Interplay of quark and meson degrees of freedom in a near-threshold resonance

A. Nefediev (ITEP, Moscow)

Based on
V.Baru, C.Hanhart, Yu.Kalashnikova, A.Kudryavtsev, A.N. Eur.Phys.J. A44, 93 (2010)
C.Hanhart, Yu.Kalashnikova, A.N., Eur.Phys.J. A47, 101 (2011)

Motivation

A. Nefediev

Motivation

- Recent intriguing progress in charmonia and bottomonia spectroscopy calls for adequate phenomenological tools for data analysis

Motivation

- Recent intriguing progress in charmonia and bottomonia spectroscopy calls for adequate phenomenological tools for data analysis
- Many newly observed resonances reside near two-body mesonic thresholds

Motivation

- Recent intriguing progress in charmonia and bottomonia spectroscopy calls for adequate phenomenological tools for data analysis
- Many newly observed resonances reside near two-body mesonic thresholds
- so that both quark and meson dynamics affect their properties

Motivation

- Recent intriguing progress in charmonia and bottomonia spectroscopy calls for adequate phenomenological tools for data analysis
- Many newly observed resonances reside near two-body mesonic thresholds
- so that both quark and meson dynamics affect their properties
- and the interplay of quark and meson degrees of freedom may result in quite peculiar properties of such near-threshold resonances

Line shapes

A. Nefediev

Line shapes

- An isolated resonance \Longrightarrow Breit-Wigner shape with a constant width.

Line shapes

- An isolated resonance \Longrightarrow Breit-Wigner shape with a constant width.
- Resonance attracted to an S-wave threshold \Longrightarrow Flatté distribution with momentum-dependent width:

$$
f(E) \sim \frac{1}{E-E_{f}+\frac{i}{2} \Gamma(k)} \quad \Gamma(k)=g_{f} k \propto \sqrt{E}
$$

Line shapes

- An isolated resonance \Longrightarrow Breit-Wigner shape with a constant width.
- Resonance attracted to an S-wave threshold \Longrightarrow Flatté distribution with momentum-dependent width:

$$
f(E) \sim \frac{1}{E-E_{f}+\frac{i}{2} \Gamma(k)} \quad \Gamma(k)=g_{f} k \propto \sqrt{E}
$$

- ... with the simple multi-channel generalisation

$$
f(E) \sim \frac{1}{E-E_{f}+\frac{i}{2} \sum_{i} g_{f}^{(i)} k_{i}}
$$

Line shapes

- An isolated resonance \Longrightarrow Breit-Wigner shape with a constant width.
- Resonance attracted to an S-wave threshold \Longrightarrow Flatté distribution with momentum-dependent width:

$$
f(E) \sim \frac{1}{E-E_{f}+\frac{i}{2} \Gamma(k)} \quad \Gamma(k)=g_{f} k \propto \sqrt{E}
$$

- ... with the simple multi-channel generalisation

$$
f(E) \sim \frac{1}{E-E_{f}+\frac{i}{2} \sum_{i} g_{f}^{(i)} k_{i}}
$$

- Interplay of quark and meson degrees of freedom takes place \Longrightarrow ???

The problem

What is the generalisation of the simple Flatté formulae to account for the interplay of quark and meson degrees of freedom in a near-threshold resonance?

Essentials of the formalism

$$
\begin{gathered}
\hat{\mathcal{H}}|X\rangle=E|X\rangle \\
|X\rangle=\left(\begin{array}{c}
c\left|\psi_{0}\right\rangle \\
\chi_{1}(\mathbf{p})\left|M_{11} M_{12}\right\rangle \\
\chi_{2}(\mathbf{p})\left|M_{21} M_{22}\right\rangle \\
\cdots
\end{array}\right) \quad \hat{\mathcal{H}}=\left(\begin{array}{cccc}
E_{0} & f_{1} & f_{2} & \cdots \\
f_{1} & H_{h_{1}} & V_{12} & \cdots \\
f_{2} & V_{21} & H_{h_{2}} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right) \\
H_{h_{i}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)=\left(\Delta_{i}+\frac{p^{2}}{2 \mu_{i}}\right) \delta^{(3)}\left(\mathbf{p}-\mathbf{p}^{\prime}\right)+V_{i i}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)
\end{gathered}
$$

$V_{i j}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)$ - direct mesonic interactions
$f_{i}(\mathbf{p})$ - transition between quark state and i-th mesonic state
$\Delta_{i}=\left(m_{i 1}+m_{i 2}\right)-\left(m_{11}+m_{12}\right)-$ splitting between thresholds

Lippmann-Schwinger equation for the t-matrix

$$
\begin{aligned}
& \left\{\begin{array}{l}
t_{00}=-\sum_{k} \int f_{k} S_{k} t_{k 0} d^{3} q \\
t_{i 0}=f_{i}-f_{i} S_{0} t_{00}-\sum_{k} \int V_{i k} S_{k} t_{k 0} d^{3} q \\
t_{0 i}=f_{i}-\sum_{k} \int f_{k} S_{k} t_{k i} d^{3} q \\
t_{i j}=V_{i j}-f_{i} S_{0} t_{0 j}-\sum_{k} \int V_{i k} S_{k} t_{k j} d^{3} q
\end{array}\right. \\
& S_{0}=\frac{1}{E_{0}-E-i 0} \quad S_{i}=\frac{1}{\Delta_{i}+\frac{p^{2}}{2 \mu_{i}}-E-i 0}
\end{aligned}
$$

Exact analytic solution for the t-matrix

$$
\begin{aligned}
& t_{00}=-\frac{\left(E-E_{0}\right) \mathcal{G}}{E-E_{0}+\mathcal{G}} \\
& t_{0 i}=\frac{\left(E-E_{0}\right) \bar{\phi}_{i}}{E-E_{0}+\mathcal{G}} \\
& t_{i 0}=\frac{\left(E-E_{0}\right) \phi_{i}}{E-E_{0}+\mathcal{G}} \\
& t_{i j}=t_{i j}^{V}+\frac{\phi_{i} \bar{\phi}_{j}}{E-E_{0}+\mathcal{G}} \\
& \phi_{i}=f_{i}-\sum_{j} \int t_{i j}^{V} S_{j} f_{j} d^{3} q \quad \bar{\phi}_{i}=f_{i}-\sum_{j} \int S_{j} f_{j} t_{j i}^{V} d^{3} q \\
& \mathcal{G}=\sum_{i} \int f_{i}^{2} S_{i} d^{3} q-\sum_{i, j} \int f_{i} S_{i} t_{i j}^{V} S_{j} f_{j} d^{3} k d^{3} q
\end{aligned}
$$

Direct interaction t-matrix t^{V}

$$
t_{i j}^{V}=v_{i j}-\sum_{k} \int v_{i k} S_{k} t_{k j}^{V} d^{3} q
$$

Direct interaction t-matrix t^{V}

$$
t_{i j}^{V}=V_{i j}-\sum_{k} \int V_{i k} S_{k} t_{k j}^{V} d^{3} q
$$

Near threshold t^{V} can be taken in the scattering length approximation (see also Artoisenet, Braaten, Kang, PRD 82 (2010) 014013)

Direct interaction t-matrix t^{V}

$$
t_{i j}^{V}=V_{i j}-\sum_{k} \int V_{i k} S_{k} t_{k j}^{V} d^{3} q
$$

Near threshold t^{V} can be taken in the scattering length approximation (see also Artoisenet, Braaten, Kang, PRD 82 (2010) 014013)
For two channels ($\Delta_{1}=0, \Delta_{2} \equiv \Delta>0, \mu_{1} \approx \mu_{2}=\mu$):

$$
\begin{gathered}
t^{v}=\frac{1}{2 \pi^{2} \mu} \frac{1}{\operatorname{Det}}\left(\begin{array}{cc}
\gamma_{s}+\gamma_{t}+2 i k_{2} & \gamma_{t}-\gamma_{s} \\
\gamma_{t}-\gamma_{s} & \gamma_{s}+\gamma_{t}+2 i k_{1}
\end{array}\right) \\
\text { Det }=4\left(\gamma_{s} \gamma_{t}-k_{1} k_{2}\right)+2 i\left(\gamma_{s}+\gamma_{t}\right)\left(k_{1}+k_{2}\right) \\
k_{1}=\sqrt{2 \mu E} \Theta(E)+i \sqrt{-2 \mu E} \Theta(-E) \\
k_{2}=\sqrt{2 \mu(E-\Delta)} \Theta(E-\Delta)+i \sqrt{2 \mu(\Delta-E)} \Theta(\Delta-E)
\end{gathered}
$$

Counting parameters...

A. Nefediev

Counting parameters...

(1) Elementary state mass E_{0}

Counting parameters...

(1) Elementary state mass E_{0}
(2) Isosinglet quark state:

$$
f_{1}(\mathbf{p})=f_{2}(\mathbf{p})=f(\mathbf{p}) \Longrightarrow f_{0} \equiv f(0)
$$

Counting parameters...

(1) Elementary state mass E_{0}
(2) Isosinglet quark state:

$$
f_{1}(\mathbf{p})=f_{2}(\mathbf{p})=f(\mathbf{p}) \Longrightarrow f_{0} \equiv f(0)
$$

(3) Range parameters R and R^{\prime} :

$$
\begin{aligned}
& \int f^{2}(\mathbf{q}) S_{i}(\mathbf{q}) d^{3} q=f_{0}^{2}\left(R+4 i \pi^{2} \mu k_{i}\right) \\
& \int f(\mathbf{q}) S_{i}(\mathbf{q}) d^{3} q=f_{0}\left(R^{\prime}+4 i \pi^{2} \mu k_{i}\right)
\end{aligned}
$$

Counting parameters...

(1) Elementary state mass E_{0}
(2) Isosinglet quark state:

$$
f_{1}(\mathbf{p})=f_{2}(\mathbf{p})=f(\mathbf{p}) \Longrightarrow f_{0} \equiv f(0)
$$

(3) Range parameters R and R^{\prime} :

$$
\begin{aligned}
& \int f^{2}(\mathbf{q}) S_{i}(\mathbf{q}) d^{3} q=f_{0}^{2}\left(R+4 i \pi^{2} \mu k_{i}\right) \\
& \int f(\mathbf{q}) S_{i}(\mathbf{q}) d^{3} q=f_{0}\left(R^{\prime}+4 i \pi^{2} \mu k_{i}\right)
\end{aligned}
$$

(9) Direct interaction parameters γ_{s} and γ_{t}

Counting parameters...

(1) Elementary state mass E_{0}
(2) Isosinglet quark state:

$$
f_{1}(\mathbf{p})=f_{2}(\mathbf{p})=f(\mathbf{p}) \Longrightarrow f_{0} \equiv f(0)
$$

(3) Range parameters R and R^{\prime} :

$$
\begin{aligned}
& \int f^{2}(\mathbf{q}) S_{i}(\mathbf{q}) d^{3} q=f_{0}^{2}\left(R+4 i \pi^{2} \mu k_{i}\right) \\
& \int f(\mathbf{q}) S_{i}(\mathbf{q}) d^{3} q=f_{0}\left(R^{\prime}+4 i \pi^{2} \mu k_{i}\right)
\end{aligned}
$$

(9) Direct interaction parameters γ_{s} and γ_{t}
$\left\{E_{0}, f_{0}, R, R^{\prime}, \gamma_{s}, \gamma_{t}\right\}$

Counting parameters...

(1) Elementary state mass E_{0}
(2) Isosinglet quark state:

$$
f_{1}(\mathbf{p})=f_{2}(\mathbf{p})=f(\mathbf{p}) \Longrightarrow f_{0} \equiv f(0)
$$

(3) Range parameters R and R^{\prime} :

$$
\begin{aligned}
& \int f^{2}(\mathbf{q}) S_{i}(\mathbf{q}) d^{3} q=f_{0}^{2}\left(R+4 i \pi^{2} \mu k_{i}\right) \\
& \int f(\mathbf{q}) S_{i}(\mathbf{q}) d^{3} q=f_{0}\left(R^{\prime}+4 i \pi^{2} \mu k_{i}\right)
\end{aligned}
$$

(9) Direct interaction parameters γ_{s} and γ_{t}
$\left\{E_{0}, f_{0}, R, R^{\prime}, \gamma_{s}, \gamma_{t}\right\} \Longrightarrow\left\{E_{f}, g_{f}, \gamma_{s}, \gamma_{t}\right\}$

Solution of the Lippmann-Schwinger equation

$$
\begin{gathered}
t_{s}=\frac{1}{2}\left(t_{11}+t_{22}\right)+t_{12}=\frac{\left(E-E_{C}\right)\left(2 \gamma_{t}+i\left(k_{1}+k_{2}\right)\right)}{4 \pi^{2} \mu D(E)} \\
t_{t}=\frac{1}{2}\left(t_{11}+t_{22}\right)-t_{12}=\frac{2 \gamma_{s}\left(E-E_{f}\right)+i\left(k_{1}+k_{2}\right)\left(E-E_{C}\right)}{4 \pi^{2} \mu D(E)} \\
t_{s t}=\frac{1}{2}\left(t_{11}-t_{22}\right)=\frac{i\left(k_{2}-k_{1}\right)\left(E-E_{C}\right)}{4 \pi^{2} \mu D(E)} \\
D(E)=\gamma_{s}\left(2 \gamma_{t}+i\left(k_{1}+k_{2}\right)\right)\left(E-E_{f}\right)-\left(2 k_{1} k_{2}-i \gamma_{t}\left(k_{1}+k_{2}\right)\right)\left(E-E_{C}\right) \\
E_{C}=E_{f}-\frac{1}{2} g_{f} \gamma_{s}
\end{gathered}
$$

Limiting cases

A. Nefediev

Limiting cases

- E_{C} is far away from the thresholds $\left(\left|E_{C}\right| \gg \Delta\right)$:

$$
\left|\gamma_{s}\right| \gg \frac{\Delta}{g_{f}} \quad\left(\left|\gamma_{s}\right| \rightarrow \infty\right)
$$

Limiting cases

- E_{C} is far away from the thresholds $\left(\left|E_{C}\right| \gg \Delta\right)$:

$$
\left|\gamma_{s}\right| \gg \frac{\Delta}{g_{f}} \quad\left(\left|\gamma_{s}\right| \rightarrow \infty\right)
$$

- k_{1} and k_{2} are disentangled ($k_{1} k_{2}$ term is suppressed):

$$
\left|\gamma_{t}\right| \gg \sqrt{\mu \Delta} \quad\left(\left|\gamma_{t}\right| \rightarrow \infty\right)
$$

Limiting cases

- E_{C} is far away from the thresholds $\left(\left|E_{C}\right| \gg \Delta\right)$:

$$
\left|\gamma_{s}\right| \gg \frac{\Delta}{g_{f}} \quad\left(\left|\gamma_{s}\right| \rightarrow \infty\right)
$$

- k_{1} and k_{2} are disentangled ($k_{1} k_{2}$ term is suppressed):

$$
\left|\gamma_{t}\right| \gg \sqrt{\mu \Delta} \quad\left(\left|\gamma_{t}\right| \rightarrow \infty\right)
$$

(1) Case (i): $\left|\gamma_{s}\right| \rightarrow \infty$ and $\left|\gamma_{t}\right| \rightarrow \infty$
(2) Case (ii): small γ_{s} and $\left|\gamma_{t}\right| \rightarrow \infty$
(0) Case (iii): $\left|\gamma_{s}\right| \rightarrow \infty$ and small γ_{t}
(- Case (iv): both γ_{s} and γ_{t} are small

A. Nefediev

$\mu=966.5 \mathrm{MeV} \quad \Delta=8.1 \mathrm{MeV} \quad g_{f}=0.25$

Case	γ_{s}, MeV	γ_{t}, MeV	E_{f}, MeV
(i)	∞	∞	-10.47
(ii)	-30	∞	-3.22
(iii)	∞	-30	-7.77
(iv)	-30	-30	-2.97

E_{f} is fixed to have a bound state at $E=-0.5 \mathrm{MeV}$

$$
\mu=966.5 \mathrm{MeV} \quad \Delta=8.1 \mathrm{MeV} \quad g_{f}=0.25
$$

Case	γ_{s}, MeV	γ_{t}, MeV	E_{f}, MeV
(i)	∞	∞	-10.47
(ii)	-30	∞	-3.22
(iii)	∞	-30	-7.77
(iv)	-30	-30	-2.97

E_{f} is fixed to have a bound state at $E=-0.5 \mathrm{MeV}$

Parameter sets are similar to those describing the X (3872) charmonium, however these are not fits for the $X(3872)$ data

Complex ω-plane

$$
\begin{gathered}
k_{1}=\sqrt{\frac{\mu_{1} \Delta}{2}}\left(\omega+\frac{1}{\omega}\right) \quad k_{2}=\sqrt{\frac{\mu_{2} \Delta}{2}}\left(\omega-\frac{1}{\omega}\right), \\
E=\frac{k_{1}^{2}}{2 \mu_{1}}=\frac{k_{2}^{2}}{2 \mu_{2}}+\Delta=\frac{\Delta}{4}\left(\omega^{2}+\frac{1}{\omega^{2}}+2\right)
\end{gathered}
$$

I: $\quad \operatorname{Im} k_{1}>0, \quad \operatorname{Im} k_{2}>0$
II: $\quad \operatorname{Im} k_{1}<0, \quad \operatorname{Im} k_{2}>0$
III : $\quad \operatorname{Im} k_{1}>0, \quad \operatorname{Im} k_{2}<0$
IV : $\quad \operatorname{Im} k_{1}<0, \quad \operatorname{Im} k_{2}<0$
Thick solid line corresponds to the real values of the energy E on the first sheet

Pole positions in the complex ω-plane

Case (iii)

Case (iv)

Production rates

- Production from a point-like source
- Stable constituents (no events below threshold)
- No interference between production mechanisms
- Hadronic channel 1 in the final state
- Normalisation: $\int_{0}^{10 \mathrm{MeV}}(d B r / d E) d E=1$

$$
\begin{aligned}
\frac{d B r_{q}}{d E} & \propto\left|\frac{1}{E-E_{0}} t_{01}(E)\right|^{2} \Theta(E) \sqrt{E} \\
\frac{d B r_{h_{1}}}{d E} & \propto\left|t_{11}(E)\right|^{2} \Theta(E) \sqrt{E} \\
\frac{d B r_{h_{2}}}{d E} & \propto\left|t_{21}(E)\right|^{2} \Theta(E) \sqrt{E}
\end{aligned}
$$

Production through the quark component

(1) Solid line: $\left|\gamma_{s}\right| \rightarrow \infty$ and $\left|\gamma_{t}\right| \rightarrow \infty$
(2) Dashed line: $\gamma_{s}=-30 \mathrm{MeV}$ and $\left|\gamma_{t}\right| \rightarrow \infty$
$\mathrm{dBr}_{q} / \mathrm{dE}\left[\mathrm{MeV}^{-1}\right]$

(3) Dashed-dotted line: $\left|\gamma_{s}\right| \rightarrow \infty$ and $\gamma_{t}=-30 \mathrm{MeV}$
(9) Dotted line: both $\gamma_{s}=\gamma_{t}=-30 \mathrm{MeV}$

Production through the first hadronic component

(1) Solid line: $\left|\gamma_{s}\right| \rightarrow \infty$ and $\left|\gamma_{t}\right| \rightarrow \infty$
(2) Dashed line: $\gamma_{s}=-30 \mathrm{MeV}$ and $\left|\gamma_{t}\right| \rightarrow \infty$
(3) Dashed-dotted line: $\left|\gamma_{s}\right| \rightarrow \infty$ and $\gamma_{t}=-30 \mathrm{MeV}$
(9) Dotted line: both $\gamma_{s}=\gamma_{t}=-30 \mathrm{MeV}$

A. Nefediev

Production through the second hadronic component

(1) Solid line: $\left|\gamma_{s}\right| \rightarrow \infty$ and $\left|\gamma_{t}\right| \rightarrow \infty$
(2) Dashed line: $\gamma_{s}=-30 \mathrm{MeV}$ and $\left|\gamma_{t}\right| \rightarrow \infty$
(3) Dashed-dotted line: $\left|\gamma_{s}\right| \rightarrow \infty$ and $\gamma_{t}=-30 \mathrm{MeV}$
(9) Dotted line: both $\gamma_{s}=\gamma_{t}=-30 \mathrm{MeV}$
$\mathrm{dBr}_{h_{2}} / \mathrm{dE}\left[\mathrm{MeV}^{-1}\right]$

Summary

A. Nefediev

Summary

- If both quark and meson dynamics are present in a near-threshold resonance,

Summary

- If both quark and meson dynamics are present in a near-threshold resonance,
- they both generate simultaneously near-threshold poles in the S-matrix, and

Summary

- If both quark and meson dynamics are present in a near-threshold resonance,
- they both generate simultaneously near-threshold poles in the S-matrix, and
- there is no conspiracy between different production mechanisms
- If both quark and meson dynamics are present in a near-threshold resonance,
- they both generate simultaneously near-threshold poles in the S-matrix, and
- there is no conspiracy between different production mechanisms

then

the interplay of quark and meson degrees of freedom
can produce line shapes of a very peculiar form

Conclusions

A. Nefediev

Conclusions

- The general formalism just presented (or one of its limits) can be used to describe date with irregularities.

Conclusions

- The general formalism just presented (or one of its limits) can be used to describe date with irregularities.
- With the full expressions derived one can proceed beyond the near-threshold region.

Conclusions

- The general formalism just presented (or one of its limits) can be used to describe date with irregularities.
- With the full expressions derived one can proceed beyond the near-threshold region.
- If data do not exhibit irregular behaviour, this formalism is useful to study to what extent (statistics, resolution, binning procedure, and so on) the data would need to improve to get sensitive to the structures potentially present.

