## HEAVY QUARKONIA PRODUCTION AT LHCB

International Workshop on Heavy Quarkonium 2011
Darmstadt, Germany


Ulrich Kerzel for the LHCb Collaboration

INTRODUCTION

- Quarkonia production mechanism challenging for theory
- Several theoretical models
- Colour Singlet (CS)
- Colour Octet (CO)
- Colour Evaporation (CE)
- Inclusion of higher order terms (NRQCD)

- NRQCD prediction at LO in as:
- CS scales as $1 / p_{t}^{6}$
- CO scales as $1 / p_{t}^{4}$
(e.g. fair agreement with


CDF RunI data for leading order colour singlet)

- However:
- LO CS does not describe J/ $\psi$ production
- Undershoots measured cross-section
- LO can be fitted to data, but does not provide scale
- Also predicts wrong polarisation
- NRQCD factorisation valid at very low values of $\mathrm{p}_{\mathrm{t}}$ ?
- $\chi_{c}$ feed-down predictions compatible both with low energy (e.g. PHENIX) and high energy (Tevatron, LHC)?
- Recent NLO corrections at high $p_{t}$ for $\chi_{\mathrm{c}}$ :
- NLO corrections become large
- Make CS contribution negative and comparable to CO
- NLO scale as $1 / p_{t}^{4} \rightarrow$ NNLO probably small
- $\rightarrow$ Further charmonium studies needed

OUTLINE

- LHCb:
- forward arm spectrometer: unique rapidity range $\Leftrightarrow$ complementary to ATLAS / CMS / ALICE
- In this talk:
- $\psi(2 \mathrm{~S})$ cross-section
- $\Upsilon(1 S)$ cross-section
- Ratio of $\sigma\left(\chi_{c 2}\right) / \sigma\left(\chi_{c 1}\right)$
- Exclusive $\chi_{c}$ Production
- $\chi_{b}$



## Heb $\chi \subset$ RELATIVE CROSS SECTION

- Measure production cross section:

$$
\frac{\sigma\left(\chi_{c 2}\right)}{\sigma\left(\chi_{c 1}\right)}=\frac{N_{\chi_{c 2}}}{N_{\chi_{c 1}}} \cdot \frac{\epsilon_{J / \psi}^{\chi_{c 1}} \epsilon_{\gamma}^{\chi_{c 1}} \epsilon_{s e l}^{\chi_{c 1}}}{\epsilon_{J / \psi}^{\chi_{c 2}} \epsilon_{\gamma}^{\chi_{c 2}} \epsilon_{s e l}^{\chi_{c 2}}} \cdot \frac{B\left(\chi_{c 1} \rightarrow J / \psi \gamma\right)}{B\left(\chi_{c 2} \rightarrow J / \psi \gamma\right)}
$$

in bins of $\mathrm{p}_{\mathrm{t}}(\mathrm{J} / \psi)$ in the range: $2<\mathrm{p}_{\mathrm{t}}(\mathrm{J} / \psi)<15 \mathrm{GeV} / \mathrm{c}$

- Simultaneous fit to extract $\chi_{\mathrm{c} 0}, \chi_{\mathrm{c} 1}, \chi_{\mathrm{c} 2}$ yield +BG
- Fit to mass difference $\Delta m=m\left(\chi_{c}\right)-m(J / \psi)$
$\Leftrightarrow$ limit effect of detector resolution, absolute mass scale
- Assume unpolarised states and investigate effect of polarisation
- Key ingredient: Determination of the various efficiencies
- Photons are reconstructed using the Calorimeter
- Unconverted photons
- Converted photons ( $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$) after the magnet
- The converted photons are identified by requiring a signal in the Scintillating Pad
 Detector (SPD)
- Photons from $\chi_{\mathrm{c}}$ are identified using a Confidence Likelihood (CL):
- Calorimeter information
- Tracking information
- Ratio of track seed energy to ECAL cluster energy
- Additional $\mathrm{e}^{ \pm}$rejection: no match between any track and ECAL cluster
- J/ $\psi$
$\Rightarrow$ same selection as in J/ $\psi$ analysis
- Photon Selection:
- $\gamma C L>0.5$ (from Calorimeter)
- $\mathrm{p}(\gamma)>5 \mathrm{GeV} / \mathrm{c}, \mathrm{p}_{\mathrm{t}}(\gamma)>0.65 \mathrm{GeV} / \mathrm{c}$
- Fit model
- Gaussian for $\chi_{\mathrm{c} 1}$ and $\chi_{\mathrm{c} 2}$ ( $\chi_{c 0}$ as well but hardly visible)
- Mass-difference function for BG (RooDstD0BG)
- N.B. Calorimeter resolution too coarse to resolve $\chi_{c}$ states


- The following efficiencies enter the ratio of production cross-sections

$$
\frac{\epsilon_{J / \psi}^{\chi_{c 1}}}{\frac{\epsilon_{\gamma}^{\chi_{c 1}} \epsilon_{s e l}^{\chi_{c 1}}}{\epsilon_{J / \psi}^{\chi_{c 2}}}{ }_{\gamma}^{\chi_{\gamma}^{\chi 2}} \epsilon_{s e l}^{\chi_{c 2}}}
$$

- Efficiencies are determined using fully simulated events
- Two components:
- I/ $\psi$ reconstruction:

- $\chi_{c}$ reconstruction:
- $\mathrm{N}\left(\chi_{c}\right)$ : generated $\chi_{c}$
$\rightarrow$ reconstructed and selected
- $\mathrm{N}(\mathrm{J} / \psi)$ : \#J / $\psi$ from a $\chi_{\mathrm{cJ}}$ state
- Very similar (but not identical)
- Cut pt $(\gamma)$ introduces edge at low $p_{t}(J / \psi)$

- Both the polarisation of $\mathrm{J} / \psi$ and $\chi_{c}$ states are unknown
- Events are simulated assuming no polarisation
- Effect of polarisation:
$\Rightarrow$ Change in efficiencies obtained from sim. events.
- Evaluate by re-weighting simulated events:
- Fully longitudinal / transverse polarisation of $\mathrm{J} / \psi$
- According to z component of $\chi_{\text {cJ }}$ states: $\mathrm{M}=0 \ldots$ J



## LHCb <br> $\chi$ c RESULTS

- LHCb:

- Error bars: stat. and syst. uncertainties
- Shaded area:

Polarisation

- CDF:

PRL 98:232001 (2007)

- Blue: Prediction from ChiGen event simulation
- Red : NLO NRQCD PRD 83111503 (2011) $\chi_{B}$ $\rightarrow \Upsilon(15)$
- Analysis in progress: challenging hadronic environment
- Data between April - September 2010: ~ $37 \mathrm{pb}^{-1}$
- $\Upsilon(1 \mathrm{~S}) \rightarrow \mu^{+} \mu^{\text {-, }}$ photon from calorimeter system
- Present statistics does not allow to distinguish between $\chi_{b 0}, \chi_{b 1}, \chi_{b 2}$
- However, no $\chi_{b}(2 P)$ state as hinted in CDF RunI measurement, though $\sim 30$ times $\Upsilon(1 S)$ yield in LHCb 2010 data.


CDF RunI Phys.Rev.Lett. 84 (2000)


## LHCb CENTRAL EXCLUSIVE PRODUCTION

- Elastic process in which protons remain intact

- Analysis performed on 2010 dataset: $\sim 37 \mathrm{pb}^{-1}$
- Veto multiple interactions: effectively $\sim 3 \mathrm{pb}^{-1}$
- Trigger: require single muon, very low overall multiplicity


## CENTRAL multiplicity <br> - Track multiplicity

(triggered events)


- Invariant mass spectrum (triggered events)


black: all
red: no backward tracks, 2 forward tracks 13


## CENTRAL clean signals <br> - Very clean signals

- Measured cross-sections:

$$
\begin{gathered}
\sigma_{J / \psi \rightarrow \mu^{+} \mu^{-}}\left(2<\eta_{\mu+}, \eta_{\mu-}<4.5\right)=474 \pm 12 \pm 51 \pm 92 \mathrm{pb} \\
\sigma_{\psi(2 S) \rightarrow \mu^{+} \mu^{-}}\left(2<\eta_{\mu+}, \eta_{\mu-}<4.5\right)=12.2 \pm 1.8 \pm 1.3 \pm 2.4 \mathrm{pb} \\
\sigma_{\chi c 0 \rightarrow J / \psi \gamma \rightarrow \mu^{+} \mu^{-} \gamma}\left(2<\eta_{\mu+}, \eta_{\mu-}, \eta_{\gamma}<4.5\right)=9.3 \pm 2.2 \pm 3.5 \pm 1.8 \mathrm{pb} \\
\sigma_{\chi_{c 1} \rightarrow J / \psi \gamma \rightarrow \mu^{+} \mu^{-} \gamma}\left(2<\eta_{\mu+}, \eta_{\mu-}, \eta_{\gamma}<4.5\right)=16.4 \pm 5.3 \pm 5.8 \pm 3.2 \mathrm{pb} \\
\sigma_{\chi_{c 2} \rightarrow J / \psi \gamma \rightarrow \mu^{+} \mu^{-} \gamma}\left(2<\eta_{\mu+}, \eta_{\mu-}, \eta_{\gamma}<4.5\right)=28.0 \pm 5.4 \pm 9.7 \pm 5.4 \mathrm{pb} \\
\sigma_{p p \rightarrow p \mu^{+} \mu^{-} p}\left(2<\eta_{\mu+}, \eta_{\mu-}<4.5 ; m_{\mu+\mu-}>2.5 \mathrm{GeV} / \mathrm{c}^{2}\right)=67 \pm 10 \pm 7 \pm 15 \mathrm{pb}
\end{gathered}
$$

- $\sigma \pm($ stat. $) \pm($ syst. $) \pm$ (luminosity)
- Results agree with theoretical expectations
- However, further theoretical work welcome

$\psi(25)$ CROSS SECTION
- Analyse two decay modes
- $2<y<4.5$
- $\psi(2 S) \rightarrow \mu^{+} \mu^{-} \quad\left(0<p_{t}<12 \mathrm{GeV} / \mathrm{c}\right)$
- $\psi(2 S) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}\left(3<\mathrm{p}_{\mathrm{t}}<16 \mathrm{GeV} / \mathrm{c}\right)$
- Double ( $\mu^{+} \mu^{-}$mode) or single (hadronic mode) differential cross section

$$
\begin{gathered}
\frac{d^{2} \sigma}{d p_{T} d y}\left(p_{T}, y\right)=\frac{N_{\psi(2 S)}\left(p_{\mathrm{T}}, y\right)}{\mathcal{L}_{i n t} \epsilon\left(p_{\mathrm{T}}, y\right) \mathcal{B}\left(\psi(2 S) \rightarrow e^{+} e^{-}\right) \Delta p_{\mathrm{T}} \Delta y} \\
\frac{d \sigma}{d p_{T}}\left(p_{T}\right)=\frac{N_{\psi(2 S)}\left(p_{\mathrm{T}}\right)}{\mathcal{L}_{i n t} \epsilon\left(p_{\mathrm{T}}\right) \mathcal{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right) \mathcal{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right) \Delta p_{\mathrm{T}}}
\end{gathered}
$$

- Assume unpolarised $\psi(2 S)$ state
- Estimate efficiency due to acceptance, reconstruction, trigger from simulated events
- In progress: separate prompt and $\psi$ from B decay


## $\psi(2 S)$ POLARISATION

Effect of $\psi(2 S)$ polarisation on cross-section measurement





- Cross section measured as:

$$
\begin{gathered}
\text { - } \psi(2) \rightarrow \mu^{+} \mu^{-} \quad\left(0<p_{t}<12 \mathrm{GeV} / \mathrm{c}\right) \\
\sigma=1.88 \pm 0.02 \pm 0.31_{-0.48}^{+0.25} \mu \mathrm{~b} \\
\text { - } \psi(2) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-} \quad\left(3<\mathrm{p}_{\mathrm{t}}<16 \mathrm{GeV} / \mathrm{c}\right) \\
\sigma=0.62 \pm 0.04 \pm 0.12_{-0.14}^{+0.07} \mu \mathrm{~b}
\end{gathered}
$$

- Good agreement with recent NLO predictions
- Need colour - octet contribution (see next slide)
- Predictions for low $\mathrm{p}_{\mathrm{t}}$

$$
\left(0<\mathrm{p}_{\mathrm{t}}<4 \mathrm{GeV}\right) ?
$$




## LHCh

## $\psi(2 S)$ RESULT

## $\psi(2 \mathrm{~S}) \rightarrow \mu^{+} \mu^{-}$ Yellow: NLO CSM+COM, Blue: NLO CSM





## Two sources of $\Upsilon(1 S)$

- Direct production:

$$
\begin{aligned}
p p \rightarrow & b \bar{b}+X \\
& \rightarrow \Upsilon(1 S)+X
\end{aligned}
$$

- Feed-down from higher states

$$
\left.\begin{array}{rl}
p p \rightarrow & b \bar{b}
\end{array}\right) X
$$

- Analysis strategy:
- Measure double differential cross section in rapidity and $\mathrm{p}_{\mathrm{t}}$

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} y}=\frac{N\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}\right)}{\mathcal{L} \times \varepsilon \times \mathcal{B}\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}\right) \times \Delta y \times \Delta p_{\mathrm{T}}}
$$

- $\mu \mu$ final state
- $0<\mathrm{p}_{\mathrm{t}}<15 \mathrm{GeV}, 2<\mathrm{y}<4.5$
- Data from April - Nov. 2010, integrated luminosity: $32.4 \mathrm{pb}^{-1}$
- Acceptance and reconstruction efficiencies estimated from simulation, trigger eff. from data



## Y(1S) EFFICIENCIES


geom. acceptance


reconstruction eff.


Effect of polarisation

$$
\sigma\left(\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}\right)=108.3 \pm 0.7_{-25.8}^{+30.9} \mathrm{nb}
$$

- Sizeable contribution to uncertainties due to unknown $\Upsilon$ polarisation - (+18.8 nb, - 7.9 nb ) contributes to syst. uncertainty


| Source | Method | Value |
| :--- | :--- | :---: |
| Luminosity | Precision on beam current | $10 \%$ |
| Trigger | Difference between $J / \psi$ and $\Upsilon(\mathrm{nS})$ (simulation) | $0-67 \%$ |
| Polarisation on <br> acceptance | Extreme polarisation scenarios | $0-33 \%$ |
| Polarisation on <br> reconstruction | Extreme polarisation scenarios | $0-21 \%$ |
| Choice of fit function | Test different functions | $1 \%$ |
| Unknown pt <br> spectrum | Estimate effect of $0.5 \% p_{\text {T }}$ resolution | $1 \%$ |
| Global event cut <br> (trigger) | Statistical uncertainty on data | $2 \%$ |
| Track quality cut | Difference between data and simulation | $0.5 \% /$ track |
| Track finding <br> algorithm | Difference between data and simulation | $4 \% /$ track |
| Vertexing | Difference between data and simulation | $1 \%$ |
| Muon ID | Difference between data and simulation | $1.1 \%$ |

Effect from Luminosity will decrease
$\Leftrightarrow$ more precise beam current measurement





SUMMARY

- Many measurements related to spectroscopy pursued in LHCb
- First measurement of the relative $\chi_{c}$ cross - section using data recorded in $2010\left(\sigma\left(\chi_{\mathrm{c}_{2}}\right) / \sigma\left(\chi_{\mathrm{c} 1}\right)\right)$.
- Comparison with dedicated event generator and NLO calculation show discrepancy esp. at low $\mathrm{p}_{\mathrm{t}}(\mathrm{J} / \psi)$
- Measurement of $\sigma\left(\chi_{c}\right) / \sigma(J / \psi)$ almost ready
- Branching fraction of (cc) mesons in exclusive production
- $\psi(2 S)$ cross-section measurement in good agreement with NLO CSM +COM calculations
- Theoretical predictions to low pt?
- $\Upsilon(1 S)$ cross-section measurement in good agreement with NLO
- Theoretical predictions to low pt?
- Good agreement with measurement from CMS
- First analysis of $\chi_{\mathrm{b}}$ state in LHCb in progress
- Limited range of predictions available


## INTRODUCTION

- Heavy Quarkonium production remains challenging problem for understanding QCD
- At LHC:
- $c \bar{c}$ mainly produced via Leading-Order (LO)
gluon-gluon interaction
$\Rightarrow$ computed via perturbative QCD
- Formation of bound charmonium states described by nonperturbative models
- Both colour singlet (CS) and colour octet (CO)
- Key ingredients to understand production mechanism
- J/ $\psi$ and $\psi(2 S)$ production cross-section and polarisation at large transverse momenta $\left(p_{t}\right)$
- Ratio of production rates of $\chi_{\mathrm{c} 2}$ vs $\chi_{\mathrm{c} 1}$



## KCh Y(1S) CROSS-SECTION

Table 3: $\Upsilon(1 S)$ production cross-section results as a function of $y$ and $p_{\mathrm{T}}$, in nb . The first uncertainty is statistical, the second systematic.

| $p_{\mathrm{T}}$ <br> $(\mathrm{GeV} / \mathrm{c})$ | $\sigma(2.0<y<2.5)$ <br> $(\mathrm{nb})$ | $\sigma(2.5<y<3.0)$ <br> $(\mathrm{nb})$ | $\sigma(3.0<y<3.5)$ <br> $(\mathrm{nb})$ | $\sigma(3.5<y<4.0)$ <br> $(\mathrm{nb})$ | $\sigma(4.0<y<4.5)$ <br> $(\mathrm{nb})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0-1$ | $2.59 \pm 0.18 \pm 1.00$ | $2.78 \pm 0.12 \pm 0.77$ | $2.05 \pm 0.10 \pm 0.48$ | $1.98 \pm 0.11 \pm 0.55$ | $2.47 \pm 0.25 \pm 1.04$ |
| $1-2$ | $6.89 \pm 0.29 \pm 2.69$ | $6.70 \pm 0.19 \pm 1.82$ | $5.40 \pm 0.16 \pm 1.24$ | $4.90 \pm 0.17 \pm 1.30$ | $5.96 \pm 0.38 \pm 2.40$ |
| $2-3$ | $9.54 \pm 0.33 \pm 3.61$ | $8.48 \pm 0.22 \pm 2.32$ | $6.55 \pm 0.18 \pm 1.51$ | $5.45 \pm 0.18 \pm 1.37$ | $6.69 \pm 0.40 \pm 2.59$ |
| $3-4$ | $8.26 \pm 0.30 \pm 3.03$ | $7.74 \pm 0.21 \pm 2.03$ | $6.16 \pm 0.17 \pm 1.40$ | $5.20 \pm 0.18 \pm 1.23$ | $5.86 \pm 0.36 \pm 2.31$ |
| $4-5$ | $8.67 \pm 0.30 \pm 3.08$ | $6.72 \pm 0.19 \pm 1.73$ | $5.16 \pm 0.16 \pm 1.13$ | $3.92 \pm 0.15 \pm 0.92$ | $3.07 \pm 0.23 \pm 1.40$ |
| $5-6$ | $6.51 \pm 0.26 \pm 2.24$ | $5.59 \pm 0.17 \pm 1.40$ | $3.89 \pm 0.14 \pm 0.84$ | $2.85 \pm 0.13 \pm 0.66$ | $2.41 \pm 0.19 \pm 1.08$ |
| $6-7$ | $4.59 \pm 0.21 \pm 1.52$ | $4.01 \pm 0.15 \pm 0.98$ | $2.99 \pm 0.12 \pm 0.62$ | $2.50 \pm 0.12 \pm 0.54$ | $1.64 \pm 0.15 \pm 0.57$ |
| $7-8$ | $3.89 \pm 0.19 \pm 1.25$ | $3.04 \pm 0.13 \pm 0.72$ | $2.47 \pm 0.11 \pm 0.50$ | $1.61 \pm 0.09 \pm 0.35$ | $1.37 \pm 0.14 \pm 0.46$ |
| $8-9$ | $2.65 \pm 0.16 \pm 0.82$ | $2.36 \pm 0.11 \pm 0.54$ | $1.72 \pm 0.09 \pm 0.35$ | $1.13 \pm 0.08 \pm 0.25$ | $0.80 \pm 0.10 \pm 0.26$ |
| $9-10$ | $2.23 \pm 0.14 \pm 0.65$ | $1.78 \pm 0.09 \pm 0.40$ | $1.19 \pm 0.07 \pm 0.24$ | $0.84 \pm 0.07 \pm 0.19$ | $0.49 \pm 0.08 \pm 0.31$ |
| $10-11$ | $1.41 \pm 0.11 \pm 0.40$ | $1.14 \pm 0.07 \pm 0.25$ | $0.92 \pm 0.06 \pm 0.18$ | $0.53 \pm 0.05 \pm 0.12$ | $0.39 \pm 0.07 \pm 0.26$ |
| $11-12$ | $1.31 \pm 0.10 \pm 0.36$ | $0.76 \pm 0.06 \pm 0.16$ | $0.58 \pm 0.05 \pm 0.12$ | $0.32 \pm 0.04 \pm 0.10$ | $0.30 \pm 0.07 \pm 0.21$ |
| $12-13$ | $0.77 \pm 0.08 \pm 0.21$ | $0.59 \pm 0.05 \pm 0.13$ | $0.45 \pm 0.04 \pm 0.09$ | $0.37 \pm 0.04 \pm 0.12$ | $0.24 \pm 0.06 \pm 0.17$ |
| $13-14$ | $0.51 \pm 0.06 \pm 0.14$ | $0.51 \pm 0.05 \pm 0.11$ | $0.36 \pm 0.04 \pm 0.07$ | $0.18 \pm 0.03 \pm 0.05$ | $0.05 \pm 0.02 \pm 0.03$ |
| $14-15$ | $0.47 \pm 0.06 \pm 0.13$ | $0.32 \pm 0.04 \pm 0.07$ | $0.24 \pm 0.03 \pm 0.05$ | $0.13 \pm 0.03 \pm 0.04$ | $0.08 \pm 0.03 \pm 0.07$ |


geometric acceptance

reconstruction efficiency
obtained from fully simulated events

## $\psi(2 S) \rightarrow \mu \mu$

| $p_{\mathrm{T}}(\mathrm{GeV} / c)$ | $2.0<y \leq 2.5$ | $2.5<y \leq 3.0$ | $3.0<y \leq 3.5$ |
| :---: | :---: | :---: | :---: |
| $0-1$ | $138.71 \pm 18.24 \pm 18.62_{-49.75}^{+25.41}$ | $95.82 \pm 6.28 \pm 15.44_{-38.58}^{+19.16}$ | $98.76 \pm 5.29 \pm 13.19_{-35.54}^{+17.92}$ |
| $1-2$ | $285.28 \pm 22.93 \pm 38.08_{-105.83}^{+53.63}$ | $243.34 \pm 10.04 \pm 38.86_{-90.20}^{+45.71}$ | $202.73 \pm 7.28 \pm 28.43_{-66.74}^{+33.34}$ |
| $2-3$ | $205.32 \pm 15.48 \pm 33.58_{-82.82}^{+41.46}$ | $181.06 \pm 8.03 \pm 26.76_{-64.02}^{+31.88}$ | $179.58 \pm 6.48 \pm 23.87_{-49.33}^{+25.07}$ |
| $3-4$ | $153.72 \pm 10.34 \pm 25.50_{-63.04}^{+31.64}$ | $146.32 \pm 5.25 \pm 19.96_{-45.92}^{+23.12}$ | $118.84 \pm 4.20 \pm 17.18_{-25.79}^{+13.19}$ |
| $4-5$ | $96.89 \pm 5.03 \pm 12.96_{-39.07}^{+19.69}$ | $93.71 \pm 3.17 \pm 12.92_{-27.54}^{+13.88}$ | $79.14 \pm 2.58 \pm 11.32_{-16.17}^{+8.18}$ |
| $5-6$ | $60.34 \pm 3.11 \pm 8.05_{-24.13}^{+11.92}$ | $55.21 \pm 1.85 \pm 7.81_{-15.66}^{+7.94}$ | $44.44 \pm 1.55 \pm 6.16_{-9.16}^{+4.43}$ |
| $6-7$ | $37.70 \pm 1.84 \pm 5.07_{-14.28}^{+7.25}$ | $31.97 \pm 1.14 \pm 4.30_{-8.66}^{+4.45}$ | $24.30 \pm 0.94 \pm 3.24_{-5.19}^{+2.51}$ |
| $7-8$ | $19.05 \pm 1.14 \pm 2.57_{-6.95}^{+3.50}$ | $19.04 \pm 0.78 \pm 2.55_{-4.87}^{+2.39}$ | $14.42 \pm 0.67 \pm 1.93_{-3.10}^{+1.54}$ |
| $8-9$ | $13.02 \pm 0.82 \pm 1.76_{-4.61}^{+2.24}$ | $10.38 \pm 0.54 \pm 1.44_{-2.39}^{+1.21}$ | $8.81 \pm 0.49 \pm 1.18_{-1.85}^{+0.91}$ |
| $9-10$ | $7.67 \pm 0.60 \pm 1.04_{-2.49}^{+1.9}$ | $6.85 \pm 0.42 \pm 0.93_{-1.60}^{+0.77}$ | $5.06 \pm 0.36 \pm 0.68_{-0.99}^{+0.46}$ |
| $10-11$ | $5.44 \pm 0.44 \pm 0.76_{-1.58}^{+0.77}$ | $4.10 \pm 0.32 \pm 0.55_{-0.87}^{+0.47}$ | $2.81 \pm 0.27 \pm 0.38_{-0.54}^{+0.27}$ |
| $11-12$ | $4.23 \pm 0.39 \pm 0.61_{-1.59}^{+0.74}$ | $2.84 \pm 0.26 \pm 0.39_{-0.63}^{+0.29}$ | $2.05 \pm 0.22 \pm 0.28_{-0.38}^{+0.22}$ |

$\psi(2 S)$ RESULT

## $\psi(2 S) \rightarrow \mu \mu$

| $p_{\mathrm{T}}(\mathrm{GeV} / \mathrm{c})$ | $3.5<y \leq 4.0$ | $4.0<y \leq 4.5$ |
| :---: | :---: | :---: |
| $0-1$ | $73.30 \pm 3.82 \pm 11.59_{-25.24}^{+12.35}$ | $62.84 \pm 3.28 \pm 19.57_{-22.59}^{+11.45}$ |
| $1-2$ | $175.70 \pm 6.11 \pm 32.66_{-55.87}^{+27.84}$ | $121.42 \pm 5.15 \pm 42.43_{-39.31}^{+19.82}$ |
| $2-3$ | $147.19 \pm 5.45 \pm 25.91_{-40.96}^{+19.94}$ | $104.53 \pm 4.86 \pm 30.55_{-32.40}^{+16.19}$ |
| $3-4$ | $100.86 \pm 3.80 \pm 19.03_{-21.81}^{+0.84}$ | $63.77 \pm 3.27 \pm 17.70_{-16.31}^{+8.41}$ |
| $4-5$ | $60.38 \pm 2.19 \pm 9.45_{-11.87}^{+5.80}$ | $41.31 \pm 2.42 \pm 10.24_{-8.80}^{+4.30}$ |
| $5-6$ | $33.98 \pm 1.30 \pm 5.41_{-6.17}^{+3.12}$ | $21.94 \pm 1.43 \pm 5.72_{-4.57}^{+2.19}$ |
| $6-7$ | $19.11 \pm 0.85 \pm 2.71_{-3.69}^{+1.81}$ | $11.00 \pm 0.88 \pm 2.08_{-1.78}^{+0.84}$ |
| $7-8$ | $10.48 \pm 0.58 \pm 1.40_{-2.07}^{+1.01}$ | $4.60 \pm 0.53 \pm 0.83_{-0.74}^{+0.36}$ |
| $8-9$ | $5.61 \pm 0.38 \pm 0.75_{-1.05}^{+0.52}$ | $2.93 \pm 0.46 \pm 0.55_{-0.41}^{+0.22}$ |
| $9-10$ | $3.60 \pm 0.33 \pm 0.49_{-0.64}^{+0.31}$ | $1.40 \pm 0.25 \pm 0.31_{-0.24}^{+0.10}$ |
| $10-11$ | $1.74 \pm 0.20 \pm 0.24_{-0.33}^{+0.15}$ | $1.06 \pm 0.19 \pm 0.24_{-0.13}^{+0.08}$ |
| $11-12$ | $0.99 \pm 0.17 \pm 0.18_{-0.19}^{+0.09}$ | $0.71 \pm 0.19 \pm 0.19_{-0.08}^{+0.03}$ |

## $\psi(2 S)$ RESULT

## $\psi(2 S) \rightarrow \mathrm{J} / \psi \pi^{+} \pi$

| $p_{\mathrm{T}}(\mathrm{GeV} / c)$ | $\mathrm{d} \sigma / \mathrm{d} p_{\mathrm{T}}(\mathrm{nb} / \mathrm{GeV} / c)$ |
| :---: | :---: |
| $3-4$ | $241.2 \pm 21.0 \pm 46.3_{-57.1}^{+29.0}$ |
| $4-5$ | $156.0 \pm 7.7 \pm 30.1_{-35.2}^{+17.2}$ |
| $5-6$ | $90.5 \pm 3.5 \pm 17.4_{-20.6}^{+10.3}$ |
| $6-7$ | $55.4 \pm 1.9 \pm 10.6_{-12.6}^{+6.3}$ |
| $7-8$ | $31.5 \pm 1.1 \pm 6.0_{-7.1}^{+3.6}$ |
| $8-9$ | $18.1 \pm 0.7 \pm 3.5_{-3.9}^{+2.0}$ |
| $9-10$ | $10.8 \pm 0.5 \pm 2.1_{-2.3}^{+1.1}$ |
| $10-11$ | $6.7 \pm 0.4 \pm 1.3_{-1.3}^{+0.7}$ |
| $11-12$ | $4.4 \pm 0.3 \pm 0.9_{-1.0}^{+0.5}$ |
| $12-13$ | $3.3 \pm 0.2 \pm 0.6_{-0.7}^{+0.4}$ |
| $13-14$ | $2.3 \pm 0.2 \pm 0.5_{-0.5}^{+0.3}$ |
| $14-15$ | $1.5 \pm 0.1 \pm 0.3_{-0.3}^{+0.2}$ |
| $15-16$ | $1.1 \pm 0.1 \pm 0.2_{-0.2}^{+0.1}$ |

## $\psi(2 S)$ EFFICIENCIES

top: $\psi(2 S) \rightarrow \mu^{+} \mu^{-}$, bottom: $\psi(2 S) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$


$$
\psi(2 S) \rightarrow \mu^{+} \mu^{-}
$$

| $\mu:$ long track with muon detector hits (IsMuon) |
| :--- |
| $\mu: p_{T}>1.2 \mathrm{GeV} / c$ |
| $\mu:$ track $\chi^{2} /$ ndof $<4$ |
| $\mu: \mathrm{DLL}_{\mu \pi}>-1$ |
| $\psi(2 S):$ vertex $P\left(\chi^{2}\right)>0.5 \%$ |
| $\psi(2 S): \cos \left(\theta_{\mu_{1}^{ \pm}, \mu_{2}^{ \pm}}\right)>0.9999$ (clones removal) |

$\psi(2 S) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$

| $\mu:$ Long track with muon detector hits | $\pi: p_{\mathrm{T}}\left(\pi^{+}\right)+p_{\mathrm{T}}\left(\pi^{-}\right)>800 \mathrm{MeV} / c$ |
| :--- | :--- |
| $\mu: \mathrm{DLL}_{\mu \pi}>-1$ | $\pi: \mathrm{DLL} \mathrm{K}-\pi>5$ |
| $\mu: p_{\mathrm{T}}>700 \mathrm{MeV} / c$ | $\pi: p_{\mathrm{T}}>300 \mathrm{MeV} / c$ |
| $\mu: \mathrm{p}>8 \mathrm{GeV} / c$ and $<500 \mathrm{GeV} / c$ | $\pi: \mathrm{p}<500 \mathrm{GeV} / c$ |
| $\mu:$ track $\chi^{2} /$ ndof $<4$ | $\pi:$ track $\chi^{2} / \mathrm{ndof}<4$ |
| $J / \psi:$ vertex $\chi^{2} /$ ndof $<20$ | $\psi(2 S):$ vertex $\chi^{2} / \mathrm{ndof}<4$ |
| $J / \psi:$ Mass $>3040$ and $<3140 \mathrm{MeV} / c^{2}$ | $\psi(2 S):$ Mass $>3600$ and $<3800 \mathrm{MeV} / c^{2}$ |
| $J / \psi: p_{\mathrm{T}}>2 \mathrm{GeV} / c$ | $\psi(2 S): p_{\mathrm{T}}>2 \mathrm{GeV} / c$ |
| $Q=M(J / \psi \pi \pi)-M(\pi \pi)-M(\mu \mu) \geq 0$ and $\leq 200 \mathrm{MeV} / c^{2}$ |  |

- Muon detector comprises of 5 dedicated sub-detectors - Alignment in 2010: close to expectation ( $12 \mathrm{MeV} / \mathrm{c}^{2}$ )


- Electro-magnetic calorimeter
- $\sigma_{E} / E=10 \% / \sqrt{E} \oplus 1 \%$
- Able to clearly resolve e.g. $\pi^{0} \rightarrow \gamma \gamma$


## 逝角



- Photons are reconstructed using the Calorimeter
- Unconverted photons
- Converted photons $\left(\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)$after the magnet
- The converted photons are identified by requiring a signal in the Scintillating Pad Detector (SPD)

N.B. Calorimeter resolution too coarse to resolve individual $\chi_{c}$ states

Fit model: Gaussian for signal, RooDstD0BG for background

- Fit model
in bins of $\mathrm{p}_{\mathrm{t}}(\mathrm{J} / \psi)$ in the range: $2<\mathrm{p}_{\mathrm{t}}(\mathrm{J} / \psi)<15 \mathrm{GeV} / \mathrm{c}$
- Simultaneous fit to extract $\chi_{\mathrm{c} 0}, \chi_{\mathrm{c} 1}, \chi_{\mathrm{c} 2}$ yield +BG
- Mass difference fixed to PDG for $\Delta \mathrm{m}\left(\chi_{c 0}-\chi_{c 1}\right)$ and $\Delta \mathrm{m}\left(\chi_{\mathrm{c} 2}-\chi_{\mathrm{c1}}\right)$
- Ratio of Gaussian resolution $\sigma\left(\chi_{\mathrm{c}}\right) / \sigma\left(\chi_{\mathrm{cl}}\right)$ fixed to fit on full sample
- Gaussian resolution $\sigma\left(\chi_{c 1}\right)$ fixed to fit on full sample
- Ratio of Gaussian resolution $\sigma\left(\chi_{c 0}\right) / \sigma\left(\chi_{c 1}\right)$ taken from simulation
- Assume unpolarised states and investigate effect of polarisation
$\chi \subset$ RESULTS


| $p_{\mathrm{T}}^{J / \psi}(\mathrm{GeV} / c)$ | $\sigma\left(\chi_{c 2}\right) / \sigma\left(\chi_{c 1}\right)$ | Pol. |
| :---: | :---: | :---: |
| $2-3$ | $1.385{ }_{-0.13}^{+0.12}{ }_{-0.068}^{+0.074}{ }_{-0.079}^{+0.087}$ | ${ }_{-0.046}^{+0.061}$ |
| $3-4$ | $1.321_{-0.089}^{+0.097}{ }_{-0.063}^{+0.067}{ }_{-0.072}^{+0.086}$ | ${ }_{-0.046}^{+0.056}$ |
| $4-5$ | $1.015_{-0.062}^{+0.065}{ }_{-0.040}^{+0.042}{ }_{-0.059}^{+0.062}$ | $\begin{aligned} & { }_{-0.089}^{+0.088} \end{aligned}$ |
| 5-6 | $1.082_{-0.059}^{+0.071}{ }_{-0.044}^{+0.045}{ }_{-0.064}^{+0.066}$ | $\begin{aligned} & +0.16 \\ & { }_{-0.17}^{0} \end{aligned}$ |
| $6-7$ | $1.092_{-0.085}^{+0.083}{ }_{-0.046}^{+0.049}{ }_{-0.064}^{+0.066}$ | ${ }_{-0.22}^{+0.22}$ |
| $7-8$ | $1.079_{-0.10}^{+0.12}{ }_{-0.054}^{+0.058}{ }_{-0.062}^{+0.067}$ | ${ }_{-0.25}^{+0.25}$ |
| $8-9$ | $0.860_{-0.10}^{+0.10}{ }_{-0.046}^{+0.041}{ }_{-0.049}^{+0.053}$ | ${ }_{-0.21}^{+0.22}$ |
| $9-10$ | $0.746_{-0.11}^{+0.11}{ }_{-0.041}^{+0.040}{ }_{-0.042}^{+0.047}$ | $\begin{array}{r} +0.20 \\ { }_{-0.19}^{+0.2} \end{array}$ |
| 10-11 | $0.905_{-0.15}^{+0.16}{ }_{-0.052}^{+0.051}{ }_{-0.052}^{+0.057}$ | ${ }_{-0.25}^{+0.25}$ |
| $11-12$ | $0.910_{-0.17}^{+0.19}{ }_{-0.098}^{+0.092}{ }_{-0.062}^{+0.064}$ | $\begin{array}{r} +0.24 \\ { }_{-0.24}^{0} \end{array}$ |
| $12-13$ | $0.679_{-0.16}^{+0.18}{ }_{-0.048}^{+0.056}{ }_{-0.041}^{+0.041}$ | $\begin{array}{r} +0.19 \\ { }_{-0.18}^{0.19} \end{array}$ |
| $13-15$ | $0.692_{-0.18}^{+0.20}{ }_{-0.067}^{+0.067}{ }_{-0.036}^{+0.042}$ | ${ }_{-0.18}^{+0.18}$ |

- Cross-section ratio in bins of $\mathrm{p}_{\mathrm{t}}(\mathrm{J} / \psi)$, stat. + syst. $+\mathrm{BR}\left(\chi_{\mathrm{c}}\right)$ errors - Black band corresponds to effect of $\chi_{c}$ polarisation
- Blue: Prediction from ChiGen event simulation
- Red : NLO NRQCD calculation
$\chi_{\text {c SYSTEMATICS }}$
- Systematic uncertainties are from the following categories
- Fit modelling
- Background model sensitive to region just below $\chi_{\mathrm{c} 1}$
- Background model parameters correlated to signal parameters
- Modelling of $\chi_{\mathrm{c} 0}$ component
- Finite statistics of simulated events
- Affects extraction of efficiencies
- Branching ratio of $\chi_{c} \rightarrow J / \psi \gamma$
- Affects obtaining ratio of branching fractions $\sigma\left(\chi_{c 2}\right) / \sigma\left(\chi_{c 1}\right)$ from ratio of yields
- $\sigma\left(\chi_{c 1}\right) \rightarrow \mathrm{J} / \psi \gamma: 36 \%, \sigma\left(\chi_{c 2}\right) \rightarrow \mathrm{J} / \psi \gamma: 20 \%$


## $\chi$ c: SYSTEMATICS

- Systematic uncertainties due to $\chi_{c}$ branching ratios

| $p_{\mathrm{T}}^{J / \psi}(\mathrm{GeV} / c)$ | $2-3$ | $3-4$ | $4-5$ | $5-6$ | $6-7$ | 7-8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Branching ratios | +0.087 +0.079 | +0.086 -0.072 | +0.062 -0.059 | +0.066 -0.064 | +0.066 -0.064 | +0.067 -0.062 |
| Monte Carlo statistics | +0.010 -0.010 | +0.010 -0.008 | +0.009 -0.007 | +0.011 -0.010 | +0.015 -0.013 | +0.020 -0.017 |
| Systematics from fit | $\begin{aligned} & +0.040 \\ & -0.051 \end{aligned}$ | $\begin{aligned} & +0.045 \\ & { }_{-0.040} \end{aligned}$ | +0.026 +0.034 | +0.026 +0.031 | +0.029 -0.037 | $\begin{aligned} & +0.051 \\ & -0.040 \end{aligned}$ |
| $p_{\mathrm{T}}^{J / \psi}(\mathrm{GeV} / c)$ | 8-9 | $9-10$ | 10-11 | $11-12$ | $12-13$ | 13-15 |
| Branching ratios | +0.053 -0.049 | +0.047 -0.042 | +0.057 -0.052 | +0.064 -0.062 | +0.041 -0.041 | +0.042 -0.036 |
| Monte Carlo statistics | $\begin{aligned} & +0.021 \\ & -0.019 \end{aligned}$ | $\begin{aligned} & +0.024 \\ & -0.023 \end{aligned}$ | +0.040 -0.037 | $\begin{aligned} & +0.060 \\ & { }_{-0.055} \end{aligned}$ | $\begin{aligned} & +0.051 \\ & -0.046 \end{aligned}$ | $\begin{aligned} & +0.049 \\ & -0.045 \end{aligned}$ |
| Systematics from fit | $\begin{array}{r} +0.034 \\ -0.040 \end{array}$ | $\begin{aligned} & +0.034 \\ & { }_{-0.031} \end{aligned}$ | $\begin{aligned} & +0.034 \\ & { }_{-0.026} \end{aligned}$ | $\begin{aligned} & +0.020 \\ & { }_{-0.133} \end{aligned}$ | +0.023 -0.018 | $\begin{aligned} & +0.075 \\ & { }_{-0.031} \end{aligned}$ |


|  | $J / \psi$ | $\psi(2 S)$ | $\chi_{c 0}$ | $\chi_{c 1}$ | $\chi_{c 2}$ | diphoton |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\epsilon_{\text {track }}$ | $0.97 \pm 0.04$ | $0.96 \pm 0.04$ |
| $\epsilon_{\mu i d}$ | $0.89 \pm 0.03$ |
| $\epsilon_{\gamma}$ |  |  | $0.61 \pm 0.08$ | $0.75 \pm 0.05$ | $0.78 \pm 0.04$ |  |
| $\epsilon_{\text {sel }}$ | 0.95 | 0.95 | 0.76 | 0.76 | 0.76 | 0.35 |
| Efficiency | $0.71 \pm 0.07$ | $0.71 \pm 0.07$ | $0.34 \pm 0.06$ | $0.43 \pm 0.05$ | $0.44 \pm 0.04$ | $0.25 \pm 0.03$ |
| $\#$ Events | $1468 \pm 38$ | $40 \pm 6$ | $25 \pm 6$ | $56 \pm 18$ | $99 \pm 29$ | $40 \pm 6$ |
| Purity | $0.71 \pm 0.03$ | $0.67 \pm 0.03$ | $0.39 \pm 0.13$ | $0.39 \pm 0.13$ | $0.39 \pm 0.13$ | $0.97 \pm 0.01$ |
| $L_{\text {eff }}\left(\mathrm{pb}^{-1}\right)$ | $3.1 \pm 0.6$ | $2.3 \pm 0.5$ |
| Cross-section | $474 \pm 12$ | $12.2 \pm 1.8$ | $9.3 \pm 2.2$ | $16.4 \pm 5.3$ | $28.0 \pm 5.4$ | $67 \pm 10$ |
| $\times B R(\mathrm{pb})$ | $\pm 51 \pm 92$ | $\pm 1.3 \pm 2.4$ | $\pm 3.5 \pm 1.8$ | $\pm 5.8 \pm 3.2$ | $\pm 9.7 \pm 5.4$ | $\pm 7 \pm 15$ |

- Events with no backward tracks, 2 forward tracks
- $\mu^{+} \mu^{-}$mass consistent with $\mathrm{J} / \psi$ or $\psi(2 \mathrm{~S})$
- \#photons for $\mathrm{J} / \psi$ cand. (left) or $\psi(2 \mathrm{~S})$ cand. (right)


- $\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}(2<\eta<4.5): \underline{\sigma=474 \pm 12 \pm 51 \pm 92 \mathrm{pb}}$
- StarLight : 292 pb
- SuperChiC: 330 pb
- Motyka, Watt (PRD 014023 (2008)): 960 pb
- Taking muon acceptance into account (Pythia) : 410 pb
- Rescattering correction : 330 pb ( $\pm 10-15 \%$ )
- Uncertainty from Hera $\rightarrow$ LHC extrapolation $\sim 10 \%$
- Schäfer, Szczurek (Diff2010, Heidelberg): 1670 pb
- Taking muon acceptance into account (Pythia) : 710 pb
- Bzdak (PRD 75094023 (2007)): 70 - 800 pb


# LHCW CENTRAL EXCLUSIVE PRODUCTION 

- $\psi(2 S) \rightarrow \mu^{+} \mu^{-}(2<\eta<4.5): \sigma=12.2 \pm 1.8 \pm 1.3 \pm 2.4 \mathrm{pb}$
- StarLight : 6.1 pb
- Schäfer, Szczurek : 17 pb

