 3(l^{\mu}_{1}l^{
u}_{2} + l^{\mu}_{2}l^{
u}_{1} - m^{2}_{\psi}g^{\mu
u}/2)/m^{2}_{\psi}$$

8-th Workshop on Quarkonium, Darmstadt 2011

FEYNMAN DIAGRAMS

 k_1, k_2 , the incoming gluon momenta p_1, p_2 , the produced J/ψ momenta

NUMERICAL RESULTS

What do we expect:

Changes in the p_T spectra:

Hard subprocess matrix element $|\mathcal{M}(gg \to J/\psi J/\psi)|^2 \propto 1/p_T^8$

Transverse momentum generated in the evolution cascade results in the k_t -dependent gluon densities $\mathcal{F}(x, k_t^2, \mu^2) \propto 1/k_t^4$

Changes in the kinematics: In particular, destroyed azimuthal correlations (see to what extent it is true)

Changes in the polarization properties as a result of gluon off-shellness

J/ψ transverse momentum distributions

Renormalization scale $\mu_R^2 = \hat{s}/2; \quad \underline{\hat{s}/4}; \quad \hat{s}/8$

 $\mathcal{F}(x, k_t^2, \mu_F^2) = A+, \underline{A0}, A-$ dotted line = collinear GRV

Sergey Baranov,

8-th Workshop on Quarkonium, Darmstadt 2011

J/ψ rapidity distributions

7

8-th Workshop on Quarkonium, Darmstadt 2011

 $J/\psi J/\psi$ invariant mass distributions

8

Sergey Baranov,

8-th Workshop on Quarkonium, Darmstadt 2011

J/ψ pair transverse momentum

Azimuthal correlations

 $\mathcal{F}(x,k_t^2,\mu_F^2) = A+, \ \underline{A0}, \ A- \qquad \mathcal{F}(x,k_t^2,\mu_F^2) = A+, \ \underline{A0}, \ A-$

 J/ψ spin alignement in the Helicity frame

Dashed, at least one J/ψ has longitudinal polarization; Dotted, both J/ψ have longitudinal polarization.

 J/ψ spin alignement in the Collins-Soper frame

Dashed, at least one J/ψ has longitudinal polarization; Dotted, both J/ψ have longitudinal polarization.

Solid, k_t -factorization approach; Dashed, collinear parton model

 k_t -factorization approach only

Sergey Baranov,

8-th Workshop on Quarkonium, Darmstadt 2011

CONCLUSIONS

The absolute production cross section ranges from 10 nb to 27 nb, depending on the choice of the gluon densities and the scale μ_R

Transverse momentum distributions

are very different from those seen in the collinear case

Azimuthal correlations

show no evidence of the original back-to-back J/ψ configuration (bad for detecting double parton scattering)

Polarization properties

are more or less similar to those seen in the collinear case

DOUBLE PARTON INTERACTIONS

Two independent interactions at a time

$$egin{aligned} \sigma_{ ext{DPS}}^{ ext{AB}} &= rac{1}{2} \sum\limits_{i,j,k,l} ~\int \Gamma_{ij}(x_1,x_1'; ext{b}_1, ext{b}_2;Q^2,Q'^2) \hat{\sigma}_{ik}^A(x_1,x_2,Q^2) \ & imes \Gamma_{kl}(x_2,x_2'; ext{b}_1- ext{b}, ext{b}_2- ext{b};Q^2,Q'^2) \hat{\sigma}_{jl}^B(x_1',x_2',Q'^2) \ & imes dx_1\,dx_2\,dx_1'\,dx_2'\,d^2b_1\,d^2b_2\,d^2b \end{aligned}$$

with b_i being the impact parameters and Q^2 the probing scales N. Paver, D. Treleani, Nuovo Cimento A 70, 215 (1982)

Further assumptions:

Decoupling of longitudinal and transversal variables

$$\Gamma_{ij}(x, x'; \mathbf{b}_1, \mathbf{b}_2; Q^2, {Q'}^2) = \mathcal{D}_{ij}(x, x'; Q^2, {Q'}^2) f(\mathbf{b}_1) f(\mathbf{b}_2)$$

Factorization of parton distributions

$${\mathcal D}_{ij}(x,x';Q^2,{Q'}^2)=\mathcal{F}_i(x,Q^2)\mathcal{F}_j(x',{Q'}^2)$$

Result in
$$\sigma_{ ext{DPS}}^{ ext{AB}} = rac{1}{2} rac{\sigma_{ ext{SPS}}^A \sigma_{ ext{SPS}}^B}{\sigma_{ ext{eff}}} \quad ext{with} \quad \sigma_{ ext{eff}} = 14.5 \; mb$$

Comparisons with LHCb at $\sqrt{s} = 7$ Tev

The only restriction is $2 < y^{J/\psi} < 4.5$ Acceptance is corrected for $p_t(\mu) > 650$ MeV

With $|\mathcal{R}_{\psi}(0)|^2 = 0.8 \text{ GeV}^3$, $|\mathcal{R}'_{\chi}(0)|^2 = 0.075 \text{ GeV}^5$, $\alpha_s(\hat{s}/4)$, and A0 gluon densities we obtain

$$\begin{aligned} \sigma_{\rm SPS}^{\rm direct}(J/\psi) &= 7.1 \ \mu {\rm b} \\ \sigma_{\rm SPS}(\chi_1) &= 1.5 \ \mu {\rm b} \\ \sigma_{\rm SPS}(\chi_2) &= 5.1 \ \mu {\rm b} \end{aligned} \right\} \sigma_{\rm SPS}^{\rm prompt}(J/\psi) &= 8.7 \ \mu {\rm b} \ [\rm LHCb \ result \simeq 10 \ \mu {\rm b}] \\ \sigma_{\rm DPS}(J/\psi + J/\psi) &= 2 \ {\rm nb} \\ \sigma_{\rm SPS}(J/\psi + J/\psi) &= 4 \ {\rm nb} \end{aligned} \right\} \quad [\rm LHCb \ result = 5.6 \pm 1.1 \pm 1.2 \ {\rm nb}]$$

 $\sigma_{\rm DPS}$ is hardly identifiable over the theoretical uncertainty in $\sigma_{\rm SPS}$

OTHER INTERESTING PROCESSES

 $\chi_c + \chi_c$

Suppressed by the *P*-state wave functions by two orders of magnitude $\sigma_{\rm DPS} \simeq 0.1$ nb (for $J/\psi J/\psi$ final state) Experimental disadvantage: low-energy photons

 $J/\psi + \chi_c$ Not possible at the Leading Order due to charge parity conservation $\sigma_{\rm DPS} \simeq 1$ nb (for $J/\psi J/\psi$ final state) Experimental disadvantage: low-energy photons

 $J/\psi + \Upsilon$

Not possible at the Leading Order (no Feynman diagrams) $\sigma_{\rm DPS} \simeq 70~{\rm pb}$

To be continued...