

J/ψ production in pp collisions with the ALICE experiment at the LHC

Livio Bianchi

QWG – 8th International Workshop on Heavy Quarkonium

GSI - 4-7 October 2011

The ALICE experiment and its capabilities for quarkonia detection

J/ ψ production cross-section at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 2.76$ TeV

Multiplicity dependence of J/ ψ production in pp collisions at \sqrt{s} = 7 TeV

Determination of the fraction $B \rightarrow J/\psi$ at central rapidity and low p_T

Conclusions and prospects

The ALICE experiment

ALICE studies J/ψ
production down to p_T=0
both at mid-rapidity
(|y|<0.9) in the di-electron
channel and at forward
rapidity (2.5<y<4) in the dimuon channel

Livio Bianchi

QWG Workshop

GSI - 04 Oct 2011

Inner Tracking System

(ITS), 6 layers:

- •2 pixel layers (SPD)
- •2 drift layers (SDD)
- •2 strip layers (SSD)

Time Projection Chamber (TPC):

main tracking
detector, used for
PID via specific
energy loss

V0: scintillator arrays at forward and backward rapidities – used for MB trigger (with SPD) and for centrality determination

Muon Spectrometer:

- Front absorber
- •5 tracking stations
 - Dipole magnet
 - Iron wall
- •2 trigger stations

$pp \rightarrow J/\psi + X$ studies in ALICE

m_{ee} (GeV/c²)

ALICE took data in pp runs at 7 TeV (arXiv:1105.0380, accepted by Phys. Lett. B) and 2.76 TeV. Integrated luminosity for these analysis:

	J/ ψ→μ⁺μ⁻	J/ψ→e⁺e⁻		
√s = 7 TeV	15.6 nb ⁻¹	3.9 nb ⁻¹		
√s = 2.76 TeV	20.2 nb ⁻¹	1.1 nb ⁻¹		

IMPORTANT:

for both e^+e^- and $\mu^+\mu^-$ studies the acceptances do not depend strongly on p_T and the measurement extends down to p_T =0

pp at $\sqrt{s}=7\text{TeV}$ & 2.76TeV: cross-section

Livio Bianchi QWG Workshop GSI – 04 Oct 2011

Integrated inclusive J/ψ production cross sections:

$$\sigma(2.5 < y < 4) = 6,31 \pm 0.25(stat) \pm 0.8(syst)^{+0.95(\lambda CS=+1)}_{-1.96(\lambda CS=-1)} \ \mu b \\ \sigma(|y| < 0.9) = 10,7 \pm 1.2(stat) \pm 1.7(syst)^{+1.6(\lambda HE=+1)}_{-2.3(\lambda HE=-1)} \ \mu b \\ \sigma(2.5 < y < 4) = 3,46 \pm 0.13(stat) \pm 0.32(syst) \pm 0.28(lumi)^{+0.55(\lambda CS=+1)}_{-1.11(\lambda CS=-1)} \ \mu b \\ \sigma(|y| < 0.9) = 6,44 \pm 1.42(stat) \pm 0.88(syst) \pm 0.52(syst)^{+0.64(\lambda HE=+1)}_{-1.42(\lambda HE=-1)} \ \mu b \\ arXiv:1107.0137$$

At forward rapidity the d²σ/dydp_T was extracted at both the energies

→ well reproduced by NRQCD calculations at NLO

Comparison of 7 TeV results with other LHC experiments: fair agreement both at forward rapidity (with LHCb) and at mid rapidity, where ALICE is complementary to ATLAS and CMS

J/ ψ production VS multiplicity at \sqrt{s} =7TeV

Livio Bianchi QWG Workshop GSI – 04 Oct 2011

 J/ψ yield as a function of the charged particle multiplicity studied at central and forward rapidities.

The J/ ψ yield exhibits a weaker increase with dN_{ch}/d η than the high p_T muons (>80% of which are coming from heavy flavors). Different mechanisms can explain this observation such as kinematical effects, modification of the p_T distribution, modification of the bottom to charm ratio, multi parton interactions, etc..

Additional details in the Gines's talk next Thursday

Identification of non-prompt J/ψ

Livio Bianchi
QWG Workshop
GSI – 04 Oct 2011

At mid-rapidity (|y|<0.9) ALICE is able to extract the non-prompt fraction of the total inclusive J/ ψ cross-section: log-likelihood fit to the pseudo-proper decay length distribution

Resolution on the impact parameter: σ_{ro} < 75 μm for p_T > 1 GeV/c

The measurement extends the p_T reach of the LHC experiments at central rapidity down to 1.3 GeV/c

$$F_{B}(1.3 < p_{T} < 7 \text{GeV/c}, |y| < 0.9) = \\ \textbf{0.137} \pm 0.054(\text{stat}) + 0.025 - 0.018(\text{syst})^{+0.040(\lambda_{HE} = +1)}_{-0.021(\lambda_{CS} = -1)}$$

Identification of non-prompt J/ψ

Livio Bianchi
QWG Workshop
GSI – 04 Oct 2011

At mid-rapidity (|y|<0.9) ALICE is able to extract the non-prompt fraction of the total inclusive J/ ψ cross-section: log-likelihood fit to the pseudo-proper

Resolution on the impact parameter: σ_{ro} < 75 μ m for p_T > 1 GeV/c

decay length distribution

The measurement extends the p_T reach of the LHC experiments at central rapidity down to 1.3 GeV/c

$$F_{B}(1.3 < p_{T} < 7 \text{GeV/c}, |y| < 0.9) = \\ \textbf{0.137} \pm 0.054(\text{stat}) + 0.025 - 0.018(\text{syst})^{+0.040(\lambda_{HE} = +1)}_{-0.021(\lambda_{CS} = -1)}$$

The extracted value is in agreement with CDF results

Larger statistics in 2011 data with a new triggering strategy (EMCAL)

J/ ψ polarization in pp at $\sqrt{s} = 7$ TeV at forward rapidity

Polarization in a nutshell

Livio Bianchi QWG Workshop GSI – 04 Oct 2011

The polarization of the J/ ψ can be measured through the angular analysis of its daughter particles. Taking as a reference the μ^+ , its angular distribution can be expressed as:

$$\text{W(cos}\theta,\phi) \propto 1 + \lambda_{\theta} \cos^2\!\theta + \lambda_{\phi} \sin^2\!\theta \cos\!2\phi + \lambda_{\theta\phi} \sin\!2\theta \cos\!\phi$$

The reference frame can be chosen in different ways and is defined on a event-by-event basis

The parameters can be extracted in a 1D approach

$$W(\cos\vartheta) \propto \frac{1}{3+\lambda_{\vartheta}} \left(1+\lambda_{\vartheta}\cos^2\vartheta\right)_{\text{Integrating over }}$$

$$W(\varphi) \quad \propto \quad 1 + \frac{2\lambda_{\varphi}}{3 + \lambda_{\vartheta}} \cos 2\varphi_{\rm Integrating \ over} \cos \theta$$

$$W(\tilde{\varphi}) \propto 1 + \frac{\sqrt{2} \, \lambda_{\vartheta \varphi}}{3 + \lambda_{\vartheta}} \, \cos \tilde{\varphi} \,. \qquad \begin{array}{l} \text{Defining} \quad \tilde{\varphi} = \left\{ \begin{array}{l} \varphi - \frac{3}{4} \pi & \quad \text{for} \quad \cos \vartheta < 0 \\ \varphi - \frac{\pi}{4} & \quad \text{for} \quad \cos \vartheta > 0 \end{array} \right.$$

and integrating over cos θ

bisector of the angle between proj. and (-) target in the quarkonium C.M. frame.

Direction of the quarkonium in the C.M. frame of the collision.

Muon Spectrometer and Trigger strategy

Hardware momentum cut: $p_{ii} = 4 \text{ GeV/c}$

In this analysis the bulk part of **2010 data** is used

The data sample corresponds to **12400** J/ ψ (L_{int}~100nb⁻¹)

At least one muon matching the trigger (1-MATCH) is required With this choice no p_T or $\cos\theta$ cuts are introduced in the J/ ψ sample 2 Trigger Stations (4 planes of RPCs): fast response (~2ns)

Livio Bianchi

The trigger system of the Muon Spectrometer can select tracks above a p_{T} threshold (in this analysis 1 GeV/c). The cut is not sharp.

We can ask the track in the tracking stations to be matched with the track in the trigger part. For a dimuon we can ask:

- No requirement on the matching of the track (NO-MATCH)
- At least 1 of the two muons matching the trigger (1-MATCH)
- Both the muons matching the trigger (2-MATCH)

2D Acceptances and kinematical constraints

Livio Bianchi QWG Workshop GSI – 04 Oct 2011

Livio Bianchi

Analysis strategy

Since we integrate over ϕ (cos θ) to extract λ_{θ} (λ_{ϕ}) we use an iterative procedure which tunes the MC in order to take into account the correlations between the variables

The method performs quite well, converging in less than 4 iterations

Iterative procedure could be used also to extract $\lambda_{\theta \phi}$

with 3 variables the procedure is less stable. We assume it to be 0 in our MC. We will check our assumption a-posteriori

The acc×eff corrected spectra are fit simultaneously in the four variables $\cos\theta_{\rm HF}$ $\phi_{\rm HF}$ $\cos\theta_{\rm CS}$ $\phi_{\rm CS}$

Furthermore the invariance of the quantity

$$\tilde{\lambda} \equiv \mathcal{F}_{\{-3,0,1\}} = \frac{\lambda_{\vartheta} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}}.$$

is imposed while fitting: in this way we better constrain the fit and we require "by construction" the compatibility between the two reference frames.

QWG Workshop GSI - 04 Oct 2011

Binning used:

 $|\cos\theta|$: [0.00,0.15] [0.15,0.30] [0.30,0.45] [0.45,0.60] [0.60,0.80]

 $|\phi|$: [0.00,0.63] [0.63,0.94] [0.94,1.26] [1.26,1.57]

The invariant mass spectra can be fit with the sum of a signal component (parameterized as a Crystal Ball function) and of a background component (parameterized via an empirical function).

The signal is clearly visible in all the bins (here some examples for $2 < p_{\tau} < 3$ GeV/c). The S/B further increases......

Some fits: helicity frame ($4 < p_T < 8 \text{ GeV/c}$)

Livio Bianchi
QWG Workshop
GSI – 04 Oct 2011

Binning used:

 $|\cos\theta|$: [0.00,0.15] [0.15,0.30] [0.30,0.45] [0.45,0.60] [0.60,0.80]

 $|\phi|$: [0.00,0.63] [0.63,0.94] [0.94,1.26] [1.26,1.57]

The invariant mass spectra can be fit with the sum of a signal component (parameterized as a Crystal Ball function) and of a background component (parameterized via an empirical function).

The signal is clearly visible in all the bins. The S/B further increases......when moving to higher p_T (here some examples for $4 < p_T < 8 \text{ GeV/c}$).

Fits to the corrected angular spectra

Livio Bianchi

QWG Workshop

Result of the simultaneous fits after the last iteration of the correction procedure

QWG Workshop GSI - 04 Oct 2011

The $\lambda_{\theta \varphi}$ value in the MC iterative procedure was assumed to be zero We can check the validity of our assumption by correcting the $\widetilde{\phi}$ distribution with the MC tuned in the λ_{θ} and λ_{ϕ} parameters after the last iteration!

All the corrected $\tilde{\phi}$ spectra are flat

> We conclude that the assumption $\lambda_{\theta\phi}$ =0 in the analysis procedure is reasonable

25

Considerations on B feed-down

Livio Bianchi QWG Workshop GSI – 04 Oct 2011

We are measuring the polarization of inclusively-produced J/ ψ

What would be the value of the polarization parameters for prompt J/ψ ?

We know the fraction of J/ ψ coming from B decay from LHCb(*) (from 10% in our first p_T bin to 15% in the last)

The polarization that a J/ ψ coming from B decay acquires in the B hadron rest frame is largely diluted when observed in the J/ ψ rest frame (see LHCb MC study(*) which uses the BaBar measurement(**) of non-prompt J/ ψ polarization)

We subtract from the measured $\cos\theta$ (ϕ) distribution a (conservative) $\lambda_{\theta}(\lambda_{\phi}) = \pm 0.2$ distribution weighted for the B-decay fraction: refitting the resulting distribution we find the bias we introduce considering inclusive production

Livio Bianchi

Results: helicity frame

Slightly longitudinal polarization tending to vanish when increasing p_T. λ_{ϕ} is compatible with zero in the p_T range under study. The estimated values for promptly-produced J/ψ are only slightly different (green boxes) from the inclusive ones

Results: Collins-Soper frame

Livio Bianchi QWG Workshop GSI – 04 Oct 2011

Results may show a slightly longitudinal polarization, but sizable errors prevent any strong conclusion

Livio Bianchi

21/09/2011

Physics Forum

Systematic uncertainties

The systematics shown in the plots are the quadratic sum of the values found studying several sources:

Sustamatic course	p _T bin	HE		CS	
Systematic source		$\lambda_{ heta}$	λ_{ϕ}	$\lambda_{ heta}$	λ_{ϕ}
Signal extraction	2-3	±0.01	±0.04	±0.03	±0.05
	3-4	±0.03	±0.06	±0.15	±0.01
	4-8	±0.09	±0.02	±0.11	±0.08
Trigger Efficiency	2-3	±0.00	±0.00	±0.01	±0.00
	3-4	±0.08	±0.02	±0.00	±0.01
	4-8	±0.03	±0.02	±0.02	±0.02
Tracking efficiency	2-3	±0.04	±0.01	±0.03	±0.02
	3-4	±0.03	±0.02	±0.06	±0.01
	4-8	±0.01	±0.03	±0.02	±0.03
MC inputs	2-3	±0.14	±0.03	±0.04	±0.01
	3-4	±0.11	±0.04	±0.01	±0.01
	4-8	±0.04	±0.02	±0.05	±0.03
cosθ range	2-3	±0.15	±0.01	±0.10	±0.01

Compilation of available hadroproduction results

Disclaimer: taking into account the very different kinematical domains and the wide range of the center-of-mass energies we don't expect a p_T scaling

Only ALICE and HERA-B measured the azimuthal component of the angular distribution

In the Collins-Soper frame we can compare only to pA experiments

It would be very interesting to go to higher p_T: possible with 2011 data!

Conclusions

Livio Bianchi QWG Workshop GSI – 04 Oct 2011

ALICE has studied inclusive J/ ψ production in a large rapidity region extending from midrapidity to y=4 with a down to zero p_T coverage

The inclusive production cross-sections in pp collisions at 7 TeV measured by the four LHC experiments are in good agreement at both forward and mid-rapidity

Results at 2.76 TeV have also been obtained, crucial for the normalization of the heavy-ion results

NRQCD NLO calculations at both the energies describe well the measured $d^2\sigma/dp_Tdy$ The inclusive J/ ψ yield shows a linear increase as a function of $dN_{ch}/d\eta$

At mid-rapidity (|y|<0.9) ALICE estimates the contribution of J/ ψ from the B feed-down to the inclusive cross-section for p_T > 1.3 GeV/c

The polarization parameters λ_{θ} and λ_{ϕ} were extracted in 3 p_T bins (2 < p_T < 8 GeV/c) in the helicity and Collins-Soper frames. λ_{θ} (HE) is the only parameter significantly different from zero in the studied p_T region

ALICE

Backup

Livio Bianchi

QWG Workshop GSI – 04 Oct 2011

Evolution of resolution VS p_T

Livio Bianchi

