

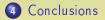
Franck-Condon principle in excited Heavy Quarkonia QWG2011. Darmstadt, Germany

Juan M. Torres-Rincon in collaboration with Felipe J. Llanes-Estrada based on Phys.Rev.Lett. 105 (2010) 022003

> Dpto. Física Teórica I. Universidad Complutense de Madrid. Spain

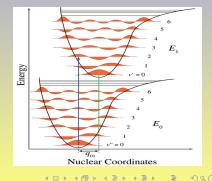
Oct. 7, 2011

Juan M. Torres-Rincon Franck-Condon principle in excited Heavy Quarkonia


Outline

In Franck-Condon Principle in Molecular Physics

2 Bottomonium Excited States and $\Upsilon(5S)$


3 Franck-Condon principle applied to open flavor decays: $\Upsilon(5S) \to B\overline{B}(\pi)$

Franck-Condon Principle

During an electronic transition, the electron orbital relaxes to the ground state in a time too short for the nuclei to react. The nuclear positions and velocities change significantly during the transition, and the nuclear wavefunction remains the same after the transition.

Franck-Condon Principle

Key Points to remember:

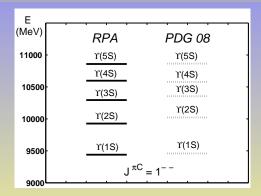
- Mass-scale separation: $M_N \gg m_e$
- Position and Velocity of the slow subsystem unchanged
- Nuclear wavefunction remains the same after the transition

Franck-Condon Principle

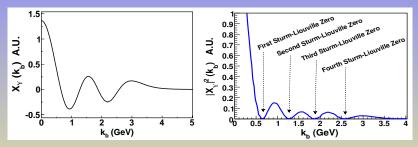
Key Points to remember:

- Mass-scale separation: $M_N \gg m_e$
- Position and Velocity of the slow subsystem unchanged
- Nuclear wavefunction remains the same after the transition

Molecule \rightarrow bottomonium ($b\overline{b}$):


- Nuclei ightarrow b and \overline{b} valence quarks
- Electronic cloud \rightarrow light degrees of freedom

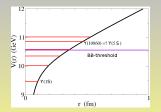
(a)


$\Upsilon(nS)$ Spectrum

Left panel: Theoretical many-body calculation. Right panel: Spectrum from the Particle Data Group

臣

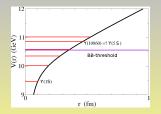
Wave function of $\Upsilon(5S)$


The squared wavefunction gives the probability of finding a b quark with momentum k_b . One clearly sees the four Sturm-Liouville zeros, characteristic from excited states.

Very low probability of finding a b quark inside the $\Upsilon(5S)$ with momentum near the Sturm-Liouville nodes.

Э

Effective Theory


The ground state $\Upsilon(1S)$ is located well below the $B\overline{B}$ threshold. It cannot feel the linear part of the static potential. Non-relativistic system \rightarrow follows pNRQCD counting rules

 $M \gg Mv \gg Mv^2 \gg \Lambda_{QCD}$ $(v \ll 1)$ $\alpha_s(Mv) \ll 1; \alpha_s(Mv^2) \ll 1$ pNRQCD is a good EFT for the ground state.

Effective Theory

However the $\Upsilon(5S)$ is located above $B\overline{B}$ threshold. The system is no longer non-relativistic due to the large kinetic and potential energy. $Mv^2\sim\Lambda_{QCD}.$

One can still use the hierarchy $M \gg \Lambda_{QCD}$ to understand the transition. This is the scale separation appearing for instance in HQET.

Franck-Condon Principle

Key Points to remember:

- Mass-scale separation: $M_N \gg m_e$
- Position and Velocity of the slow subsystem unchanged
- Nuclear wavefunction remains the same after the transition

$$M \gg \Lambda_{QCD}$$

Velocity Superselection Rule

Velocity superselection rule in HQET

Heavy mesons do not change their velocity.

Э

Sac

Velocity Superselection Rule

Velocity superselection rule in HQET

Heavy mesons do not change their velocity.

Adaptation for $\Upsilon(5S)$

Inside a region of $\sim \Lambda_{QCD}$ above the $B\overline{B}$ threshold, the velocity v_b of the *b* quark in the $\Upsilon(5S)$ is approximately equal to v_B , the velocity of the final *B*-meson.

The final B meson momentum k is related to the b quark momentum k_b as

$$k = k_b + \mathcal{O}(\Lambda_{QCD}) \rightarrow v = v_b + \mathcal{O}(\Lambda_{QCD}/M)$$

At lowest order the $\Upsilon(5S)$ squared wavefunction gives direct information of the k distribution, and therefore, of the decay rates.

Franck-Condon Principle

Key Points to remember:

- Mass-scale separation: $M_N \gg m_e$
- Position and Velocity of the slow subsystem unchanged
- Nuclear wavefunction remains the same after the transition

$$v = v_b + \mathcal{O}(\Lambda_{QCD}/M)$$

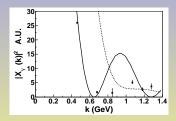
Franck-Condon Principle

Key Points to remember:

- Mass-scale separation: $M_N \gg m_e$
- Position and Velocity of the slow subsystem unchanged
- Nuclear wavefunction remains the same after the transition

The final state (2-,3-body decays) should carry information about $|X^{\Upsilon}(q)|^2$

Belle Results for open-flavor decays of $\Upsilon(10680)$

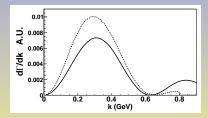

Decay channel fractions per bb-pair

- $BB: 5.5 \pm 1.4\%$ $B^*B: 13.7 \pm 2.4\%$ $B^*B^*: 37.5 \pm 5\%$
- $B_s B_s : 0.5 \pm 0.5\%$ $B_s^* B_s : 1.4 \pm 0.6\%$ $B_s^* B_s^* : 17.6 \pm 0.8\% \sim 12 \times \Gamma[B_s^* B_s]$
- 3-,4- body 17.5%
 - $BB\pi : 0.0 \pm 1.5\%$
 - $B^*B\pi : 7.3 \pm 3.0\%$
 - $B^*B^*\pi : 1.0 \pm 1.8\%$
 - Residual: $9.2 \pm 3.9\%$
- Other: 8.9%

Note that from spin counting: $\Gamma[B_s^*B_s^*] = \frac{7}{4} \Gamma[B_s^*B_s]$ (From Belle Collaboration, 2010)

2- and 3-body decays

 $\Upsilon(5S) \to B\overline{B}$

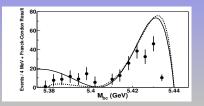


Solid line: Sq. Wavefunction; Dashed line: Effect of ${}^{3}P_{0}$ vertex and phase-space; Points: Experimental data from Belle Coll. Large fraction of $B_{s}^{*}B_{s}^{*}$ decay understood

Э

2- and 3-body decays

 $\Upsilon(5S) \to B\overline{B}\pi$



Э

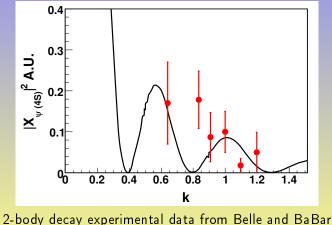
Sac

Solid line: Sq. Wavefunction; Dashed line: Effect of ${}^{3}P_{0}$ vertex and phase-space; Points: Experimental data from Belle Coll. Large fraction of $B_{s}^{*}B_{s}^{*}$ decay understood

Comparison to experiment

Solid line: Sq. Wavefunction; Dashed line: Effect of ${}^{3}P_{0}$ vertex and phase-space; Points: Experimental data from Belle Coll.

$$M_{bc} = \sqrt{(M_{\Upsilon}/2)^2 - k^2}$$

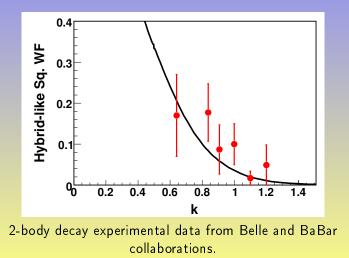

The dip around $M_{bc} = 5.4$ GeV is caused by the first Sturm-Liouville zero of the $\Upsilon(5S)$ wave function.

Another example in charmonium

Is $\psi(4415) = \psi(4S)$?

臣

Is $\psi(4415) = \psi(4S)$?



collaborations.

(a)

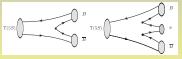
E

ls $\psi(4415) = \psi(4S)$?

Juan M. Torres-Rincon Franck-Condon principle in excited Heavy Quarkonia

Э

Conclusions


- We have applied the Franck-Condon principle to open-flavor decays of $\Upsilon(5S).$
- The precise effective theory to describe the system is not well stablished. However, due to the mass-scale separation one can apply the superselection velocity rule.
- We obtain good results of 2-body and 3-body decay fractions working at LO.
- The Sturm-Liouville zeros distribution of the $\Upsilon(5S)$ is a key feature to understand the large decay fraction of $B_s^*B_s^*$ and the dip at k = 600 MeV in the 3-body decay.

Auxiliary slide: Decay Model

Masses and wave functions are obtained from a relativistic manybody calculation in the Coulomb-gauge Hamiltonian. We use BCS approximation for the ground state and RPA for the excitations.

$$H = \int dx \Psi^{\dagger}(-i\alpha \nabla + \beta m)\Psi - \frac{1}{2} \int dx dy \ \rho^{a}(x)V(|x-y|)\rho^{a}(y)$$

Meson wavefunction: $\mathcal{X}_{P, ij}^{\Upsilon ab, \alpha} = Y_{00}(\hat{\mathbf{q}}) \left(\frac{i\sigma^{\alpha}\sigma_2}{\sqrt{2}}\right)_{ij} X_P^{\Upsilon}(|\mathbf{q}|) \frac{\delta^{ab}}{\sqrt{3}}$

The $q\overline{q}$ creation vertex is given by the ${}^{3}P_{0}$ model.