J/ψ production with NRQCD: Unpolarized global analysis. Polarized photoproduction.

Mathias Butenschön (Hamburg University)

Collaborating with Bernd Kniehl

Production and Decay Rates of Heavy Quarkonia

The classic approach: Color-singlet model

- Calculate cross section for heavy quark pair in physical color singlet (=color neutral) state. In case of J/ψ: cc̄[³S₁^[1]]
- Multiply by quarkonium wave function at origin
- Mid 90's: Strong disagreement with Tevatron data apparent

Nonrelativistic QCD (NRQCD):

- Rigorous effective field theory: Bodwin, Braaten, Lepage (1995)
- Based on factorization of soft and hard scales (Scale hierarchy: Mv², Mv << Λ_{QCD} << M)</p>
- Could explain hadroproduction at Tevatron

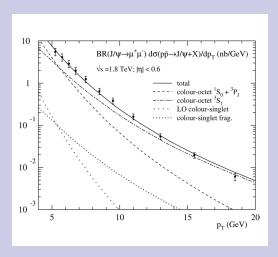
Further models on the market:

- k_T factorization approach
- Color Evaporation Model
- **...**

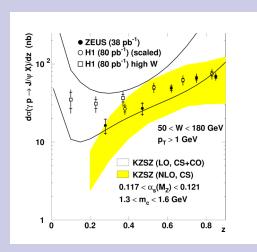
J/ψ Production with NRQCD

Factorization theorem:
$$\sigma_{J/\psi} = \sum_{n} \sigma_{c\overline{c}[n]} \cdot \langle O^{J/\psi}[n] \rangle$$

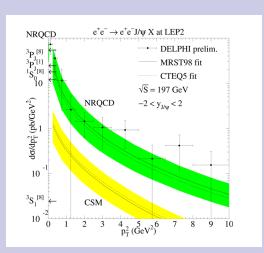
- n: Every possible Fock state, including color-octet states.
- $\sigma_{c\bar{c}[n]}$: Production rate of $c\bar{c}[n]$, calculated in perturbative QCD
- $\langle O^{J/\psi}[n] \rangle$: Long distance matrix elements (LDMEs): describe $c\bar{c}[n] \rightarrow J/\psi$, universal, extracted from experiment.


Scaling rules: LDMEs scale with definite power of v ($v^2 \approx 0.2$):

scaling	V^3	V^7	<i>V</i> ¹¹
n	³ S ₁ ^[1]	¹ S ₀ ^[8] , ³ S ₁ ^[8] , ³ P _J ^[8]	


- **Double expansion** in v and α_s
- Leading term in v ($n = {}^{3}S_{1}^{[1]}$) equals **color-singlet model**.

J/ψ Production with NRQCD: Knowledge until 2005


Hadroproduction at Tevatron:

Photoproduction at HERA:

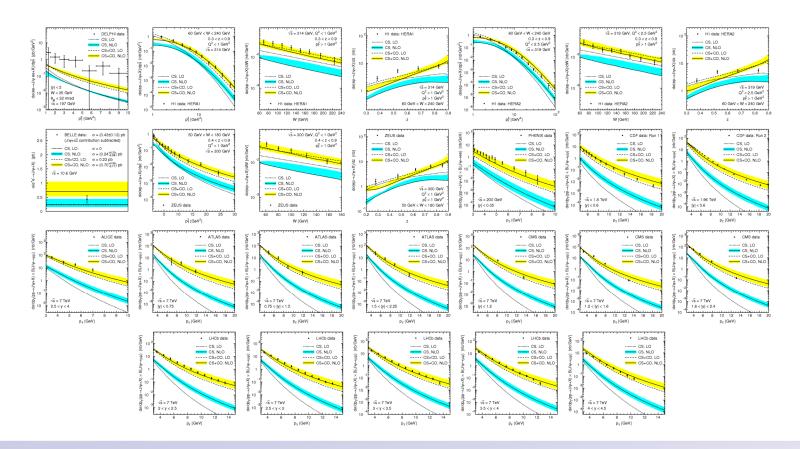
γγ Scattering at LEP:

- CO LDMEs extracted from Born fit to Tevatron (one linear combination).
 Used for predictions at HERA and LEP.
- No NLO calculations for color-octet (CO) contributions yet!
- Universality of CO LDMEs open question.

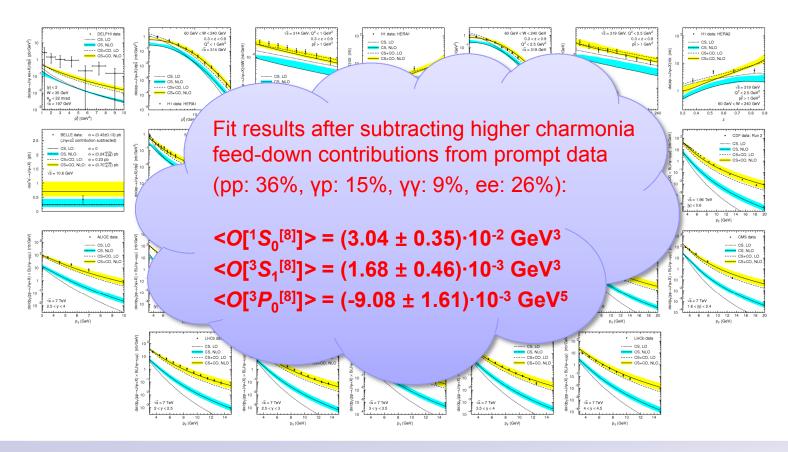
NLO Corrections to Color Octet Contributions

- Petrelli, Cacciari, Greco, Maltoni, Mangano (1998):
 Photo- and hadroproduction (only 2 → 1 processes)
- Klasen, Kniehl, Mihaila, Steinhauser (2005):
 yy scattering at LEP (neglecting resolved photons)
- M.B., Kniehl (2009):
 Photoproduction at HERA (neglecting resolved photons)
- Zhang, Ma, Wang, Chao (2009): e⁺e⁻ scattering at B factories
- Ma, Wang, Chao (2010):
 Hadroproduction (including feed-down contributions)
- M.B., Kniehl (2010):
 Hadroproduction (combined HERA-Tevatron fit)

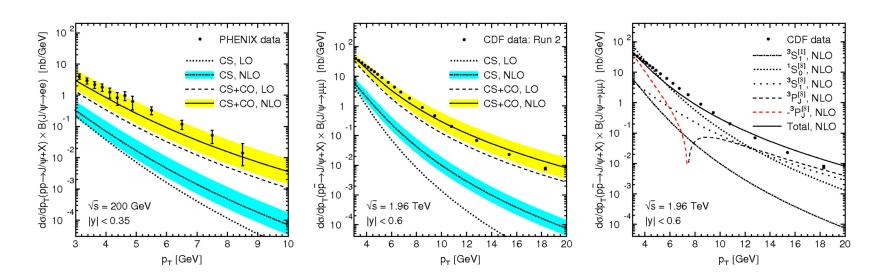
Our 2011 work: (This talk!)


- CO LDMEs: **Global fit** to unpolarized data (194 points).
- Polarization predictions for photoproduction.
- Test LDME universality.

CO LDMEs: Global Fit to Unpolarized Data


- We perform a fit to 194 data points from 26 data sets from 10 experiments:
 ALICE, ATLAS, BELLE, CDF, CMS, DELPHI, H1, LHCb, PHENIX, ZEUS.
- Here: Consider inclusive unpolarized J/ψ production yield.
- Partonic Born cross sections: Parton + Parton $\rightarrow J/\psi$ + Parton (Parton means gluon or u, d, s, \overline{u} , \overline{d} , \overline{s} quark.)
- Partonic real correction cross sections: Parton + Parton $\rightarrow J/\psi$ + 2 Partons
- Set color singlet LDME to $\langle O[^3S_1^{[1]}] \rangle = 1.32 \text{ GeV}^3$.
- Fit color octet LDMEs $<O[^1S_0^{[8]}]>$, $<O[^3S_1^{[8]}]>$ and $<O[^3P_0^{[8]}]>$.
- Ignore feed-downs in calculation, but effect estimated later on.
- Low p_T hadroproduction cannot be described due to nonperturbative effects Exclude data points with p_T < 3 GeV.
- Photoproduction at HERA and yy scattering at LEP: For the first time including resolved photon contributions!

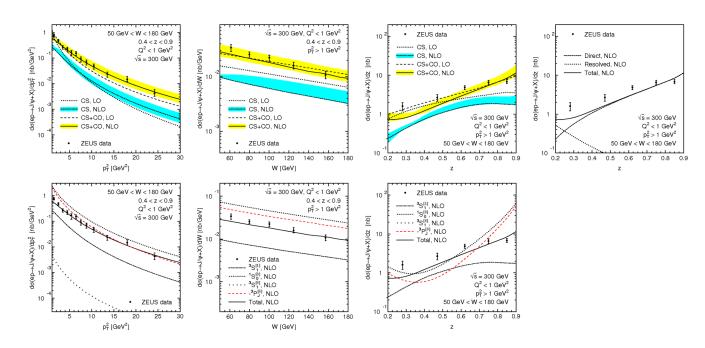
Global Fit Result


$$\langle O[^{1}S_{0}^{[8]}] \rangle = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3}$$
 $\langle O[^{3}S_{1}^{[8]}] \rangle = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3}$ $\langle O[^{3}P_{0}^{[8]}] \rangle = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5}$

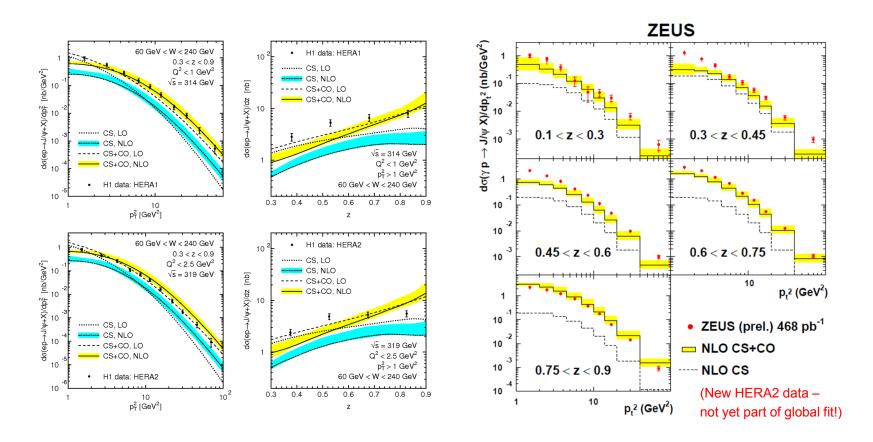
Global Fit Result


$$\langle O[^{1}S_{0}^{[8]}] \rangle = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3}$$
 $\langle O[^{3}S_{1}^{[8]}] \rangle = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3}$ $\langle O[^{3}P_{0}^{[8]}] \rangle = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5}$

In Detail: Hadroproduction (RHIC, Tevatron)

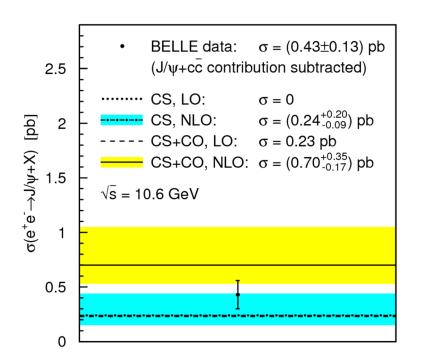

- Color singlet model not enough to describe data (although increase from Born to NLO)
- CS+CO can describe data.
- ${}^{3}P_{J}^{[8]}$ short distance cross section **negative** at p_{T} > 7 GeV.
- But: Short distance cross sections and LDMEs unphysical
 No problem!

In Detail: Hadroproduction (LHC)

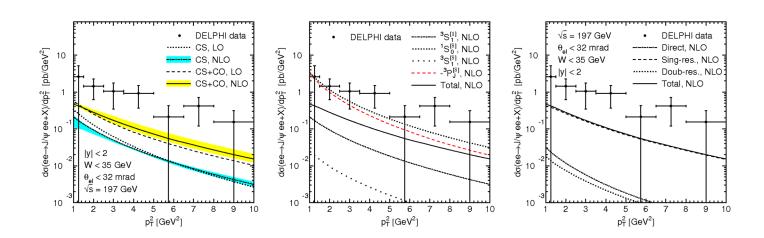

- Data from ALICE, ATLAS, CMS and LHCb.
- All data points assuming unpolarized J/ψ.
- Like at RHIC and Tevatron: CS far below data, CS+CO describes data well.
- Observation: Change s or rapidity y just rescaling of cross sections:
 CO LDMEs describing RHIC or Tevatron must also describe LHC!

In Detail: Photoproduction (ZEUS HERA1)

- **Distributions:** Transverse momentum (p_T) , photon-proton c.m. energy (W), and z = Fraction of photon energy going to J/ψ .
- Again: Color singlet alone below the data, CS+CO describes data well.
- Calculation includes resolved photon contributions: Important at low z.
- Good description at high z: No increase like in older Born analyses!


In Detail: More Photoproduction

- Again: CS alone **below** data; **CS+CO** good description, especially at high z.
- H1 HERA2 data systematically below H1 HERA1 and ZEUS HERA1 + 2.

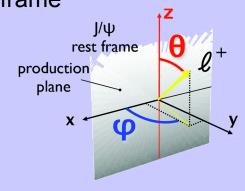


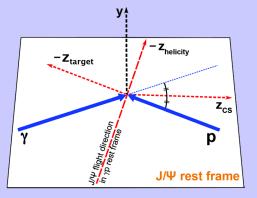
In Detail: Electron-Positron Scattering

- Double charmonium production cross section large (≈ 60%), but not included in our calculation.
 Use BELLE measurement with J/ψ+cc̄ contribution subtracted.
- CS: Large overlap with data,CS+CO: Small overlap.
- Experimentally measurement of total cross section problematic, discrapencies between BELLE and BABAR (which is larger).
- For us, LO means J/ψ + parton, but in CMS, LO is J/ψ + 2 partons. In CMS, α_s corrections to J/ψ + 2 partons have been calculated, CS contribution increases. For consistency, not part of this analysis.

In Detail: Photon-Photon Scattering

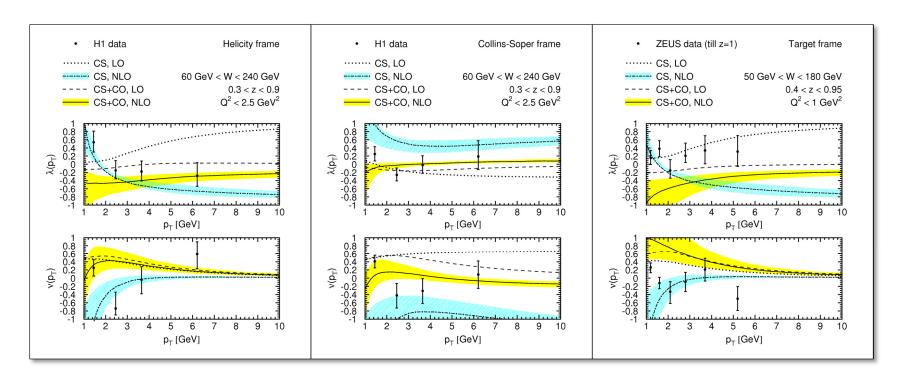
- Photon-Photon scattering measured by DELPHI at LEP.
- For the first time contribution of resolved photons included at NLO (direct + single resolved + double resolved). Single resolved dominates.
- CS below data, but also CS+CO prediction too low. Possible explanations:
 - □ Uncertainties in the measurement (just 16 events involved!)
 - Unknown higher order effects important at relatively low p_T .
 - Hint at problems with LDME universality.

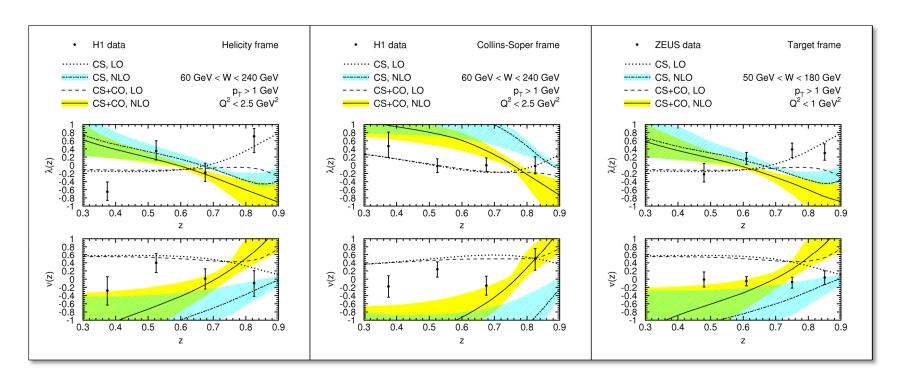

J/ψ Polarization in Photoproduction


- **Angular distribution** of decay lepton I^+ in J/ψ rest frame
 - Polarization observables λ , μ , ν :

$$\frac{d\Gamma(J/\psi \to I^+I^-)}{d\cos\theta \, d\phi} \propto 1 + \lambda \cos^2\theta + \mu \sin(2\theta)\cos\phi + \frac{v}{2}\sin^2\theta\cos(2\phi)$$

- Depends on choice of coordinate system:
 - □ Helicity frame: $z \text{ axis } \| -(\vec{p}_{\gamma} + \vec{p}_{p}) \|$
 - \square Collins-Soper frame: z axis $||\vec{p}_{\gamma}/|\vec{p}_{\gamma}| \vec{p}_{p}/|\vec{p}_{p}|$
 - □ Target frame: z axis $\| -\vec{p}_p \|$
- In Calculation: Plug in explicit expressions for $c\bar{c}[n]$ spin polarization vectors according to


$$\lambda = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}, \quad \mu = \frac{\sqrt{2} \text{Re} \, d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}}, \quad v = \frac{2d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}}$$

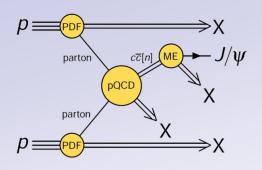

Here: Direct photoproduction. CO LDME set with feed-downs subtracted.

J/ψ Polarization Results: p_T Distributions

- Bands: Uncertainties due to scale variation and CO LDMEs.
- **CSM** predicts **longitudinal** J/ψ at high p_T .
- **CS+CO:** largely **unpolarized** J/ψ at high p_T . α_s expansion converges better.
- H1 and ZEUS data not precise enough to discriminate CSM / NRQCD.

J/ψ Polarization Results: z Distribution

- Bands: Uncertainties due to scale variation and CO LDMEs.
- Scale uncertainties very large.
- Error bands of CSM and NRQCD largely overlap.
- p_T distribution better suited to discriminate production mechanisms than z.


Summary

- NRQCD provides rigorous factorization theorem for heavy quarkonium production. But: Need to proof LDME universality.
- Combined NLO fit of NRQCD LDMEs to inclusive J/ψ production data from ALICE, ATLAS, BELLE, CDF, CMS, DELPHI, H1, LHCb, PHENIX, ZEUS.
- CSM predictions fall short of data everywhere except for $e^+e^- \rightarrow J/\psi + X$.
- Good agreement for **CS+CO** with data except perhaps for $\gamma\gamma \rightarrow J/\psi + X$.
- Extracted CO LDMEs in accordance with velocity scaling rules.
- First NLO calculation of **polarized** J/ψ cross section including CO states: Direct photoproduction at HERA.
- NRQCD predicts largely **unpolarized** J/ψ , CSM **longitudinally** polarized.
- H1 and ZEUS data not precise enough to discriminate CSM / NRQCD.
- Outlook: Polarization at Tevatron and LHC.

BACKUP SLIDES

Calculate Inclusive J/ψ Production within NRQCD

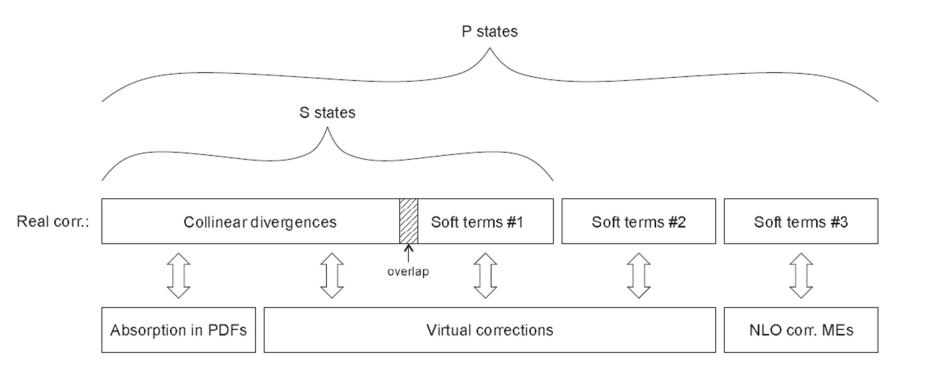
Factorization formulas (here hadroproduction):

Convolute partonic cross section with proton

PDFs:
$$\sigma_{\text{hadr}} = \sum_{i,j} \int dx \, dy \, f_{i/p}(x) \, f_{j/p}(y) \cdot \sigma_{\text{part,i,j}}$$

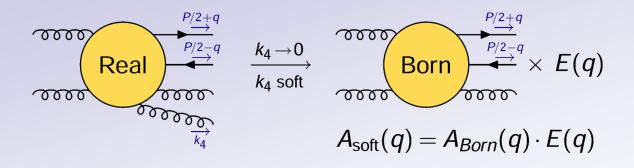
NRQCD factorization:

$$\sigma_{ ext{part,i,j}} = \sum_{n} \sigma(ij
ightarrow c\overline{c}[n] + X) \cdot \langle O^{J/\psi}[n]
angle$$


Amplitudes for $c\overline{c}[n]$ production by projector application, e.g.:

$$A_{c\overline{c}[^{3}S_{1}^{[1/8]}]} = \varepsilon_{\alpha}(m_{S})\operatorname{Tr}\left[C\Pi^{\alpha}A_{c\overline{c}}\right]|_{q=0}$$

$$A_{c\overline{c}[^{3}P_{I}^{[8]}]} = \varepsilon_{\alpha}(m_{S})\varepsilon_{\beta}(m_{I})\frac{d}{dq_{\beta}}\operatorname{Tr}\left[C\Pi^{\alpha}A_{c\overline{c}}\right]|_{q=0}$$


- $A_{c\bar{c}}$: Amputated pQCD amplitude for open $c\bar{c}$ production.
- **q**: Relative momentum between c and \overline{c} . ϵ : Polarization vectors.

Overview of IR Singularity Structure

Structure of Soft Singularities

Soft limits of the real corrections:

S and P states: Soft #1 + Soft #2 + Soft #3 terms:

$$A_{\text{soft,s}} = A_{\text{soft}}(0) = A_{\text{Born,s}} \cdot E(0)$$

$$A_{\text{soft,p}} = A'_{\text{soft}}(0) = A_{\text{Born,p}} \cdot E(0) + A_{\text{Born,s}} \cdot E'(0)$$

$$|A_{\text{soft,s}}|^2 = |A_{\text{Born,s}}|^2 \cdot E(0)^2$$

$$|A_{\text{soft,p}}|^2 = |A_{\text{Born,p}}|^2 \cdot E(0)^2 + 2 \operatorname{Re} A_{\text{Born,s}}^* A_{\text{Born,p}} \cdot E(0) E'(0) + |A_{\text{Born,s}}|^2 \cdot E'(0)^2$$

Radiative Corrections to LDMEs

In NRQCD: Long distance MEs = $c\overline{c}$ scattering amplitudes:

$$\langle O^{J/\psi}[n] \rangle = \frac{c}{\overline{c}}$$

$$O[n] = 4$$
-fermion operators
 $(n = {}^{3}S_{1}^{[1]}, {}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{0/1/2}^{[8]}, ...)$

Corrections to $\langle O^{J/\psi}[^3S_1^{[1/8]}] \rangle$ with NRQCD Feynman rules:

$$\frac{c}{\overline{c}} + \frac{\text{similar}}{\text{diagrams}} \propto \frac{4\alpha_{\text{S}}}{3\pi m_{c}^{2}} \left(\frac{1}{\varepsilon_{\text{UV}}} - \frac{1}{\varepsilon_{\text{IR}}}\right) \cdot \frac{c}{\overline{c}}$$

- UV singularity cancelled by renormalization of 4-fermion operator.
- IR singularity cancels soft #3 terms of P states.

Hadroproduction-only Fit

Global fit to hadroproduction data alone, vary low- p_{τ} cut:

	<i>p_T</i> > 1 GeV	<i>p_τ></i> 2 GeV	<i>p</i> _T > 3 GeV	p _T > 5 GeV	<i>p_T</i> > 7 GeV
$< O[^1S_0^{[8]}] > [10^{-2} \text{ GeV}^3]$	8.54 ± 0.52	16.85 ± 1.23	11.02 ± 1.67	1.68 ± 2.20	2.18 ± 2.56
$< O[^3S_1^{[8]}] > [10^{-3} \text{ GeV}^3]$	-2.66 ± 0.69	-13.36 ± 1.60	-5.56 ± 2.19	8.75 ± 2.98	10.34 ± 3.55
$< O[^{3}P_{0}^{[8]}] > [10^{-2} \text{ GeV}^{5}]$	-3.63 ± 0.23	-7.70 ± 0.61	-4.46 ± 0.87	2.20 ± 1.23	3.50 ± 1.50
M ₀ [10 ⁻² GeV ³]	2.25 ± 0.12	3.51 ± 0.19	3.29 ± 0.20	5.50 ± 0.29	8.24 ± 0.58
M ₁ [10 ⁻³ GeV ³]	6.37 ± 0.19	5.80 ± 0.19	5.54 ± 0.20	3.27 ± 0.29	1.63 ± 0.43

■ Fit underconstrained. Therefore give two linear combinations of Ma et al.:

$$M_0 = \langle O(^{1}S_0^{[8]}) \rangle + 3.9 \langle O(^{3}P_0^{[8]}) \rangle / m_c^2 \qquad M_1 = \langle O(^{3}S_1^{[8]}) \rangle - 0.56 \langle O(^{3}P_0^{[8]}) \rangle / m_c^2$$

• Fit results **depend strongly** on low- p_T cut.

Agreement with Ma et al.'s fit to Tevatron run II data with $p_T > 7$ GeV:

Default: Include feed-downs, directly fit M_0 and M_1 :	$M_0 = (7.4 \pm 1.9) 10^{-2} \text{GeV}^3$	$M_1 = (0.5 \pm 0.2) 10^{-3} \text{GeV}^3$
Ignore feed-downs, directly fit M_0 and M_1 :	$M_0 = (8.92 \pm 0.39) \ 10^{-2} \ \text{GeV}^3$	$M_1 = (1.26 \pm 0.23) \ 10^{-3} \ \text{GeV}^3$
Ignore feed-downs, M_0 and M_1 from 3-parameter fit:	$M_0 = (8.54 \pm 1.02) \ 10^{-2} \ \text{GeV}^3$	$M_1 = (1.67 \pm 1.05) \ 10^{-3} \ \text{GeV}^3$

Hadroproduction-only Fit

Global fit to hadroproduction data alone, vary low- p_{τ} cut:

	<i>p_T</i> > 1 GeV	ρ _τ > 2 GeV	<i>p_T</i> > 3 GeV	<i>p_T</i> > 5 GeV	<i>p_T></i> 7 GeV
$< O[^1S_0^{[8]}] > [10^{-2} \text{ GeV}^3]$	8.54 ± 0.52	16.85 ± 1.23	11.02 ± 1.67	1.68 ± 2.20	2.18 ± 2.56
$< O[^3S_1^{[8]}] > [10^{-3} \text{ GeV}^3]$	-2.66 ± 0.69	-13.36 ± 1.60	-5.56 ± 2.19	8.75 ± 2.98	10.34 ± 3.55
$< O[^{3}P_{0}^{[8]}] > [10^{-2} \text{ GeV}^{5}]$	-3.63 ± 0.23	-7.70 ± 0.61	-4.46 ± 0.87	2.20 ± 1.23	3.50 ± 1.50
M ₀ [10 ⁻² GeV ³]	2.25 ± 0.12	3.51 ± 0.19	3.29 ± 0.20	5.50 ± 0.29	8.24 ± 0.58
M ₁ [10 ⁻³ GeV ³]	6.37 ± 0.19	5.80 ± 0.19	5.54 ± 0.20	3.27 ± 0.29	1.63 ± 0.43

■ Fit underconstrained. Therefore give two linear combinations of Ma et al.:

$$M_0 = \langle O(^{1}S_0^{[8]}) \rangle + 3.9 \langle O(^{3}P_0^{[8]}) \rangle / m_c^2 \qquad M_1 = \langle O(^{3}S_1^{[8]}) \rangle - 0.56 \langle O(^{3}P_0^{[8]}) \rangle / m_c^2$$

• Fit results **depend strongly** on low- p_{τ} cut.

Agreement with Ma et al.'s fit to Tevatron run II data with $p_T > 7$ GeV:

Default: Include feed-downs, directly fit M_0 and M_1 :	$M_0 = (7.4 \pm 1.9) \ 10^{-2} \ \text{GeV}^3$	$M_1 = (0.5 \pm 0.2) 10^{-3} \text{GeV}^3$
Ignore feed-downs, directly fit M_0 and M_1 :	$M_0 = (8.92 \pm 0.39) \ 10^{-2} \ \text{GeV}^3$	$M_1 = (1.26 \pm 0.23) \ 10^{-3} \ \text{GeV}^3$
Ignore feed-downs, M_0 and M_1 from 3-parameter fit:	$M_0 = (8.54 \pm 1.02) \ 10^{-2} \ \text{GeV}^3$	$M_1 = (1.67 \pm 1.05) 10^{-3} \text{GeV}^3$

[Ma, Wang, Chao: Table 1 of PRL 106, 042002 and equations (13) and (14) of arXiv:1012.1030]

Global Fit: Dependence on Low- p_T Cuts (1)

Global fit: Vary low- p_T cut on hadroproduction data:

hadroproduction data left	p _T > 1 GeV 148 points	<i>p_T</i> > 2 GeV 134 points	<i>p_T</i> > 3 GeV 119 points	<i>p_T</i> > 5 GeV 86 points	<i>p_T</i> > 7 GeV 60 points
$< O[^1S_0^{[8]}] > [10^{-2} \text{ GeV}^3]$	5.68 ± 0.37	4.25 ± 0.43	4.97 ± 0.44	4.92 ± 0.49	3.91 ± 0.51
<o[<sup>3S₁^[8]]> [10⁻³ GeV³]</o[<sup>	0.90 ± 0.50	2.94 ± 0.58	2.24 ± 0.59	2.23 ± 0.62	2.96 ± 0.64
$< O[^{3}P_{0}^{[8]}] > [10^{-2} \text{ GeV}^{5}]$	-2.23 ± 0.17	-1.38 ± 0.20	-1.61 ± 0.20	-1.59 ± 0.22	-1.16 ± 0.23
M ₀ [10 ⁻² GeV ³]	1.81 ± 0.09	1.85 ± 0.09	2.18 ± 0.10	2.17 ± 0.12	1.89 ± 0.12
M ₁ [10 ⁻³ GeV ³]	6.46 ± 0.17	6.37 ± 0.17	6.25 ± 0.17	6.18 ± 0.17	5.86 ± 0.18

- Stabilizing influence of photoproduction data.
- Fit **constrained** enough: Can now extract 3 CO LDMEs.
- Fit results now almost independent of low-p_T cut.
- Fit less stable with low- p_{τ} cut below 2 GeV (nonperturbative effects).

Global Fit: Dependence on Low- p_T Cuts (2)

Global fit: Vary low- p_{τ} cut on photoproduction (including $\gamma\gamma$ -scattering):

photoproduction data left	p _T > 1 GeV 74 points	p_T > 2 GeV 30 points	<i>p_T</i> > 3 GeV 15 points	p _T > 5 GeV 5 points	<i>p_T</i> > 7 GeV 1 point
$< O[^1S_0^{[8]}] > [10^{-2} \text{ GeV}^3]$	4.97 ± 0.44	5.10 ± 0.92	4.05 ± 1.17	5.44 ± 1.27	9.56 ± 1.59
<0[³ S ₁ ^[8]]> [10 ⁻³ GeV ³]	2.24 ± 0.59	2.11 ± 1.22	3.52 ± 1.56	1.73 ± 1.68	-3.66 ± 2.09
$< O[^{3}P_{0}^{[8]}] > [10^{-2} \text{ GeV}^{5}]$	-1.61 ± 0.20	-1.58 ± 0.48	-0.97 ± 0.63	-1.63 ± 0.68	-3.73 ± 0.83
M ₀ [10 ⁻² GeV ³]	2.18 ± 0.10	2.36 ± 0.12	2.37 ± 0.13	2.62 ± 0.15	3.10 ± 0.19
M ₁ [10 ⁻³ GeV ³]	6.25 ± 0.17	6.05 ± 0.18	5.94 ± 0.19	5.78 ± 0.20	5.62 ± 0.20

- **Fit stable** against varying low- p_{τ} cut in region 1 GeV ~ 3 GeV.
- Just 5 or 1 photoproduction against 119 hadroproduction points not enough to stabilize the fit. Not stable with low- p_T cut much larger than 3 GeV. (Would need more high- p_T photoproduction data.)