HEAVY QUARKONIA PRODUCTION AT LHCB

International Workshop on Heavy Quarkonium 2011 Darmstadt, Germany

Ulrich Kerzel for the LHCb Collaboration

INTRODUCTION

- Quarkonia production mechanism challenging for theory
- Several theoretical models
 - Colour Singlet (CS)
 - Colour Octet (CO)
 - Colour Evaporation (CE)
 - Inclusion of higher order terms (NRQCD)

- NRQCD prediction at LO in αs:
 - CS scales as $1/p_t^6$
 - CO scales as $1/p_t^4$

INTRODUCTION II

- However:
 - LO CS does not describe J/ψ production
 - Undershoots measured cross-section
 - LO can be fitted to data, but does not provide scale
 - Also predicts wrong polarisation
 - NRQCD factorisation valid at very low values of pt ?
 - χ_c feed-down predictions compatible both with low energy (e.g. PHENIX) and high energy (Tevatron, LHC)?
 - Recent NLO corrections at high pt for χc:
 - NLO corrections become large
 - Make CS contribution negative and comparable to CO
 - NLO scale as $1/p_t^4 \rightarrow$ NNLO probably small
- → Further charmonium studies needed

OUTLINE

- LHCb:
 - forward arm spectrometer: unique rapidity range
 complementary to ATLAS/CMS/ALICE

- In this talk:
 - $\psi(2S)$ cross-section
 - Y(1S) cross-section
 - Ratio of $\sigma(\chi_{c2}) / \sigma(\chi_{c1})$
 - Exclusive χ_c Production
 - Xb

tracking, ECAL, HCAL, counters lumi, muon, hadron PID

XCRELATIVE CROSS SECTION

• Measure production cross section:

$$\frac{\sigma(\chi_{c2})}{\sigma(\chi_{c1})} = \frac{N_{\chi_{c2}}}{N_{\chi_{c1}}} \cdot \frac{\epsilon_{J/\psi}^{\chi_{c1}} \epsilon_{\gamma}^{\chi_{c1}} \epsilon_{sel}^{\chi_{c1}}}{\epsilon_{J/\psi}^{\chi_{c2}} \epsilon_{\gamma}^{\chi_{c2}} \epsilon_{sel}^{\chi_{c2}}} \cdot \frac{B(\chi_{c1} \to J/\psi\gamma)}{B(\chi_{c2} \to J/\psi\gamma)}$$

in bins of $p_t(J/\psi)$ in the range: $2 < p_t(J/\psi) < 15 \text{ GeV/c}$

- Simultaneous fit to extract χ_{c0} , χ_{c1} , χ_{c2} yield + BG
 - Fit to mass difference Δm = m(χ_c) m(J/ψ)
 limit effect of detector resolution, absolute mass scale
 - Assume unpolarised states and investigate effect of polarisation
 - Key ingredient: Determination of the various efficiencies

HCB-CONF-2011-020 HCB PHOTON IDENTIFICATION

- Photons are reconstructed using the <u>Calorimeter</u>
 - Unconverted photons
 - Converted photons ($\gamma \rightarrow e^+e^-$) after the magnet
 - The converted photons are identified by requiring a signal in the Scintillating Pad Detector (SPD)

2

- Photons from χ_c are identified using a Confidence Likelihood (CL):
 - Calorimeter information
 - Tracking information
 - Ratio of track seed energy to ECAL cluster energy
- Additional e[±] rejection: no match between any track and ECAL cluster

LHCb-CONF-2011-020

X c SELECTION

- J/ψ
 same selection as in J/ψ analysis
- Photon Selection:
 - γ CL > 0.5 (from Calorimeter)
 - $p(\gamma) > 5 \text{ GeV}/c, p_t(\gamma) > 0.65 \text{ GeV}/c$
- Fit model
 - Gaussian for χ_{c1} and χ_{c2} (χ_{c0} as well but hardly visible)
 - Mass-difference function for BG (RooDstD0BG)
- <u>N.B.</u> Calorimeter resolution too coarse to resolve χ_c states

- → reconstructed and selected
- N(J/ ψ): #J/ ψ from a χ_{cJ} state
 - Very similar (but not identical)
 - Cut $p_t(\gamma)$ introduces edge at low $p_t(J/\psi)$

LHCb-CONF-2011-020

X c RESULTS

• LHCb:

- Error bars: stat. and syst. uncertainties
- Shaded area: Polarisation
- CDF: PRL 98:232001 (2007)
- Blue: Prediction from ChiGen event simulation
- Red : NLO NRQCD
 PRD 83 111503 (2011)

$\chi_B \longrightarrow \Upsilon(1S) \gamma$

- Analysis in progress: challenging hadronic environment
- Data between April September 2010: ~ 37 pb⁻¹
- $\Upsilon(1S) \rightarrow \mu^+\mu^-$, photon from <u>calorimeter</u> system
- Present statistics does not allow to distinguish between χ_{b0} , χ_{b1} , χ_{b2}
- However, no χ_b(2P) state as hinted in CDF RunI measurement, though ~30 times Υ(1S) yield in LHCb 2010 data.

• Elastic process in which protons remain intact

- Analysis performed on 2010 dataset: ~37pb⁻¹
 - Veto multiple interactions: effectively ~3pb⁻¹
- Trigger: require single muon, very low overall multiplicity

• Track multiplicity (triggered events)

 Invariant mass spectrum (triggered events)

black: all

red: no backward tracks, 2 forward tracks

CENTRAL EXCLUSIVE PRODUCTION

- Very clean signals
- Measured cross-sections:

$$\sigma_{J/\psi \to \mu^+\mu^-} (2 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5) = 474 \pm 12 \pm 51 \pm 92 \text{ pb}$$

 $\sigma_{\psi(2S)\to\mu^+\mu^-}(2 < \eta_{\mu+}, \eta_{\mu-} < 4.5) = 12.2 \pm 1.8 \pm 1.3 \pm 2.4 \text{ pb}$ $\sigma_{\chi_{c0}\to J/\psi\gamma\to\mu^+\mu^-\gamma}(2 < \eta_{\mu+}, \eta_{\mu-}, \eta_{\gamma} < 4.5) = 9.3 \pm 2.2 \pm 3.5 \pm 1.8 \text{ pb}$ $\sigma_{\chi_{c1}\to J/\psi\gamma\to\mu^+\mu^-\gamma}(2 < \eta_{\mu+}, \eta_{\mu-}, \eta_{\gamma} < 4.5) = 16.4 \pm 5.3 \pm 5.8 \pm 3.2 \text{ pb}$ $\sigma_{\chi_{c2}\to J/\psi\gamma\to\mu^+\mu^-\gamma}(2 < \eta_{\mu+}, \eta_{\mu-}, \eta_{\gamma} < 4.5) = 28.0 \pm 5.4 \pm 9.7 \pm 5.4 \text{ pb}$ $\sigma_{pp\to p\mu^+\mu^-p}(2 < \eta_{\mu+}, \eta_{\mu-} < 4.5; m_{\mu+\mu-} > 2.5 \text{ GeV/c}^2) = 67 \pm 10 \pm 7 \pm 15 \text{ pb}$

- $\sigma \pm (\text{stat.}) \pm (\text{syst.}) = (100 \text{ LHCb})$
- Results agree with the oretical expectations
 - However, further theoretical work
 - welcome

LHCb

$\psi(2S)$ CROSS SECTION

- Analyse two decay modes
 - 2 < y < 4.5
 - $\psi(2S) \rightarrow \mu^+ \mu^-$ (0 < p_t < 12 GeV/c)
 - $\psi(2S) \rightarrow J/\psi \pi^+\pi^- (3 < p_t < 16 \text{ GeV}/c)$
- Double (μ⁺μ⁻ mode) or single (hadronic mode) differential cross section

$$\frac{d^2\sigma}{dp_T dy}(p_T, y) = \frac{N_{\psi(2S)}(p_T, y)}{\mathcal{L}_{int} \ \epsilon(p_T, y) \ \mathcal{B}(\psi(2S) \to e^+e^-) \ \Delta p_T \ \Delta y},$$

$$\frac{d\sigma}{dp_T dy}(p_T) = \frac{N_{\psi(2S)}(p_T)}{(p_T)}$$

$$\frac{d\sigma}{dp_T}(p_T) = \frac{N_{\psi(2S)}(p_T)}{\mathcal{L}_{int} \ \epsilon(p_T) \ \mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-) \ \mathcal{B}(J/\psi \to \mu^+\mu^-) \ \Delta p_T},$$

- Assume unpolarised $\psi(2S)$ state
- Estimate efficiency due to acceptance, reconstruction, trigger from simulated events
- In progress: separate prompt and ψ from B decay

LHCb-CONF-2011-026

$\psi(2S)$ POLARISATION

Effect of $\psi(2S)$ polarisation on cross-section measurement

LHCb-CONF-2011-026

$\psi(2S)$ RESULT

- Cross section measured as: • $\psi(2) \rightarrow \mu^+ \mu^-$ (0 < pt < 12 GeV/c) $\sigma = 1.88 \pm 0.02 \pm 0.31^{+0.25}_{-0.48} \ \mu b$ • $\psi(2) \rightarrow J/\psi \pi^+ \pi^-$ (3 < pt < 16 GeV/c) $\sigma = 0.62 \pm 0.04 \pm 0.12^{+0.07}_{-0.14} \ \mu b$
 - Good agreement with recent NLO predictions
 - Need colour octet contribution (see next slide)
 - Predictions for low p_t ($0 < p_t < 4 \text{ GeV}$)?

EFfCb-CONF-2011-026 $\psi(2S)$ RESULT

2

8

10

0

$\psi(2S) \rightarrow \mu^+\mu^-$: Yellow: NLO CSM+COM, Blue: NLO CSM

LO CSM

NLO CSM 10.05

10

18

YPRODUCTION

Two sources of Y(1S)

• Direct production: $pp \rightarrow b\overline{b} + X$ $\rightarrow \Upsilon(1S) + X$

• Feed-down from higher states $pp \rightarrow b\overline{b} + X$ $\rightarrow \chi_b$ $\rightarrow \Upsilon(1S) + \gamma$ $\rightarrow \Upsilon(nS)$ $\rightarrow \Upsilon(1S) + X$

Bottomonium states

LHCb ГНСр

Y(1S) CROSS-SECTION

- Analysis strategy:
 - Measure double differential cross section in rapidity and pt

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} = \frac{N(\Upsilon(1S) \to \mu^+\mu^-)}{\mathcal{L} \times \varepsilon \times \mathcal{B}(\Upsilon(1S) \to \mu^+\mu^-) \times \Delta y \times \Delta p_{\mathrm{T}}}$$

- μμ final state
- $0 < p_t < 15 \text{ GeV}, 2 < y < 4.5$
- Data from April Nov. 2010, integrated luminosity: 32.4 pb⁻¹
- Acceptance and reconstruction efficiencies estimated from simulation, trigger eff. from data

Y(1S) EFFICIENCIES

808800 858800 909000 959900 100000 105000 149000 145800 14980 12880

202800

Effect of polarisation

LHCb-CONF-2011-016

• ²(+1⁴/₈.8⁶/₁₀)⁸(GeV/C)¹² contributes to syst. uncertainty

Source	Method	Value
Luminosity	Precision on beam current	10%
Trigger	Difference between J/ψ and $\Upsilon(nS)$ (simulation)	0-67%
Polarisation on acceptance	Extreme polarisation scenarios	0-33%
Polarisation on reconstruction	Extreme polarisation scenarios	0-21%
Choice of fit function	Test different functions	1%
Unknown pt spectrum	Estimate effect of 0.5% $p_{\rm T}$ resolution	1%
Global event cut (trigger)	Statistical uncertainty on data	2%
Track quality cut	Difference between data and simulation	0.5%/track
Track finding algorithm	Difference between data and simulation	4%/track
Vertexing	Difference between data and simulation	1%
Muon ID	Difference between data and simulation	1.1%

Effect from Luminosity will decrease more precise beam current measurement

SUMMARY

- Many measurements related to spectroscopy pursued in LHCb
- First measurement of the relative $\chi c cross$ section using data recorded in 2010 ($\sigma(\chi_{c2})/\sigma(\chi_{c1})$).
 - Comparison with dedicated event generator and NLO calculation show discrepancy esp. at low $p_t(J/\psi)$
 - Measurement of $\sigma(\chi_c)/\sigma(J/\psi)$ almost ready
- Branching fraction of (cc) mesons in exclusive production
- ψ(2S) cross-section measurement in good agreement with NLO CSM +COM calculations
 - Theoretical predictions to low pt?
- Y(1S) cross-section measurement in good agreement with NLO
 - Theoretical predictions to low pt?
 - Good agreement with measurement from CMS
- First analysis of χ_b state in LHCb in progress
 - Limited range of predictions available

BACKUP

INTRODUCTION

- Heavy Quarkonium production remains challenging problem for understanding QCD
- At LHC:
 - $c\overline{c}$ mainly produced via Leading-Order (LO) gluon-gluon interaction
 - ➡ computed via perturbative QCD
- Formation of bound charmonium states described by nonperturbative models
 - Both colour singlet (CS) and colour octet (CO)
- Key ingredients to understand production mechanism
 - J/ ψ and ψ (2S) production cross-section and polarisation at large transverse momenta (p_t)
 - Ratio of production rates of χ_{c2} vs χ_{c1}

LHCB

Y(1S) CROSS-SECTION

Table 3: $\Upsilon(1S)$ production cross-section results as a function of y and p_T , in nb. The first uncertainty is statistical, the second systematic.

p _T	$\sigma(2.0 < y < 2.5)$	$\sigma(2.5 < y < 3.0)$	$\sigma(3.0 < y < 3.5)$	$\sigma(3.5 < y < 4.0)$	$\sigma(4.0 < y < 4.5)$
(GeV/c)	(nb)	(nb)	(nb)	(nb)	(nb)
0 - 1	$2.59 \pm 0.18 \pm 1.00$	$2.78 \pm 0.12 \pm 0.77$	$2.05 \pm 0.10 \pm 0.48$	$1.98 \pm 0.11 \pm 0.55$	$2.47 \pm 0.25 \pm 1.04$
1 – 2	$6.89 \pm 0.29 \pm 2.69$	$6.70 \pm 0.19 \pm 1.82$	$5.40 \pm 0.16 \pm 1.24$	$4.90 \pm 0.17 \pm 1.30$	$5.96 \pm 0.38 \pm 2.40$
2-3	$9.54 \pm 0.33 \pm 3.61$	$8.48 \pm 0.22 \pm 2.32$	$6.55 \pm 0.18 \pm 1.51$	$5.45 \pm 0.18 \pm 1.37$	$6.69 \pm 0.40 \pm 2.59$
3 - 4	$8.26 \pm 0.30 \pm 3.03$	$7.74 \pm 0.21 \pm 2.03$	$6.16 \pm 0.17 \pm 1.40$	$5.20 \pm 0.18 \pm 1.23$	$5.86 \pm 0.36 \pm 2.31$
4 - 5	$8.67 \pm 0.30 \pm 3.08$	$6.72 \pm 0.19 \pm 1.73$	$5.16 \pm 0.16 \pm 1.13$	$3.92 \pm 0.15 \pm 0.92$	$3.07 \pm 0.23 \pm 1.40$
5-6	$6.51 \pm 0.26 \pm 2.24$	$5.59 \pm 0.17 \pm 1.40$	$3.89 \pm 0.14 \pm 0.84$	$2.85 \pm 0.13 \pm 0.66$	$2.41 \pm 0.19 \pm 1.08$
6 – 7	$4.59 \pm 0.21 \pm 1.52$	$4.01 \pm 0.15 \pm 0.98$	$2.99 \pm 0.12 \pm 0.62$	$2.50 \pm 0.12 \pm 0.54$	$1.64 \pm 0.15 \pm 0.57$
7 - 8	$3.89 \pm 0.19 \pm 1.25$	$3.04 \pm 0.13 \pm 0.72$	$2.47 \pm 0.11 \pm 0.50$	$1.61 \pm 0.09 \pm 0.35$	$1.37 \pm 0.14 \pm 0.46$
8 - 9	$2.65 \pm 0.16 \pm 0.82$	$2.36 \pm 0.11 \pm 0.54$	$1.72 \pm 0.09 \pm 0.35$	$1.13 \pm 0.08 \pm 0.25$	$0.80 \pm 0.10 \pm 0.26$
9 - 10	$2.23 \pm 0.14 \pm 0.65$	$1.78 \pm 0.09 \pm 0.40$	$1.19 \pm 0.07 \pm 0.24$	$0.84 \pm 0.07 \pm 0.19$	$0.49 \pm 0.08 \pm 0.31$
10 - 11	$1.41 \pm 0.11 \pm 0.40$	$1.14 \pm 0.07 \pm 0.25$	$0.92 \pm 0.06 \pm 0.18$	$0.53 \pm 0.05 \pm 0.12$	$0.39 \pm 0.07 \pm 0.26$
11 – 12	$1.31 \pm 0.10 \pm 0.36$	$0.76 \pm 0.06 \pm 0.16$	$0.58 \pm 0.05 \pm 0.12$	$0.32 \pm 0.04 \pm 0.10$	$0.30 \pm 0.07 \pm 0.21$
12 – 13	$0.77 \pm 0.08 \pm 0.21$	$0.59 \pm 0.05 \pm 0.13$	$0.45 \pm 0.04 \pm 0.09$	$0.37 \pm 0.04 \pm 0.12$	$0.24 \pm 0.06 \pm 0.17$
13 – 14	$0.51 \pm 0.06 \pm 0.14$	$0.51 \pm 0.05 \pm 0.11$	$0.36 \pm 0.04 \pm 0.07$	$0.18 \pm 0.03 \pm 0.05$	$0.05 \pm 0.02 \pm 0.03$
14 – 15	$0.47 \pm 0.06 \pm 0.13$	$0.32 \pm 0.04 \pm 0.07$	$0.24 \pm 0.03 \pm 0.05$	$0.13 \pm 0.03 \pm 0.04$	$0.08 \pm 0.03 \pm 0.07$

Y(1S) EFFICIENCY

obtained from fully simulated events

 ψ (2S) RESULT

 $\psi(2S) \rightarrow \mu\mu$

$p_{\rm T}~({\rm GeV}/c)$	$2.0 < y \le 2.5$	$2.5 < y \le 3.0$	$3.0 < y \le 3.5$
0-1	$138.71 \pm 18.24 \pm 18.62^{+25.41}_{-49.75}$	$95.82 \pm 6.28 \pm 15.44^{+19.16}_{-38.58}$	$98.76 \pm 5.29 \pm 13.19^{+17.92}_{-35.54}$
1-2	$285.28 \pm 22.93 \pm 38.08^{+53.86}_{-105.83}$	$243.34 \pm 10.04 \pm 38.86^{+45.71}_{-90.20}$	$202.73 \pm 7.28 \pm 28.43^{+33.34}_{-66.74}$
2-3	$205.32 \pm 15.48 \pm 33.58^{+41.46}_{-82.82}$	$181.06 \pm 8.03 \pm 26.76^{+31.88}_{-64.02}$	$179.58 \pm 6.48 \pm 23.87^{+25.07}_{-49.33}$
3-4	$153.72 \pm 10.34 \pm 25.50^{+31.64}_{-63.04}$	$146.32 \pm 5.25 \pm 19.96^{+23.12}_{-45.92}$	$118.84 \pm 4.20 \pm 17.18^{+13.19}_{-25.79}$
4-5	$96.89 \pm 5.03 \pm 12.96^{+19.69}_{-39.07}$	$93.71 \pm 3.17 \pm 12.92^{+13.88}_{-27.54}$	$79.14 \pm 2.58 \pm 11.32^{+8.18}_{-16.17}$
5-6	$60.34 \pm 3.11 \pm 8.05^{+11.92}_{-24.13}$	$55.21 \pm 1.85 \pm 7.81^{+7.94}_{-15.66}$	$44.44 \pm 1.55 \pm 6.16^{+4.43}_{-9.16}$
6-7	$37.70 \pm 1.84 \pm 5.07^{+7.25}_{-14.28}$	$31.97 \pm 1.14 \pm 4.30^{+4.45}_{-8.66}$	$24.30 \pm 0.94 \pm 3.24^{+2.51}_{-5.19}$
7-8	$19.05 \pm 1.14 \pm 2.57^{+3.50}_{-6.95}$	$19.04 \pm 0.78 \pm 2.55^{+2.39}_{-4.87}$	$14.42 \pm 0.67 \pm 1.93^{+1.54}_{-3.10}$
8-9	$13.02 \pm 0.82 \pm 1.76^{+2.24}_{-4.61}$	$10.38 \pm 0.54 \pm 1.44^{+1.21}_{-2.39}$	$8.81 \pm 0.49 \pm 1.18^{+0.91}_{-1.85}$
9-10	$7.67 \pm 0.60 \pm 1.04^{+1.19}_{-2.49}$	$6.85 \pm 0.42 \pm 0.93^{+0.77}_{-1.60}$	$5.06 \pm 0.36 \pm 0.68^{+0.46}_{-0.99}$
10-11	$5.44 \pm 0.44 \pm 0.76^{+0.77}_{-1.58}$	$4.10 \pm 0.32 \pm 0.55^{+0.47}_{-0.87}$	$2.81 \pm 0.27 \pm 0.38^{+0.27}_{-0.54}$
11-12	$4.23 \pm 0.39 \pm 0.61^{+0.74}_{-1.59}$	$2.84 \pm 0.26 \pm 0.39^{+0.29}_{-0.63}$	$2.05 \pm 0.22 \pm 0.28^{+0.22}_{-0.38}$

 ψ (2S) RESULT

$\psi(2S) \rightarrow \mu\mu$

$p_{\rm T}~({\rm GeV}/c)$	$3.5 < y \le 4.0$	$4.0 < y \le 4.5$
0-1	$73.30 \pm 3.82 \pm 11.59^{+12.35}_{-25.24}$	$62.84 \pm 3.28 \pm 19.57^{+11.45}_{-22.59}$
1-2	$175.70 \pm 6.11 \pm 32.66^{+27.84}_{-55.87}$	$121.42 \pm 5.15 \pm 42.43^{+19.82}_{-39.31}$
2-3	$147.19 \pm 5.45 \pm 25.91^{+19.94}_{-40.96}$	$104.53 \pm 4.86 \pm 30.55^{+16.19}_{-32.40}$
3-4	$100.86 \pm 3.80 \pm 19.03^{+10.84}_{-21.81}$	$63.77 \pm 3.27 \pm 17.70^{+8.41}_{-16.31}$
4-5	$60.38 \pm 2.19 \pm 9.45^{+5.80}_{-11.87}$	$41.31 \pm 2.42 \pm 10.24^{+4.30}_{-8.80}$
5-6	$33.98 \pm 1.30 \pm 5.41^{+3.12}_{-6.17}$	$21.94 \pm 1.43 \pm 5.72^{+2.19}_{-4.57}$
6-7	$19.11 \pm 0.85 \pm 2.71^{+1.81}_{-3.69}$	$11.00 \pm 0.88 \pm 2.08^{+0.84}_{-1.78}$
7-8	$10.48 \pm 0.58 \pm 1.40^{+1.01}_{-2.07}$	$4.60 \pm 0.53 \pm 0.83^{+0.36}_{-0.74}$
8-9	$5.61 \pm 0.38 \pm 0.75^{+0.52}_{-1.05}$	$2.93 \pm 0.46 \pm 0.55^{+0.22}_{-0.41}$
9-10	$3.60 \pm 0.33 \pm 0.49^{+0.31}_{-0.64}$	$1.40 \pm 0.25 \pm 0.31^{+0.10}_{-0.24}$
10-11	$1.74 \pm 0.20 \pm 0.24^{+0.15}_{-0.33}$	$1.06 \pm 0.19 \pm 0.24^{+0.08}_{-0.13}$
11-12	$0.99 \pm 0.17 \pm 0.18^{+0.09}_{-0.19}$	$0.71 \pm 0.19 \pm 0.19^{+0.03}_{-0.08}$

ψ (2S) RESULT

$\psi(2S) \rightarrow J/\psi \pi^+\pi^-$

$p_{\rm T} ({\rm GeV}/c)$	$d\sigma/dp_{\rm T}$ (nb/GeV/c)
3-4	$241.2 \pm 21.0 \pm 46.3 \substack{+29.0 \\ -57.1}$
4-5	$156.0 \pm 7.7 \pm 30.1 {}^{+17.8}_{-35.2}$
5-6	$90.5 \pm 3.5 \pm 17.4 {}^{+10.3}_{-20.6}$
6-7	$55.4 \pm 1.9 \pm 10.6 ^{+6.3}_{-12.6}$
7-8	$31.5 \pm 1.1 \pm 6.0 {}^{+3.6}_{-7.1}$
8-9	$18.1 \pm 0.7 \pm 3.5 \substack{+2.0 \\ -3.9}$
9-10	$10.8 \pm 0.5 \pm 2.1 \stackrel{+1.1}{_{-2.3}}$
10-11	$6.7 \pm 0.4 \pm 1.3 \substack{+0.7 \\ -1.3}$
11-12	$4.4 \pm 0.3 \pm 0.9 {}^{+0.5}_{-1.0}$
12-13	$3.3 \pm 0.2 \pm 0.6 \substack{+0.4 \\ -0.7}$
13-14	$2.3 \pm 0.2 \pm 0.5 \substack{+0.3 \\ -0.5}$
14-15	$1.5 \pm 0.1 \pm 0.3 \substack{+0.2 \\ -0.3}$
15-16	$1.1 \pm 0.1 \pm 0.2 \stackrel{+0.1}{_{-0.2}}$

$\psi(2S)$ EFFICIENCIES

top: $\psi(2S) \rightarrow \mu^+\mu^-$, bottom: $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$

$\psi(2S)$ SELECTION

$\psi(2S) \rightarrow \mu^+ \mu^-$

 μ : $p_T > 1.2 \ \overline{\text{GeV}/c}$

 μ : track χ^2 /ndof < 4

 μ : DLL_{$\mu\pi$} > -1

 $\psi(2S)$: vertex $P(\chi^2) > 0.5\%$

 $\psi(2S)$: $\cos(\theta_{\mu_1^{\pm},\mu_2^{\pm}}) > 0.9999$ (clones removal)

$\psi(2S) \rightarrow J/\psi \, \pi^+ \pi^-$

μ : Long track with muon detector hits	$\pi: p_{\rm T}(\pi^+) + p_{\rm T}(\pi^-) > 800 \text{ MeV}/c$
$\mu: DLL_{\mu\pi} > -1$	π : DLL K- $\pi > 5$
$\mu: p_{\rm T} > 700 {\rm MeV}/c$	$\pi: p_{\rm T} > 300 {\rm MeV}/c$
μ : p > 8 GeV/c and < 500 GeV/c	$\pi: p < 500 \text{ GeV}/c$
μ : track χ^2 /ndof < 4	π : track χ^2 /ndof < 4
J/ψ : vertex χ^2 /ndof < 20	$\psi(2S)$: vertex $\chi^2/\text{ndof} < 4$
J/ψ : Mass > 3040 and < 3140 MeV/ c^2	$\psi(2S)$: Mass > 3600 and < 3800 MeV/ c^2
J/ψ : $p_{\rm T} > 2 ~{\rm GeV}/c$	$\psi(2S): p_{\rm T} > 2 {\rm ~GeV}/c$
$Q = M(J/\psi \pi \pi) - M(\pi \pi) - l$	$M(\mu\mu) \ge 0 \text{ and } \le 200 \text{ MeV}/c^2$

- MUON DETECTOR AND CALORIMETER
- Muon detector comprises of 5 dedicated sub-detectors
 - Alignment in 2010: close to expectation (12 $MeV/c^2)$

from 18 MeV/c²

to 13 MeV/
$$c^2$$

Electro-magnetic calorimeter
σ_E/E = 10%/√E ⊕ 1%
Able to clearly resolve e.g. π⁰→γγ

DstD0BG for background

XCRELATIVE CROSS SECTION

• Fit model

in bins of $p_t(J/\psi)$ in the range: $2 < p_t(J/\psi) < 15~GeV/c$

- Simultaneous fit to extract χ_{c0} , χ_{c1} , χ_{c2} yield + BG
 - Mass difference fixed to PDG for $\Delta m(\chi_{c0} \chi_{c1})$ and $\Delta m(\chi_{c2} \chi_{c1})$
 - Ratio of Gaussian resolution $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ fixed to fit on full sample
 - Gaussian resolution $\sigma(\chi_{c1})$ fixed to fit on full sample
 - Ratio of Gaussian resolution $\sigma(\chi_{c0})/\sigma(\chi_{c1})$ taken from simulation
 - Assume unpolarised states and investigate effect of polarisation

LHCb-CONF-2011-020

Pol.

 $^{+0.061}_{-0.046}$

+0.056

-0.046

+0.088

-0.089

+0.16

-0.17

+0.22

-0.22

 $^{+0.25}_{-0.25}$

 $^{+0.22}_{-0.21}$

+0.20

-0.19

+0.25

-0.25

+0.24

-0.24

+0.19

-0.18

+0.18

-0.18

X c RESULTS

- Cross-section ratio in bins of $p_t(J/\psi)$, stat. + syst. + BR(χ_c) errors
 - Black band corresponds to effect of χ_c polarisation
- Blue: Prediction from ChiGen event simulation
- Red : NLO NRQCD calculation

X c SYSTEMATICS

- Systematic uncertainties are from the following categories
 - Fit modelling
 - Background model sensitive to region just below χ_{c1}
 - Background model parameters correlated to signal parameters
 - Modelling of χ_{c0} component
 - Finite statistics of simulated events
 - Affects extraction of efficiencies
 - Branching ratio of $\chi_c \rightarrow J/\psi\gamma$
 - Affects obtaining ratio of branching fractions $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ from ratio of yields
 - $\sigma(\chi_{c1}) \rightarrow J/\psi\gamma: 36\%$, $\sigma(\chi_{c2}) \rightarrow J/\psi\gamma: 20\%$

X c: SYSTEMATICS

• Systematic uncertainties due to χ_c branching ratios

$p_{ m T}^{J/\psi}({ m GeV}/c)$	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8
Branching ratios	$^{+0.087}_{-0.079}$	$^{+0.086}_{-0.072}$	$^{+0.062}_{-0.059}$	$^{+0.066}_{-0.064}$	$^{+0.066}_{-0.064}$	$^{+0.067}_{-0.062}$
Monte Carlo statistics	$^{+0.010}_{-0.010}$	$+0.010 \\ -0.008$	$^{+0.009}_{-0.007}$	$^{+0.011}_{-0.010}$	$+0.015 \\ -0.013$	$^{+0.020}_{-0.017}$
Systematics from fit	$^{+0.040}_{-0.051}$	$+0.045 \\ -0.040$	$^{+0.026}_{-0.034}$	$^{+0.026}_{-0.031}$	$^{+0.029}_{-0.037}$	$^{+0.051}_{-0.040}$
$p_{ m T}^{J/\psi}({ m GeV}/c)$	8 - 9	9 - 10	10 - 11	11 - 12	12 - 13	13 - 15
Branching ratios	$^{+0.053}_{-0.049}$	$^{+0.047}_{-0.042}$	$^{+0.057}_{-0.052}$	$^{+0.064}_{-0.062}$	$^{+0.041}_{-0.041}$	$^{+0.042}_{-0.036}$
Monte Carlo statistics	$^{+0.021}_{-0.019}$	$+0.024 \\ -0.023$	$^{+0.040}_{-0.037}$	$^{+0.060}_{-0.055}$	$^{+0.051}_{-0.046}$	$^{+0.049}_{-0.045}$
Systematics from fit	$+0.034 \\ -0.040$	$+0.034 \\ -0.031$	$^{+0.034}_{-0.026}$	$+0.020 \\ -0.133$	$+0.023 \\ -0.018$	$^{+0.075}_{-0.031}$

CENTRAL EXCLUSIVE PRODUCTION

	J/ψ	$\psi(2S)$	χ_{c0}	χ_{c1}	χ_{c2}	diphoton
	/ /					-
ϵ_{track}	0.97 ± 0.04	0.97 ± 0.04	0.97 ± 0.04	0.97 ± 0.04	0.97 ± 0.04	0.96 ± 0.04
$\epsilon_{\mu i d}$	0.89 ± 0.03	0.89 ± 0.03	0.89 ± 0.03	0.89 ± 0.03	0.89 ± 0.03	0.89 ± 0.03
ϵ_{γ}			0.61 ± 0.08	0.75 ± 0.05	0.78 ± 0.04	
ϵ_{sel}	0.95	0.95	0.76	0.76	0.76	0.35
Efficiency	0.71 ± 0.07	0.71 ± 0.07	0.34 ± 0.06	0.43 ± 0.05	0.44 ± 0.04	0.25 ± 0.03
# Events	1468 ± 38	40 ± 6	25 ± 6	56 ± 18	99 ± 29	40 ± 6
Purity	0.71 ± 0.03	0.67 ± 0.03	0.39 ± 0.13	0.39 ± 0.13	0.39 ± 0.13	0.97 ± 0.01
$L_{eff} (\mathrm{pb}^{-1})$	3.1 ± 0.6	3.1 ± 0.6	3.1 ± 0.6	3.1 ± 0.6	3.1 ± 0.6	2.3 ± 0.5
Cross-section	474 ± 12	12.2 ± 1.8	9.3 ± 2.2	16.4 ± 5.3	28.0 ± 5.4	67 ± 10
$\times BR \text{ (pb)}$	$\pm 51 \pm 92$	$\pm 1.3 \pm 2.4$	$\pm 3.5 \pm 1.8$	$\pm 5.8 \pm 3.2$	$\pm 9.7 \pm 5.4$	$\pm 7 \pm 15$

- Events with no backward tracks, 2 forward tracks
 - $\mu^+\mu^-$ mass consistent with J/ ψ or $\psi(2S)$
 - #photons for J/ ψ cand. (left) or ψ (2S) cand. (right)

• $J/\psi \rightarrow \mu^+\mu^-$ (2 < η < 4.5): $\underline{\sigma} = 474 \pm 12 \pm 51 \pm 92 \text{ pb}$

- StarLight : 292 pb
- SuperChiC: 330 pb
- Motyka, Watt (PRD 014023 (2008)): 960 pb
 - Taking muon acceptance into account (Pythia) : 410 pb
 - Rescattering correction : 330 pb (± 10-15%)
 - Uncertainty from Hera → LHC extrapolation ~10%
- Schäfer, Szczurek (Diff2010, Heidelberg): 1670 pb
 - Taking muon acceptance into account (Pythia) : 710 pb
- Bzdak (PRD 75 094023 (2007)): 70 800 pb

- $\psi(2S) \rightarrow \mu^+\mu^-$ (2 < η < 4.5): $\sigma = 12.2 \pm 1.8 \pm 1.3 \pm 2.4 \text{ pb}$
 - StarLight : 6.1 pb
 - Schäfer, Szczurek : 17 pb