Charmonium Spectroscopy at BESIII Hu Liu (on behalf of the BESIII Collaboration) Institute of High Energy Physics, Beijing, China 8th QWG @GSI 05-10-2011 ## **Outline** - **❖** Brief Introduction of **BEPCII & BESIII** - ❖ Measurement of h_c at BESIII - Precision measurement of the η_c properties - ❖ The first observation of the M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$ - Summary ## BEPCII & BESIII #### Large data samples **Updated detectors** $$E_{cm} = 2\sim 4.6 GeV$$ $L^{peak} = 10^{33}/(cm^2 \cdot s)$ ### **BESIII** is excellent! Abundant potential physics with BESIII. ## **BESIII data samples** | Energy points | luminosity | Number of resonant events | | |-----------------------------------|----------------------|---------------------------|--| | J/ ψ | 81 pb ⁻¹ | 225 million | | | Ψ' | 163 pb ⁻¹ | 106 million | | | 3.65 GeV | 44 pb ⁻¹ | A unique facility | | | ψ(3770) | 2.9 fb ⁻¹ | and Open many physics | | | 4.01 GeV (ψ (4040)) | 0.5 fb ⁻¹ | opportunity! | | ## Charmonium Spectrum below open charm threshold IHEP # Measurement of h_c at BESIII # h_c(¹P₁) singlet 1P wave state - Spin singlet P wave (S=0, L=1). - Hyperfine mass splitting is an indication of spin-spin interaction: $$\Delta M_{hf}(1P) = M(h_c)-1/9(M(\chi_{c0})+3M(\chi_{c1})+5M(\chi_{c2})).$$ - \gt E835 found evidence for h_c in pp→h_c→γη_c. - > CLEO-c - ⇒ observed h_c in ψ'→ π ⁰h_c, h_c→ γ η_c ΔM_{hf}(1P) = 0.08±0.18±0.12MeV/c². - Predicted for a long time - Hyperfine splitting of 1P states (spin-spin) - > iso-spin forbidden transition $\psi' \rightarrow \pi^0 h_c$ - Mass and product Brs from CLEO-c [PRL101.182003(2008)] | | Inclusive | Exclusive | |--|--------------------------|-----------------------------| | Counts | 1146 ± 118 | 136 ± 14 | | Significance | 10.0σ | 13.2σ | | The state of s | $3525.35\pm0.23\pm0.15$ | $3525.21 \pm 0.27 \pm 0.14$ | | $\mathcal{B}_1 \times \mathcal{B}_2 \times 10^4$ | $4.22 \pm 0.44 \pm 0.52$ | $4.15 \pm 0.48 \pm 0.77$ | # Measurement of h_c (inclusive) **BESIII Collaboration: PRL104, 132002, (2010)** - \triangleright Select inclusive π^0 in ψ' decays $(\psi' \rightarrow \pi^0 h_c)$ - Select E1-photon in h_c→γη_c (E1 tagged) or not (E1 untagged/semi-inclusive) - E1-tagged selection gives $$M(h_c)=3525.40\pm0.13\pm0.18MeV$$ $$(\Delta M_{hf}(1P)=0.10\pm0.13\pm0.18 MeV/c^2)$$ $$\Gamma(h_c)=0.73\pm0.45\pm0.28 \text{MeV}$$ Br(ψ' $$\rightarrow$$ π⁰h_c)×Br(h_c \rightarrow γη_c)= (4.58±0.40±0.50) ×10⁻⁴ - $N(h_c) = 10353 \pm 1097$ - E1-untagged together with - tagged selection gives the first measurement Br($$\psi' \rightarrow \pi^0 h_c$$) =(8.4±1.3±1.0) ×10⁻⁴ Br($h_c \rightarrow \gamma \eta_c$) =(54.3±6.7±5.2)% ## Measurement of the h_c (exclusive) #### Summed π^0 recoil mass #### 16 decay modes are studied: $\psi' \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c, \eta_c \rightarrow X_i$ X_i: ppbar, 4π, 4K, 2π2K, ppbarππ, 6π, 2K4π, KKπ⁰, ppbarπ⁰, KsKπ, KsK3π, ππη, KKη, 4πη, 2π2π⁰, 4π2π⁰ Simultaneous fit to π^0 recoiling mass $M(h_c) = 3525.31 \pm 0.11 \pm 0.15$ MeV $\Gamma(h_c) = 0.70 \pm 0.28 \pm 0.25$ MeV $N = 832 \pm 35$ BESIII preliminary $\chi^2/d.o.f. = 32/46$ Consistent with BESIII inclusive results PRL104,132002(2010) CLEOc exlusive results $M(h_c)=3525.21\pm0.27\pm0.14 \text{ MeV/c}^2$ $N = 136 \pm 14$ PRL101, 182003(2008) Slide 9 # Precision measurement of the η_c Mass and Width # ψ $\rightarrow \gamma \eta_c \rightarrow \gamma X_i$ - The lowest lying S-wave spin singlet charmonium η_c was discovered in 1980 by MarkII. - Earlier experiments using J/ψ radiative transition gives $M(\eta_c)\sim 2978.0 MeV/c^2$, $\Gamma(\eta_c)\sim 10 MeV$. - Recent studies using the two-photon processes gives $M(\eta_c)=2983.1\pm1.0~MeV/c^2$, $\Gamma(\eta_c)=31.3\pm1.9~MeV$. - The most recent study from CLEO-c pointed out the distortion of the η_c line shape in ψ ' decays. - \triangleright Measurement of the η_c properties at BESIII - ◆Data sample: 106M ψ' events, 44pb⁻¹ continuum data at 3.65 GeV - ♦ Decay modes X_i : KsKπ, K+K- π^0 , η $\pi^+\pi^-$, KsK3 π , K+K- $\pi^+\pi^-\pi^0$, $3(\pi^+\pi^-)$, where Ks $\rightarrow \pi^+\pi^-$, η $\rightarrow \gamma\gamma$, $\pi^0 \rightarrow \gamma\gamma$ # Backgrounds for $\psi' \rightarrow \gamma \eta_c \rightarrow \gamma X_i$ #### $\rightarrow \psi' \rightarrow \pi^0 X_i$ With the optimized selection, the mass spectra for $\pi^0 X_i$ events are measured in data and scaled according to the full simulation to estimate the contribution in $\gamma \eta_c$ candidates. - \triangleright Non-resonant contribution $\psi' \rightarrow \gamma X_i$ exactly the same final states, can not be removed. - Rare backgrounds Production rate or efficiency is very low, estimated based on the inclusive MC. Continuum events Estimated by using the 44pb⁻¹ data taken at 3.65GeV. IHEP # η LineShape @CLEO-c - CLEO-c observed an abnormal η_c line shape - It is explained by a M1 transition factor finally in the published paper Phys. Rev. Lett. 102, 011801 (2009) | HEP # η_c LineShape @BESIII The abnormal line shape is also observed in BESIII exclusive channels with larger statistics - We also found only M1 factor cannot explain it - The interference between η_c resonance and the same final states is proposed Slide 14 # Mass spectrum Fitting $$PDF = \sigma \otimes (\varepsilon \cdot |e^{i\varphi} \cdot f_1 \cdot BW + \alpha \cdot BG|^2 \cdot f_2)$$ σ : resolution, φ: interference phase angle ε : efficiency α: fraction f₁ f₂: M1 transition factor $$(E_{\gamma}^{4}\cdot E_{\gamma}^{3}=E_{\gamma}^{7} \text{ for } \psi' \rightarrow \gamma \eta_{c})$$ BG: background with the same final states ### The simultaneous Fit The η_c mass, width and interference phase ϕ are constrained to be the same. Simultaneous fit with modified Breit-Wigner (hindered M1) with considering interference between η_c and non- η_c decays # Mass and Width of η_c #### **BESIII** preliminary - mass = $2984.4 \pm 0.5_{stat} \pm 0.6_{syst}$ MeV/c² - width = $30.5 \pm 1.0_{\text{stat}} \pm 0.9_{\text{syst}}$ MeV **Interference is necessary!** ### The world average in PDG2010 was using earlier results. # The first observation of the M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$ ### $\eta_c(2S)$ (never confirmed in M1 transition) - First "observation" by Crystal Ball in 1982 (M=3.592, Br=0.2%-1.3% from ψ ' $\rightarrow \gamma X$, never confirmed by other experiments.) - > experimental challenge: search for real photons ~50MeV - \triangleright Published results about $\eta_c(2S)$ observation: | Experiment | $M [\mathrm{MeV}]$ | $\Gamma [{ m MeV}]$ | Process | |------------|--------------------------------|------------------------|--| | Belle [1] | $3654 \pm 6 \pm 8$ | | $B^{\pm} \to K^{\pm} \eta_c(2S), \eta_c(2S) \to K_S K^{\pm} \pi^{\top}$ | | CLEO $[2]$ | $3642.9 \pm 3.1 \pm 1.5$ | $6.3 \pm 12.4 \pm 4.0$ | $\gamma \gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$ | | BaBar [3] | $3630.8 \pm 3.4 \pm 1.0$ | $17.0 \pm 8.3 \pm 2.5$ | $\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm}\pi^{\mp}$ | | BaBar [4] | $3645.0 \pm 5.5^{+4.9}_{-7.8}$ | _ | $e^+e^- \to J/\psi c\bar{c}$ | | PDG [5] | 3638 ± 4 | 14 ± 7 | _ | Combined with the results based on two-photon processes from BaBar and Belle reported at ICHEP 2010, the world average $\Gamma(\eta_c(2S))=12\pm3$ MeV. ► Decay mode studied: $ψ' → γη_c(2S) → γKsKπ$ (K+K-p⁰ etc. in progress). Better chance with ~106M y' data at BESIII. # **Mass fitting** ## Mass spectrum Fitting - \bullet N($\eta_c(2S)$) = 50.6 \pm 9.7. - lacktriangle Pure statistical significance more than 6σ . - lacktriangle Significance with systematic variations is still more than 5σ . # Preliminary measurements from $\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma KsK\pi$ $$M(\eta_c(2S))=3638.5\pm2.3_{stat}\pm1.0_{sys}$$ (MeV/c²) $$\Rightarrow$$ Br(ψ ' $\rightarrow \gamma \eta_c(2S) \rightarrow \gamma KsK\pi$)=(2.98 \pm 0.57_{stat} \pm 0.48_{sys}) \times 10⁻⁶ $$Br(\eta_c(2S) \rightarrow KK\pi) = (1.9 \pm 0.4 \pm 1.1)\%$$ from BaBar $$>$$ Br($ψ' \rightarrow γη_c(2S)$)=(4.7 ± 0.9_{stat} ± 3.0_{sys}) × 10⁻⁴ CLEO-c: <7.6×10⁻⁴ (@90% CL) (PRD81,052002(2010)) Potential model: (0.1-6.2)×10-4 (PRL89,162002(2002)) ## Future Plan @BESIII - ~0.5 fb⁻¹ at $\psi(4040)$ taken already - -Search for XYZ states - -Hadronic transitions of $\psi(4040)$ - -Radiative transitions of $\psi(4040)$ - ~0.7 B-1.0 B $\psi(2S)$ events are expected in 2012 # Summary - ➤ High luminosity by **BEPCII** and the good performance of **BESIII** give us better chance to study the chamonium spectroscopy. - > Study of h_c at BESIII (inclusive & exclusive) gives the measurements of mass, width of h_c as well as $Br(\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$). - Precise measurement of the properties of η_c done at BESIII. The observed distorted η_c line shape could be described successfully by including an interfering non-resonant amplitude. - > Searching for $\eta_c(25)$ in the M1 transition $\psi' \rightarrow \gamma \eta_c(25)$. - > More results will come out soon at BESIII. # Acknowledgment International Workshop on Heavy Quarkonium 2011 GSI, Darmstadt, Germany # Backups # Mass spectrum fitting PDF= $$\sigma \bigotimes (\epsilon |e^{i\phi}f_1\mathcal{S} + \alpha Non|^2 f_2) + BKG$$ - > S: signal function (BW with mass width floated) - **Non**: non-resonant γX_i PDF (all assumed to 0⁻⁺) - > **BKG**: the sum of other backgrounds $\pi^0 X_i$ + other rare ψ ' decays + continuum, fixed in the fitting - \triangleright ϕ : interference phase between η_c decay and non-resonant contribution #### Fit results for individual modes: | it results for marvidual modes. | | | | | | | | |---------------------------------|--------------|-------|-------------------------|----------------|---------------|----------------|--------------| | mode(i) | signal yield | lε(%) | mass (MeV/c^2) | width(MeV) | ϕ_i | $\chi^2/d.o.f$ | significance | | $K_S K^+ \pi^-$ | 880.4 | 35.0 | 2984.7 ± 1.2 | 32.5 ± 2.3 | 2.9 ± 0.3 | 1.1 | 6.4 | | $K^+K^-\pi^0$ | 948.4 | 25.0 | 2980.3 ± 1.5 | 30.5 ± 2.4 | 2.4 ± 0.4 | 0.9 | 3.4 | | $\eta\pi^{+}\pi^{-}$ | 573.4 | 25.0 | 2982.4 ± 1.8 | 31.0 ± 3.3 | 2.2 ± 0.2 | 1.2 | 3.8 | | $K_SK^+\pi^+\pi^-\pi^-$ | 432.3 | 11.0 | 2986.9 ± 2.1 | 34.1 ± 3.3 | 2.3 ± 0.2 | 0.7 | 4.4 | | $K^+K^-\pi^+\pi^-\pi^0$ | 1033.6 | 11.0 | 2985.4 ± 1.3 | 29.1 ± 2.8 | 2.6 ± 0.2 | 1.2 | 7.0 | | $3(\pi^+\pi^-)$ | 664.4 | 17.0 | 2986.8 ± 1.3 | 33.7 ± 3.1 | 2.5 ± 0.1 | 1.1 | 7.0 | | combined | 4532.5 | - | 2984.5 ± 0.6 | 31.7 ± 1.1 | 2.5 ± 0.1 | _ | - | | C.L. | - | - | 1.1% | 89% | 28% | - | - | | | | | | | | | | Constant fitting gives $\chi^2/\text{ndf}=5.142/5$ Interference # Results of the fits for different modes ## $\eta_{c.}$ the lightest charmonium state ## η_c lineshape from $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$ The $\eta_{\mathcal{C}}$ lineshape is not distorted in the $h_{\mathcal{C}} \rightarrow \gamma \eta_{\mathcal{C}}$ Detail analysis of η_{c} parameters is ongoing! ## Mass spectrum representation - The 4C kinematic fitting used to select the γKsKπ candidates (χ^2_{4C} <50) - > Still some KsK π BG events contribute the γ KsK π candidates with a fake photon. - The invariant mass from 4C-kinematic fits make the BG $\psi' \rightarrow KsK\pi$ contaminates the $\eta_c(2S)$ mass region (3.6~3.66GeV). - ➤ The mass from 3C-kinematic fits (the measured energy of the photon is free) is little biased by the fake photon. - Difference small between 4C and 3C for signal events So the 3C fit mass used to determine the yields and parameters **Slide** 31 # More consistency checks - Difference between the BG estimation and mass fitting DN= 12 ± 14 - Branching ratios for $\psi' \rightarrow \gamma \chi_{cJ} \rightarrow \gamma KsK\pi$ From this analysis (stat. err. only) | - | | | | | | |---|-------------|---------------|------------|--|----------------------------------| | | | N_{obs} | ϵ | $\mathcal{B}(\psi' \to \gamma \chi_{cJ}, \chi_{cJ} \to K_S^0 K^{\pm} \pi^{\mp})$ | ${\mathcal B}$ from PDG | | | χ_{c1} | 7065 ± 88 | 27.2% | $(3.54 \pm 0.15) \times 10^{-4}$ | $(3.39 \pm 0.34) \times 10^{-4}$ | | | χ_{c2} | 1204 ± 37 | 26.0% | $(6.31 \pm 0.30) \times 10^{-5}$ | $(5.81 \pm 0.91) \times 10^{-5}$ | • The distributions of the selected photons $M_{KsKp} \in (3.6, 3.66) \text{ GeV/c}^2$: Entries/3 Me V