The Status of Pion Transitions in Quarkonium

Estia Eichten (Fermilab)

Outline:

- Update of Known Transitions
- New Issues Above Threshold
- Revisiting the QCDME assumptions
- Summary and Wish List

Present Status

- NRQCD

Kinetic

$$
\mathcal{H}=\mathbf{Q}^{\dagger}\left[\delta \mathbf{m}_{Q}-\frac{\mathbf{D}^{2}}{2 \mathbf{m}_{Q}}\right] \mathbf{Q}+\int d^{3} x \mathrm{j}_{a}^{0}(x) \mathcal{G}^{\mathrm{ab}} \mathrm{j}_{\mathrm{b}}^{0}(0)
$$

relativistic
corrections

$$
\begin{aligned}
& -\mathbf{Q}^{\dagger}\left[\frac{c_{4}}{8 \mathbf{m}_{Q}^{3}}\left(\mathbf{D}^{2}\right)^{2}+\frac{c_{D}}{8 \mathbf{m}_{q}^{2}}(\mathbf{D} \cdot g \mathbf{E}-g \mathbf{E} \cdot \mathbf{D})\right] \mathbf{Q} \\
& -\mathbf{Q}^{\dagger}\left[\frac{c_{s}}{8 \mathbf{m}_{q}^{2}} i \sigma(\mathbf{D} \times g \mathbf{E}+g \mathbf{E} \times \mathbf{D})+\frac{c_{f}}{2 \mathbf{m}_{q}} \sigma \cdot g \mathbf{B}\right] \mathbf{Q}+\ldots
\end{aligned}
$$

- Below threshold
- Narrow states allow precise experimental probes of the subtle nature of QCD.
- Consistency between (b $\bar{b})$ and (c$c \bar{c})$ systems validates NRQCD approach. At LHCb the (bc) system can also be studied.
- NRQCD approach is a spectacular success
- masses and spin splittings (pot -> LQCD)
- direct decays (pQCD)
- EM transitions (ME)
- hadronic transitions (QCDME)
- Lattice QCD can provide nonperturbative elements

$$
\frac{\Lambda_{Q C D}}{m_{Q}}(\mathrm{HQET}) ; \quad v(\mathrm{NRQCD})
$$

Static Energy

where $\mathrm{j}_{a}^{0}=\mathbf{Q}^{\dagger} g t_{\mathrm{a}} \mathbf{Q}+g^{2} f^{a b c} \mathbf{E}_{\mathrm{b}} \cdot \mathbf{A}_{\mathrm{c}}+\ldots$ and $\mathcal{G}^{\mathrm{ab}}=\frac{1}{\nabla \mathrm{D}} \nabla^{2} \frac{1}{\nabla \mathrm{D}}$

Potential Model

Present Status

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E.
[Rev. Mod. Phys. 80, 1161 (2008)]

Present Status

Transition	$\Gamma_{\text {partial }}(\mathrm{keV})$ (Experiment)	$\Gamma_{\text {partial }}(\mathrm{keV})$ (KY Model)
$\psi(2 S)$		
$\rightarrow J / \psi+\pi^{+} \pi^{-}$	102.3 ± 3.4	input ($\left\|C_{1}\right\|$)
$\rightarrow J / \psi+\eta$	10.0 ± 0.4	input (C_{3} / C_{1})
$\rightarrow J / \psi+\pi^{0}$	0.411 ± 0.030 [446]	0.64 [522]
$\rightarrow h_{c}(1 P)+\pi^{0}$	$0.26 \pm 0.05[47]$	0.12-0.40 [527]
$\psi(3770)$		
$\rightarrow J / \psi+\pi^{+} \pi^{-}$	52.7 ± 7.9	input (C_{2} / C_{1})
$\rightarrow J / \psi+\eta$	24 ± 11	
ハ		
$\Upsilon(2 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	5.79 ± 0.49	8.7 [528]
$\rightarrow \Upsilon(1 S)+\eta$	$(6.7 \pm 2.4) \times 10^{-3}$	0.025 [521]
$\Upsilon\left(1^{3} D_{2}\right)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	0.188 ± 0.046 [63]	0.07 [529]
$\chi_{b 1}(2 P)$		
$\begin{aligned} & \rightarrow \chi_{b 1}(1 P)+\pi^{+} \pi^{-} \\ & \rightarrow \Upsilon(1 S)+\omega \end{aligned}$	$\begin{gathered} 0.83 \pm 0.33[523] \\ 1.56 \pm 0.46 \end{gathered}$	0.54 [530]
$\chi_{b 2}(2 P)$		
$\rightarrow \chi_{b 2}(1 P)+\pi^{+} \pi^{-}$	$0.83 \pm 0.31 \text { [523] }$	0.54 [530]
$\rightarrow \Upsilon(1 S)+\omega$	1.52 ± 0.49	
$\Upsilon(3 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	0.894 ± 0.084	1.85 [528]
$\rightarrow \Upsilon(1 S)+\eta$	$<3.7 \times 10^{-3}$	0.012 [521]
$\rightarrow \Upsilon(2 S)+\pi^{+} \pi^{-}$	0.498 ± 0.065	0.86 [528]
$\Upsilon(4 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	1.64 ± 0.25	4.1 [528]
$\rightarrow \Upsilon(1 S)+\eta$	4.02 ± 0.54	
$\rightarrow \Upsilon(2 S)+\pi^{+} \pi^{-}$	1.76 ± 0.34	1.4 [528]

Heavy quarkonium: progress, puzzles and opportunities
N. Brambilla et.al. [arXiv:1010.5827]

Some Puzzles

- η transitions
- Ratio of η to $\pi \pi$ transitions: same initial and final quarkonium states at $\left(M_{\pi \pi}=M_{n}\right)$

$$
R_{Q \bar{Q}}(n \rightarrow m) \equiv \frac{\Gamma\left(n^{3} S_{1} \rightarrow m^{3} S_{1}+\eta\right)}{\Gamma\left(n^{3} S_{1} \rightarrow m^{3} S_{1}+\pi^{+} \pi^{-}\right)}=\frac{8 \pi^{2}}{27} \frac{1}{m_{Q}^{2}}\left(\frac{C_{3}}{C_{1}}\right)^{2}\left[\frac{\left.\left[\left(M_{i}+M_{f}\right)^{2}-M_{\eta}^{2}\right)\left(\left(M_{i}-M_{f}\right)^{2}-M_{\eta}^{2}\right)\right]^{3 / 2}}{G}\right]
$$

is independent of the details of the intermediate states.
[kinematic factor]

- Comparing theory (KY) and experiment.

Ratio	theory	experiment	$\sim 30>$ theory
$R^{c \bar{c}}(2 \rightarrow 1)$	3.29×10^{-3}	9.78×10^{-2}	
$R^{b \bar{b}}(2 \rightarrow 1)$	1.16×10^{-3}	1.16×10^{-3}	sets $C_{3} / C_{1}=0.143 \pm 0.024$
$R^{b \bar{b}}(3 \rightarrow 1)$	4.57×10^{-3}	$<4.13 \times 10^{-3}$	suppressed?
$R^{b \bar{b}}(4 \rightarrow 1)$	2.23×10^{-3}	2.45	$\sim 1000>$ theory
$R^{b \bar{b}}(4 \rightarrow 2)$	5.28×10^{-4}		

- These transitions are very poorly understood.

Some Puzzles

- $\Upsilon(3 S)$-> $\Upsilon(1 S) \pi \pi$ and $\Upsilon(4 S)$-> $\Upsilon(2 S) \pi \pi$ transitions
- $M_{\pi \pi}$ distributions NOT the expected S-wave behaviour
- Likely explanation - same as overlap dynamically suppressed in $\Upsilon(3 S)$-> $\chi_{b}(1 P) \gamma$ EM transitions
- CLEO detailed study [arXiv:0706.2317]
- Hindered M1-M1 term => C ~ 0. Consistent with CLEO results.
- Small D-wave contributions
- Further study would be useful. Look at polarization. Dubynskik \& Voloshin [hep-ph/0707.1272]

Why it works so well

- Lattice calculation $V(r)$, then $S E$
$-\frac{1}{2 \mu} \frac{d^{2} u(r)}{d r^{2}}+\left\{\frac{\left\langle\boldsymbol{L}_{Q \bar{Q}}^{2}\right\rangle}{2 \mu r^{2}}+V_{Q \bar{Q}}(r)\right\} u(r)=E u(r)$
- What about the gluon and light quark degrees of freedom in QCD?
- Two thresholds
- Usual (Qq) + (qQ) decay thresholds
- Exciting the string - hybrids
- Hybrid states will appear in the spectrum associated with the potentials Π_{u}, \ldots
- In the static limit this occurs at separation $r \approx 1.2 \mathrm{fm}$.
- Between the 35 and $4 S$ in (cc) system
- Just above the 5 S in the (bb) system
- Justabovethe 5S in the bb) system

LQCD calculation of static energy

Crossing the Threshold

- Many new degrees of freedom influence transitions
- Normal strong decay channels - strong coupled channel effects
- New four quark states possible:
- molecules $(Q \bar{q})(q \bar{Q})$
- diquark-antidiquark
- hadrocharmonium
- Hybrid states:
- exciting the gluon degrees of freedom
- valence gluons picture
- string picture
- Not hopeless. Two handles to understand systematics:
- lattice QCD
- known scaling from (c \bar{c}) to $(b \bar{b})$ systems

Transitions - States Above Threshold

State	EXP	M + i $/$ MeV)	JPC	Decay Modes	Production Modes
X(3872)	Belle, CDF, DO, BaBar	$3871.67 \pm 0.17+i(<3)$	$\begin{aligned} & 1^{++} \text {or } \\ & 2^{-+} \end{aligned}$	$\pi^{+} \pi^{-J} / \Psi, \omega J / \Psi$, $Y J / \Psi, Y \Psi^{\prime}, D^{0} D^{* 0}$	B decays, ppbar
$X_{c}\left(2^{3} P_{2}\right)$	Belle, BaBar	$3927.2 \pm 2.6+i(24 \pm 6)$	2^{++}	$D^{0} D^{0}, D^{+} D^{-}, \omega J / \Psi$	YY, B decays
X(3940)	Belle	$3942^{+7}-6 \pm 6+\mathrm{i}\left(37^{+26}-15 \pm 8\right)$	$\mathrm{J}^{\text {P+ }}$	DD*	$e^{+} e^{-}($recoil against $J / \Psi)$
Y(4008)	Belle BaBar	$\begin{aligned} & 4008 \pm 40^{+72}-28+i\left(226 \pm 44^{+87}-79\right) \\ & \text { (not seen) } \end{aligned}$	1^{--}	$\pi^{+} \pi^{-J / \psi}$	$e^{+} e^{-}$(ISR)
Y(4140)	$\begin{aligned} & \mathrm{CDF} \\ & \mathrm{LHCb} \end{aligned}$	$\begin{aligned} & 4143.0 \pm 2.9 \pm 1.2+i\left(11.7^{+8.3}-5.0 \pm 3.7\right) \\ & \text { (not seen) } \end{aligned}$	$\mathrm{J}^{\text {P+ }}$	\$ J/ Ψ	ppbar PP
$\Psi(4160)$	CLEO	$4153 \pm 3+\mathrm{i}(103 \pm 8)$	1^{--}	$\pi^{+} \pi^{-} h_{c}(1 P)$	$e^{+} e^{-}$
$X(4160)$	Belle	$4156+25-20 \pm 15+\mathrm{i}\left(139^{+111}{ }_{-61} \pm 21\right)$	$\mathrm{J}^{\text {+ }}$	$D^{*} D^{*}$	$e^{+} e^{-}($recoil against $J / \Psi)$
$Y(4260)$	BaBar, CLEO, Belle	$4263{ }^{+8}-9+i(95 \pm 14)$	1^{--}	$\begin{aligned} & \pi^{+} \pi^{-} J / \Psi, \pi^{0} \pi^{0} J / \Psi, \\ & K^{+} K^{-} J / \Psi \end{aligned}$	$e^{+} e^{-}$(ISR), $e^{+} e^{-}$
Y(4360)	BaBar, Belle	$4361 \pm 9 \pm 9+i(74 \pm 18 \pm 10)$	1^{--}	$\pi^{+} \pi^{-} \Psi(2 S)$	$e^{+} e^{-}$(ISR)
Y(4660)	Belle	$4664 \pm 11 \pm 8+\mathrm{i}(48 \pm 15 \pm 3)$	1^{--}	$\pi^{+} \pi^{-} \Psi(2 S), \Lambda_{c} \Lambda_{c}$ bar	$e^{+} e^{-}$(ISR)
$Y(5 S)$	Belle, BaBar	$10,876 \pm 11+i(55 \pm 28)$	1^{--}	$\begin{aligned} & \pi^{+} \pi^{-} \Psi(n S) n=1,2,3 \\ & \pi^{+} \pi^{-} h_{b}(n P) n=1,2 \end{aligned}$	$e^{+} e^{-}$

Charged states:
$X^{ \pm}(4250) \rightarrow \pi^{ \pm} \chi_{c 1}(1 P), X^{ \pm}(4430) \rightarrow \pi^{ \pm} \psi(2 S), Z_{b}^{ \pm}(10,610) \rightarrow \pi^{ \pm} h_{b}(n P)$ and $Z_{b}{ }^{ \pm}(10650) \rightarrow \pi^{ \pm} h_{b}$

ψ (4160) Transitions

- The $\psi(4160)->h_{c}(1 P)+\pi+\pi$ - transition observed by CLEO (Ryan's talk)

- Find unexpectedly large transition rate.
- Spin flip transition: E1 M1

Y(4260) Transitions

- The Y(4260) -> J/ $\psi+\pi+\pi-$ transition observed by Belle, BaBar and CLEO

- The $Y(4260)$ not seen in $D^{(*)} D^{(*)}$ final states. At dip in R. Large rate.


```
PL B640, 182 (2006)
\Gamma(Y4260}->\mp@subsup{\pi}{}{+}+\mp@subsup{\pi}{}{-}J/\psi)>0.508 MeV @ 90%
```


Y(4260) Transitions

- Belle and CLEO observe Y(4260) $->J / \psi+\pi^{0} \pi^{0}$ consistent with $I=0$

Y(4260) Transitions

- Additional 1^{--}states: $\mathrm{Y}(4360), \mathrm{Y}(4660)$ with transitions $\psi(2 S)+\pi+\pi-$

- Clear evidence for large transitions rates. But these Y states are not conventional charmonium states. No available 1^{--}states.

$\Upsilon(5 S)$ Transitions

- Large rates
- $\Upsilon(5 S): m=10,876 \pm 11 \mathrm{MeV}$ and $\Gamma=55 \pm 23 \mathrm{MeV}$
$\left.-B R(\Upsilon 5 S)->\Upsilon(2 S)+\pi^{+} \pi^{-}\right)=(0.78 \pm 0.13) \%$

$$
\begin{aligned}
\bar{\sigma}\left[\mathrm{r}(1 S) \pi^{+} \pi^{-}\right] & =0.638 \pm 0.065_{-0.056}^{+0.037} \\
\bar{\sigma}\left[\mathrm{r}(3 S) \pi^{+} \pi^{-}\right] & =0.517 \pm 0.082 \pm 0.070 \\
\bar{\sigma}\left[h_{b}(1 P) \pi^{+} \pi^{-}\right] & =0.407 \pm 0.07_{-0.076}^{+0.043} \\
\bar{\sigma}\left[h_{b}(2 P) \pi^{+} \pi^{-}\right] & =0.78 \pm 0.09_{-0.10}^{+0.22}
\end{aligned}
$$

- $\pi^{+} \pi^{-}$system $I=0$

BELLE [arXiv:1103.3419]

- total branching ratio for known hadronic transitions (3.9 ± 0.7) \% => $\Gamma=2.1 \pm 0.9 \mathrm{MeV}$
- Clear violation of QCDME expectations:
- the transitions $\Upsilon(5 S)$-> $h_{b}(1 P, 2 P)+\pi^{+} \pi^{-}$requires a heavy quark spin flip (M1)(E1)
- The usual formulation of QCDME needs modification, Structure in the transition amplitudes not found in the usual (KY) model.

Revisiting the QCDME Assumptions

- QCD multipole expansion (QCDME) in a nutshell
- Analogous to the QED multipole expansion with gluons replacing photons.

$$
\begin{gathered}
H_{\mathrm{QCD}}^{\mathrm{eff}}=H_{\mathrm{QCD}}^{(0)}+H_{\mathrm{QCD}}^{(1)}+H_{\mathrm{QCD}}^{(2)} \\
\begin{array}{c}
\text { zero for color singlet } \\
H_{\mathrm{QCD}}^{(2)} \equiv-\mathbf{d}_{a} \cdot \mathbf{E}^{a}(\mathbf{X}, \mathbf{t})-\mathbf{m}_{\mathbf{a}} \cdot \mathbf{B}^{\mathbf{a}}(\mathbf{X}, \mathbf{t})+\cdots \\
\mathrm{E} 1
\end{array} \quad \mathrm{M} 1 \quad \ldots
\end{gathered}
$$

- color singlet physical states means lowest order terms involve two gluon emission. So lowest multipoles E1 E1, E1 M1, E1 E2,
- factorize the heavy quark and light quark dynamics

$$
\begin{aligned}
& \mathcal{M}\left(\Phi_{i} \rightarrow \Phi_{f}+h\right)= \\
& \frac{1}{24} \sum_{K L} \frac{\left.\langle f| d_{m}^{i a}|K L\rangle\langle | K L\left|d_{m a}^{j}\right| i\right\rangle}{E_{i}-E_{K L}}\langle h| \mathbf{E}^{a i} \mathbf{E}_{a}^{j}|0\rangle \quad \text { + higher order multipole terms. }
\end{aligned}
$$

- assume a model for the heavy quarkonium states Фi, Фf and a model for the intermediate states |KL> hybrid states.
- use chiral effective lagrangians to parameterize the light hadronic system.

Revisiting the QCDME Assumptions

- Four options exist for breakdown of the QCDME

1. Because states above threshold are not compact the expansion becomes unreliable.
2. The model of hybrid intermediate states is insufficient as hybrid thresholds are crossed.
3. The coupling to decay channels adds new contributions. Transitions in the two meson channels (breaks the factorization assumption)
4. There are new exotic states (that are not hybrids) which appear in the intermediate state. (Again breaks the factorization assumpion)

- These options are ranked from least surprising (1) to most extreme (4). I will discuss (2) below. But Belle has observed new states that if confirmed will show that at least in the $\Upsilon(5 S)$ transitions the breakdown is caused by option (4).

$Z_{b}{ }^{ \pm}(10,610)$ and $Z_{b^{ \pm}}(10,650)$

- BELLE has observed two new charged states in the $\Upsilon(5 S) \rightarrow \Upsilon(n S)+\pi^{+} \pi^{-}(n=1,2,3)$ and the $\Upsilon(5 S)->h_{b}(n P)+\pi^{+} \pi^{-}(n=1,2)$ transitions [arXiv:1105.4583]

TABLE 1. Masses, widths, and relative phases of peaks observed in $h_{b} \pi$ and $\Upsilon \pi$ channels, from fits described in text.

	$h_{b}(1 \mathrm{P}) \boldsymbol{\pi}^{ \pm} \boldsymbol{\pi}^{\mp}$	$h_{b}(2 \mathrm{P}) \boldsymbol{\pi}^{ \pm} \boldsymbol{\pi}^{\mp}$	$\Upsilon(1 S) \pi^{ \pm} \pi^{\mp}$	$\Upsilon(2 S) \pi^{ \pm} \pi^{\mp}$	$\Upsilon(3 S) \pi^{ \pm} \pi^{\mp}$	Average
$M_{1}\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$10605.1 \pm 2.2+\frac{1.0}{}$	$10596 \pm 7_{-2}^{+5}$	$10609 \pm 3 \pm 2$	$10616 \pm 2_{-4}^{+3}$	$10608 \pm 2_{-2}^{+5}$	10608 ± 2.0
$\Gamma_{1}(\mathrm{MeV})$	$11.4_{-3.9}^{+4.5}{ }_{-1.2}{ }^{1.1}$	16_{-10}^{+16+14}	$22.9 \pm 7.3 \pm 2$	$21.1 \pm 4_{-3}^{+2}$	$12.2 \pm 1.7 \pm 4$	15.6 ± 2.5
$M_{2}\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$10654.5 \pm 2.5_{-1.9}^{+1.0}$	$10651 \pm 4 \pm 2$	$10660 \pm 6 \pm 2$	$10653 \pm 2 \pm 2$	$1-652 \pm 2 \pm 2$	10653 ± 1.5
$\begin{gathered} \Gamma_{2}(\mathrm{MeV}) \\ \phi\left({ }^{\circ}\right) \end{gathered}$		$\begin{gathered} 12_{-9}^{+11+8} \\ 255_{-72-183}^{+56}+2 \end{gathered}$	$12 \pm 10 \pm 3$ $53 \pm 61^{+5}$	$16.4 \pm 3.6_{-6}^{+4}$ $-20 \pm 18_{-9}^{+14}$	$10.9 \pm 2.6_{-2}^{+4}$ $6 \pm 24^{+23}$	14.4 ± 3.2

- $\Upsilon(5 S)$-> $Z_{b}{ }^{+}+\pi-$ and $Z_{b}->h_{b}(n P)+\pi^{+}$.
- Explicitly violates the factorization assumption.

$Z_{b}{ }^{ \pm}(10,610)$ and $Z_{b^{ \pm}}(10,650)$

- $\Upsilon(5 S)->\Upsilon(n S)+\pi^{+} \pi^{-}(n=1,2,3)$

Mizuk's talk
BELLE [arXiv:1105.4583]

- Zb in $\Upsilon(2 S), h_{b}(1 P)$ and $h_{b}(2 P)$ pion transitions

Spectrum of Low-Lying Hybrid States

- Born-Opperheimer Approimation

$$
\begin{gathered}
\Psi_{Q \bar{Q}(\vec{r})}=\frac{u_{n l}(r)}{r} \mathrm{Y}_{\operatorname{lm}}(\theta, \phi) \\
-\frac{1}{2 \mu} \frac{d^{2} u(r)}{d r^{2}}+\left\{\frac{\left\langle\mathbf{L}_{Q \bar{Q}}^{2}\right\rangle}{2 \mu r^{2}}+V_{Q \bar{Q}}(r)\right\} u(r)=E u(r)
\end{gathered}
$$

Spectroscopic notation of diatomic molecules

- Put the correct short (pNRQCD) and long distance (NG string) behaviour together using lattice QCD can determine the hybrid potentials
- Toy model - minimal parameters

$$
\begin{aligned}
& V_{n}(R)=\frac{\alpha_{s}}{6 R}+\sigma R \sqrt{1+\frac{2 \pi}{\sigma R^{2}}\left(n(R)-\frac{1}{24}(d-2)\right)}+V_{0} \quad(n>0) \\
& V_{\Sigma_{g}^{+}}(R)=-\frac{4 \alpha_{s}}{3 R}+\sigma R+V_{0} \quad(n=0) \\
& \text { Fixes } M c=1.84 \mathrm{GeV}, \sqrt{ } \sigma=.427 \mathrm{GeV}, \alpha_{s}=0.39
\end{aligned}
$$

$$
\begin{aligned}
n(R)= & {[n] \text { (string level) if no level crossing } } \\
& {\left.\left[n-2 \tanh \left(R_{0} / R\right)\right] \text { for } \Sigma^{-} \text {u potential (} n=3\right) }
\end{aligned}
$$

FIG. 2: Short-distance degeneracies and crossover in the spectrum. The solid curves are only shown for visualization. The dashed line marks a lower bound for the onset of mixing effects with glueball states which requires careful interpretation.

Spectrum of Low-Lying Hybrid States

- Only interested in states below 4.8 GeV for cc system.

Unlikely higher states will be narrow (DD, glueball+J/ Ψ, etc)

- Only $\Pi_{u}, \Sigma_{u}{ }^{-}$, and $\Sigma_{g}{ }^{+1}$ systems have sufficiently light states.

Spectrum of Low-Lying Hybrid States

- $\Pi_{u}(1 S) m=4.132 \mathrm{GeV} \quad \Pi_{u}(2 S) m=4.465 \mathrm{GeV} \quad \mathrm{J}^{\mathrm{PC}}=0^{++}, 0^{-}, 1^{+-}, 1^{-+}$
$\Pi_{u}(1 P) m=4.445 \mathrm{GeV} \quad \Pi_{u}(2 P) m=4.773 \mathrm{GeV} \quad \mathrm{J}^{P C}=1^{--}, 1^{++}, 0^{-+}, 0^{+-}, 1^{+-}, 1^{-+}, 2^{+-}, 2^{-+}$

- $\Sigma_{g}{ }^{+\prime}(1 S) \mathrm{m}=4.547 \mathrm{GeV} \quad \mathrm{J}^{\mathrm{PC}}=0^{-+}, 1^{--}$
- The $\Pi_{u}(1 P), \Pi_{u}(2 P)$ and $\Sigma_{g}{ }^{+\prime}(1 S)$ have 1^{--}states with spacing seen in the $Y(4260)$ system
- $\Sigma_{u}{ }^{-}(1 S) m=4.292 \mathrm{GeV} \quad \Sigma_{u}{ }^{-}(1 \mathrm{P}) \mathrm{m}=4.537 \mathrm{GeV} \quad \Sigma_{u}{ }^{-}(2 \mathrm{~S}) \mathrm{m}=4.772 \mathrm{GeV}$
- Numerous states with $C=+$ in the 4.2 GeV region.

Spectrum of Low-Lying Hybrid States

- The spectrum of bottomonium hybrids is completely predicted as well
- For the Π_{u} states

Hybrid Decays and Hadronic Transitions

- Information from hadronic transitions might be used to estimate decay rates for a hybrid 1^{--}state (H) to a $(Q \bar{Q})$ state + light hadrons.

- If one hybrid state dominates, branching ratios calculable.
e.g. $\mathrm{BR}\left(H->\psi^{\prime}+\pi^{+} \pi^{-}\right) / B R\left(H->J / \psi+\pi^{+} \pi^{-}\right)$.
- Mixing between $(Q \bar{Q})$ states and hybrid $(Q \bar{Q} g)$ states can be calculated using Lattice QCD.

Summary

- The wealth of precision data brings the QCDME approach for hadronic transitions into sharp focus.
- Below threshold many successes but some puzzles:
$r(n S) \rightarrow r(m S)+\pi \pi(3: 1),(4: 2)$ and η transitions
- We see new states and possibly a new spectroscopy: $X(3872), Y(4140), Y(4350), Y(4260), Y(4360), Y(4660)$, $Z_{c}{ }^{+}(4430), Z_{b}{ }^{+}(10610), Z_{b}{ }^{+}(10650), \ldots$
- Above threshold QCDME is inadequate as formulated. Incorporation of strong thresholds and possible new degrees of freedom required.
- Systematic inclusion of hybrid spectrum is possible.
- Future prospects bright:
- NRQCD and HQET allows scaling from c to b systems. This will eventually provide critical tests of our understanding of hadronic transitions.
- Lattice QCD will provide needed insight into theoretical issues.
- Answers will require require the new generation of heavy flavor experiments BES III, LHCb and Super-B factories.

Wish List

- Study all the above threshold resonances for all allowed hadronic transitions
- $\psi(4040), \psi(4160), \psi(4260), \psi(4350), \psi(4415)$ (BESIII, LHCb)
- $Y(5 S)$ and $Y(6 S)$
- Further studies of the $\Upsilon(3 S) \rightarrow Y(1 S)+\pi \pi$ including polarization
- Theory of η transitions.
- Observation of ${ }^{3} D_{2}$ and/or ${ }^{3} D_{3}$ in transitions to $\mathrm{J} / \psi+\pi \pi$ at LHCb

Backup Slides

$\Upsilon(3 S)$-> $\Upsilon(1 S)+\pi \pi$

Detailed study

$$
\mathcal{M}=S\left(\epsilon_{1} \cdot \epsilon_{2}\right)+D_{1} \ell_{\mu \nu} \frac{P^{\mu} P^{\nu}}{P^{2}}\left(\epsilon_{1} \cdot \epsilon_{2}\right)+D_{2} q_{\mu} q_{\nu} \epsilon^{\mu \nu}+D_{3} \ell_{\mu \nu} \epsilon^{\mu \nu}
$$

S-wave

$$
\begin{align*}
& S\left(\psi_{2} \rightarrow \pi^{+} \pi^{-} \psi_{1}\right)= \tag{25}\\
& -\frac{4 \pi^{2}}{b} \alpha_{0}^{(12)}\left[\left(1-\chi_{M}\right)\left(q^{2}+m^{2}\right)-\left(1+\chi_{M}\right) \kappa\left(1+\frac{2 m^{2}}{q^{2}}\right)\left(\frac{(q \cdot P)^{2}}{P^{2}}-\frac{1}{2} q^{2}\right)\right]\left(\psi_{1} \cdot \psi_{2}\right),
\end{align*}
$$

and three D-waves

$$
\begin{aligned}
& D_{1}\left(\psi_{2} \rightarrow \pi^{+} \pi^{-} \psi_{1}\right)=-\frac{4 \pi^{2}}{b} \alpha_{0}^{(12)}\left(1+\chi_{M}\right) \frac{3 \kappa}{2} \frac{\ell_{\mu \nu} P^{\mu} P^{\nu}}{P^{2}}\left(\psi_{1} \cdot \psi_{2}\right) \\
& D_{2}\left(\psi_{2} \rightarrow \pi^{+} \pi^{-} \psi_{1}\right)=\frac{4 \pi^{2}}{b} \alpha_{0}^{(12)}\left(\chi_{2}+\frac{3}{2} \chi_{M}\right) \frac{\kappa}{2}\left(1+\frac{2 m^{2}}{q^{2}}\right) q_{\mu} q_{\nu} \psi^{\mu \nu} \\
& D_{3}\left(\psi_{2} \rightarrow \pi^{+} \pi^{-} \psi_{1}\right)=\frac{4 \pi^{2}}{b} \alpha_{0}^{(12)}\left(\chi_{2}+\frac{3}{2} \chi_{M}\right) \frac{3 \kappa}{4} \ell_{\mu \nu} \psi^{\mu \nu} \\
& \psi^{\mu \nu}=\psi_{1}^{\mu} \psi_{2}^{\nu}+\psi_{1}^{\nu} \psi_{2}^{\mu}-(2 / 3)\left(\psi_{1} \cdot \psi_{2}\right)\left(P^{\mu} P^{\nu} / P^{2}-g^{\mu \nu}\right) \\
& \ell_{\mu \nu}=r_{\mu} r_{\nu}+\frac{1}{3}\left(1-\frac{4 m^{2}}{q^{2}}\right)\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right)
\end{aligned}
$$

If <M1-Ml> term significant, Voloshin [PR D74:054022(2006)]

$$
\begin{gathered}
P_{\mu}=M_{A} \delta_{\mu}^{0} \\
r_{\mu}=\left(k_{1 \mu}-k_{2 \mu}\right)
\end{gathered}
$$

spin independent
spin dependent
magnetic S-D mixing

$$
\chi_{M}=\frac{\alpha_{M}}{\alpha_{0}}, \quad \chi_{2}=\frac{\alpha_{2}}{\alpha_{0}}
$$

$O\left(v^{2}\right)$
expect noticeable presence of D2 and D3 in $Y(3 S)->Y+\pi \pi$

$$
M=\mathrm{A}\left(\varepsilon^{\prime} \cdot \varepsilon\right)\left(q^{2}-2 m_{\pi}^{2}\right)+\mathrm{B}\left(\varepsilon^{\prime} \cdot \varepsilon\right) E_{1} E_{2}+\mathrm{C}\left[\left(\varepsilon^{\prime} \cdot q_{1}\right)\left(\varepsilon \cdot q_{2}\right)+\left(\varepsilon^{\prime} \cdot q_{2}\right)\left(\varepsilon \cdot q_{1}\right)\right]
$$

- Hindered M1-M1 term $\Rightarrow C \approx 0$. Consistent with CLEO results.
- Small D-wave contributions
- Useful to look at polarization info.

Dubynskiy \& Voloshin [hep-ph/0707.1272]
$35->15$

CLEO

Fit, No \mathcal{C}			stat.	effcy. $\left(\pi^{ \pm}\right)$effcy. $\left(\pi^{0}\right)$	bg. sub.	
$\Upsilon(3 S) \rightarrow \Upsilon(1 S) \pi \pi$	$\Re(\mathcal{B} / \mathcal{A})$	-2.523	± 0.031	± 0.019	± 0.011	± 0.001
	$\Im(\mathcal{B} / \mathcal{A})$	± 1.189	± 0.051	± 0.026	± 0.018	± 0.015
$\Upsilon(2 S) \rightarrow \Upsilon(1 S) \pi \pi$	$\Re(\mathcal{B} / \mathcal{A})$	-0.753	± 0.064	± 0.059	± 0.035	± 0.112
	$\Im(\mathcal{B} / \mathcal{A})$	0.000	± 0.108	± 0.036	± 0.012	± 0.001
$\Upsilon(3 S) \rightarrow \Upsilon(2 S) \pi \pi$	$\Re(\mathcal{B} / \mathcal{A})$	-0.395	± 0.295		± 0.025	± 0.120
	$\Im(\mathcal{B} / \mathcal{A})$	± 0.001	± 1.053		± 0.180	± 0.001
Fit, float \mathcal{C}			stat.	effcy. $\left(\pi^{ \pm}\right)$effcy. $\left(\pi^{0}\right)$ bg. sub.		
$\Upsilon(3 S) \rightarrow \Upsilon(1 S) \pi \pi$	$\|\mathcal{B} / \mathcal{A}\|$	2.89	± 0.11	± 0.19	± 0.11	± 0.027
	$\|\mathcal{C} / \mathcal{A}\|$	0.45	± 0.18	± 0.28	± 0.20	± 0.093

Some Puzzles

- Reducing model dependence
- transitions well below the first string excitation $\left(E_{T H}\right)$, so expand

$$
\begin{aligned}
\mathcal{G}(E) & =\sum_{K L}|K L\rangle \frac{1}{E-E_{K L}}\langle K L| \\
& =\frac{1}{E-E_{\mathrm{TH}}}+\sum_{K L}\left(\frac{E_{K L}-E_{\mathrm{TH}}}{E-E_{\mathrm{TH}}}\right)|K L\rangle \frac{1}{E-E_{K L}}\langle K L|
\end{aligned}
$$

(a) $E \ll E_{T H}$
model dependence
(b) small overlap of low-lying $Q Q$ states

- for E1-E1 transitions suppressed with high |KL> states.

$$
\langle B| \mathbf{r}^{i} \chi^{a} \mathcal{G}\left(E_{i}\right) \mathbf{r}^{j} \chi_{b}|A\rangle=\frac{\delta^{i j} \delta_{b}^{a}}{E_{A}-E_{\mathrm{TH}}}\langle B| \mathbf{r}^{2}|A\rangle+\cdots
$$

- compare results with known transitions

$$
E_{T \mathrm{H}}^{\mathrm{c}_{\mathrm{c}}^{\bar{c}}}=4.5 \mathrm{GeV} \text { and } E_{\mathrm{TH}}^{b \bar{b}}=11.25 \mathrm{GeV} \text { assumed }
$$

Transition	$\mathrm{G}(\mathrm{GeV})^{7}$	$\langle f\| r^{2}\|i\rangle>(\mathrm{GeV})^{-2}$	$\Gamma(\exp)(\mathrm{keV})$	Γ (overlap) (keV)
$\psi(2 \mathrm{~S}) \rightarrow J / \psi+\pi^{+} \pi^{-}$	3.56×10^{-2}	3.36	102.3 ± 3.4	input $\left(\left\|C_{1}\right\|\right)$
$\Upsilon(2 \mathrm{~S}) \rightarrow \Upsilon(1 \mathrm{~S})+\pi^{+} \pi^{-}$	2.87×10^{-2}	1.19	5.79 ± 0.49	5.9
$\Upsilon(3 \mathrm{~S}) \rightarrow \Upsilon(1 \mathrm{~S})+\pi^{+} \pi^{-}$	1.09	2.37×10^{-1}	0.894 ± 0.084	12.9
$\Upsilon(3 \mathrm{~S}) \rightarrow \Upsilon(2 \mathrm{~S})+\pi^{+} \pi^{-}$	9.09×10^{-5}	3.70	0.498 ± 0.065	0.26
$\Upsilon(4 \mathrm{~S}) \rightarrow \Upsilon(1 \mathrm{~S})+\pi^{+} \pi^{-}$	5.58	9.74×10^{-2}	1.64 ± 0.25	19.9
$\Upsilon(4 \mathrm{~S}) \rightarrow \Upsilon(2 \mathrm{~S})+\pi^{+} \pi^{-}$	2.61×10^{-2}	4.64×10^{-1}	1.76 ± 0.34	2.1

OK only if overlap is sizable

Transition Ratio	Belle
$R(2,1)$	$1.47 \pm 0.15 \pm 0.20$
$R(3,1)$	$0.91 \pm 0.35 \pm 0.15$

$$
R(n, m) \equiv \frac{\Gamma\left(\Upsilon(5 S) \rightarrow \pi^{+} \pi^{-}+\Upsilon(n S)\right)}{\Gamma\left(\Upsilon(5 S) \rightarrow \pi^{+} \pi^{-}+\Upsilon(m S)\right)}
$$

phase space $\left(\mathrm{GeV}^{-7}\right)$

$$
\begin{array}{ll}
\Gamma\left(\Upsilon(5 S) \rightarrow \pi^{+} \pi^{-}+\Upsilon(n S)\right) \propto G(n)|f(n)|^{2} & G(n)=28.7,0 \\
\quad \text { with } f(n)=\left.\sum_{l} \frac{<\Upsilon(5 S)|r| \Sigma_{g}^{+^{\prime}}(l P)><\Sigma_{g}^{+^{\prime}}(l P)|r| \Upsilon(n S)>}{M_{\Upsilon(5 S)}-E_{l}(\Sigma)+i \Gamma_{l}(\Sigma)}\right|^{2} & \text { for } n=1,2,3
\end{array}
$$

theory - hadronic transition rates

- If lowest hybrid mass near $Y(5 \mathrm{~S})$ a few states dominate sum. Results sensitive to mass value.
- If hybrid mass $10.75+i(0.1)(G e V)$, obtain $R(2,1) \approx 1.1$ and $R(3,1) \approx 0.08$.
- Overall scale of transitions nearly two orders of magnitude larger than low-lying transitions.

Hybrid States and Lattice QCD

- Heavy quark limit: Born-Oppenheimer approximation

$$
-\frac{1}{2 \mu} \frac{d^{2} u(r)}{d r^{2}}+\left\{\frac{\left\langle L_{Q \bar{Q}}^{2}\right\rangle}{2 \mu r^{2}}+V_{Q \bar{Q}}(r)\right\} u(r)=E u(r) \quad \Psi_{Q \bar{Q}}(\vec{r})=\frac{u_{n l}(r)}{r} \mathrm{Y}_{\operatorname{lm}}(\theta, \phi)
$$

Spectroscopic notation of diatomic molecules

$$
\begin{array}{ll}
\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}, \quad \boldsymbol{S}=\boldsymbol{s}_{Q}+\boldsymbol{s}_{\bar{Q}}, \quad \boldsymbol{L}=\boldsymbol{L}_{Q \bar{Q}}+\boldsymbol{J}_{\varepsilon} \\
\left\langle L_{r} J_{g r}\right\rangle=\left\langle J_{g r}^{2}\right\rangle=\Lambda^{2} \quad\left\langle\boldsymbol{L}_{Q \bar{Q}}^{2}\right\rangle=L(L+1)-2 \Lambda^{2}+\left\langle\mathbf{J}_{g}^{2}\right\rangle . \quad<J_{g}^{2}>=0,2,6, \ldots \\
\Lambda=0,1,2, \ldots \text { denoted } \Sigma, \Pi, \Delta, \ldots . \quad \text { naively } 0,1,2, \ldots \text { valence gluons }
\end{array}
$$

$$
P=\varepsilon(-1)^{L+\Lambda+1}, \quad C=\eta \varepsilon(-1)^{L+S+\Lambda} .
$$

$\eta= \pm 1$ (symmetry under combined charge conjugation and spatial inversion) denoted $g(+1)$ or $u(-1)$
$|L S J M ; \lambda \eta\rangle+\varepsilon|L S J M ;-\lambda \eta\rangle$
with $\varepsilon=+1$ for Σ^{+}and $\varepsilon=-1$ for Σ^{-}both signs for $\Lambda>0$.

Determining the Hybrid Potentials

- Short distance ($\mathrm{R}<0.25 \mathrm{fm}$)

The short distance behavior of PNRQCD is confirmed by lattice studies of hybrid potentials and the relation to gluelumps is computed.
G. S. Bali and A. Pineda, Phys. Rev. D 69, 094001 (2004)

Figure 12: Splitting between the Π_{u} and the Σ_{g}^{+}potentials and the comparison with Eq. (65) for $\nu=\nu_{i}\left[\right.$ see Eq. (16)] at $\nu_{f}=2.5 r_{0}^{-1} \cdot r_{0}\left[\left(V_{o, \mathrm{RS}}-V_{s, \mathrm{RS}}\right)(r)+\Lambda_{B}^{\mathrm{RS}}\right]$ is plotted at tree level (dashed line), one-loop (dashed-dotted line), two loops (dotted line) and three loops (estimate) plus the leading single ultrasoft log (solid line).
A. Pineda [hep-lat/0702019]

The corrections of order R^{2} split the gluelump degeneracies:
Roughly speaking $V(R)=1 / 6 \alpha(R) / R+C_{0}$ (gluelump state) $+C_{2}(R) R^{2}+\ldots$

Comparing Toy Model to Lattice Results

Comparing this model (dashed lines) to the parameterization of The fits to Juge, Kuti and Morningstar lattice results (thanks to Juge) (solid lines) one finds fairly good agreement in the region ($0.25 \mathrm{fm}<R<2 \mathrm{fm}$)

