

Charmonium Spectroscopy at BESIII

Hu Liu

(on behalf of the BESIII Collaboration)
Institute of High Energy Physics, Beijing, China
8th QWG @GSI 05-10-2011

Outline

- **❖** Brief Introduction of **BEPCII & BESIII**
- ❖ Measurement of h_c at BESIII
- Precision measurement of the η_c properties
- ❖ The first observation of the M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$
- Summary

BEPCII & BESIII

Large data samples

Updated detectors

$$E_{cm} = 2\sim 4.6 GeV$$

 $L^{peak} = 10^{33}/(cm^2 \cdot s)$

BESIII is excellent!

Abundant potential physics with BESIII.

BESIII data samples

Energy points	luminosity	Number of resonant events	
J/ ψ	81 pb ⁻¹	225 million	
Ψ'	163 pb ⁻¹	106 million	
3.65 GeV	44 pb ⁻¹	A unique facility	
ψ(3770)	2.9 fb ⁻¹	and Open many physics	
4.01 GeV (ψ (4040))	0.5 fb ⁻¹	opportunity!	

Charmonium Spectrum below open charm threshold

IHEP

Measurement of h_c at BESIII

h_c(¹P₁) singlet 1P wave state

- Spin singlet P wave (S=0, L=1).
- Hyperfine mass splitting is an indication of spin-spin interaction:

$$\Delta M_{hf}(1P) = M(h_c)-1/9(M(\chi_{c0})+3M(\chi_{c1})+5M(\chi_{c2})).$$

- \gt E835 found evidence for h_c in pp→h_c→γη_c.
- > CLEO-c
- ⇒ observed h_c in ψ'→ π ⁰h_c, h_c→ γ η_c ΔM_{hf}(1P) = 0.08±0.18±0.12MeV/c².

- Predicted for a long time
- Hyperfine splitting of 1P states (spin-spin)
- > iso-spin forbidden transition $\psi' \rightarrow \pi^0 h_c$
- Mass and product Brs from CLEO-c [PRL101.182003(2008)]

	Inclusive	Exclusive
Counts	1146 ± 118	136 ± 14
Significance	10.0σ	13.2σ
The state of the s	$3525.35\pm0.23\pm0.15$	$3525.21 \pm 0.27 \pm 0.14$
$\mathcal{B}_1 \times \mathcal{B}_2 \times 10^4$	$4.22 \pm 0.44 \pm 0.52$	$4.15 \pm 0.48 \pm 0.77$

Measurement of h_c (inclusive)

BESIII Collaboration: PRL104, 132002, (2010)

- \triangleright Select inclusive π^0 in ψ' decays $(\psi' \rightarrow \pi^0 h_c)$
- Select E1-photon in h_c→γη_c (E1 tagged) or not (E1 untagged/semi-inclusive)
- E1-tagged selection gives

$$M(h_c)=3525.40\pm0.13\pm0.18MeV$$

$$(\Delta M_{hf}(1P)=0.10\pm0.13\pm0.18 MeV/c^2)$$

$$\Gamma(h_c)=0.73\pm0.45\pm0.28 \text{MeV}$$

Br(ψ'
$$\rightarrow$$
π⁰h_c)×Br(h_c \rightarrow γη_c)=
(4.58±0.40±0.50) ×10⁻⁴

- $N(h_c) = 10353 \pm 1097$
- E1-untagged together with
- tagged selection gives the first measurement

Br(
$$\psi' \rightarrow \pi^0 h_c$$
) =(8.4±1.3±1.0) ×10⁻⁴ Br($h_c \rightarrow \gamma \eta_c$) =(54.3±6.7±5.2)%

Measurement of the h_c (exclusive)

Summed π^0 recoil mass

16 decay modes are studied:

 $\psi' \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c, \eta_c \rightarrow X_i$

X_i: ppbar, 4π, 4K, 2π2K, ppbarππ, 6π, 2K4π, KKπ⁰, ppbarπ⁰, KsKπ, KsK3π, ππη, KKη, 4πη, 2π2π⁰, 4π2π⁰

Simultaneous fit to π^0 recoiling mass $M(h_c) = 3525.31 \pm 0.11 \pm 0.15$ MeV $\Gamma(h_c) = 0.70 \pm 0.28 \pm 0.25$ MeV $N = 832 \pm 35$ BESIII preliminary $\chi^2/d.o.f. = 32/46$

Consistent with BESIII inclusive results PRL104,132002(2010)
CLEOc exlusive results

 $M(h_c)=3525.21\pm0.27\pm0.14 \text{ MeV/c}^2$

 $N = 136 \pm 14$

PRL101, 182003(2008)

Slide 9

Precision measurement of the η_c Mass and Width

ψ $\rightarrow \gamma \eta_c \rightarrow \gamma X_i$

- The lowest lying S-wave spin singlet charmonium η_c was discovered in 1980 by MarkII.
- Earlier experiments using J/ψ radiative transition gives $M(\eta_c)\sim 2978.0 MeV/c^2$, $\Gamma(\eta_c)\sim 10 MeV$.
- Recent studies using the two-photon processes gives $M(\eta_c)=2983.1\pm1.0~MeV/c^2$, $\Gamma(\eta_c)=31.3\pm1.9~MeV$.
- The most recent study from CLEO-c pointed out the distortion of the η_c line shape in ψ ' decays.
- \triangleright Measurement of the η_c properties at BESIII
 - ◆Data sample: 106M ψ' events, 44pb⁻¹ continuum data at 3.65 GeV
 - ♦ Decay modes X_i : KsKπ, K+K- π^0 , η $\pi^+\pi^-$, KsK3 π , K+K- $\pi^+\pi^-\pi^0$, $3(\pi^+\pi^-)$, where Ks $\rightarrow \pi^+\pi^-$, η $\rightarrow \gamma\gamma$, $\pi^0 \rightarrow \gamma\gamma$

Backgrounds for $\psi' \rightarrow \gamma \eta_c \rightarrow \gamma X_i$

$\rightarrow \psi' \rightarrow \pi^0 X_i$

With the optimized selection, the mass spectra for $\pi^0 X_i$ events are measured in data and scaled according to the full simulation to estimate the contribution in $\gamma \eta_c$ candidates.

- \triangleright Non-resonant contribution $\psi' \rightarrow \gamma X_i$ exactly the same final states, can not be removed.
- Rare backgrounds

Production rate or efficiency is very low, estimated based on the inclusive MC.

Continuum events Estimated by using the 44pb⁻¹ data taken at 3.65GeV. IHEP

η LineShape @CLEO-c

- CLEO-c observed an abnormal η_c line shape
- It is explained by a M1 transition factor finally in the published paper

Phys. Rev. Lett. 102, 011801 (2009) | HEP

η_c LineShape @BESIII

The abnormal line shape is also observed in BESIII exclusive channels with larger statistics

- We also found only M1 factor cannot explain it
- The interference between η_c resonance and the same final states is proposed

 Slide 14

Mass spectrum Fitting

$$PDF = \sigma \otimes (\varepsilon \cdot |e^{i\varphi} \cdot f_1 \cdot BW + \alpha \cdot BG|^2 \cdot f_2)$$

σ : resolution,

φ: interference phase angle

ε : efficiency

α: fraction

f₁ f₂: M1 transition factor

$$(E_{\gamma}^{4}\cdot E_{\gamma}^{3}=E_{\gamma}^{7} \text{ for } \psi' \rightarrow \gamma \eta_{c})$$

BG: background with the same final states

The simultaneous Fit

The η_c mass, width and interference phase ϕ are constrained to be the same.

Simultaneous fit with modified Breit-Wigner (hindered M1) with considering interference between η_c and non- η_c decays

Mass and Width of η_c

BESIII preliminary

- mass = $2984.4 \pm 0.5_{stat} \pm 0.6_{syst}$ MeV/c²
- width = $30.5 \pm 1.0_{\text{stat}} \pm 0.9_{\text{syst}}$ MeV

Interference is necessary!

The world average in PDG2010 was using earlier results.

The first observation of the M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$

$\eta_c(2S)$ (never confirmed in M1 transition)

- First "observation" by Crystal Ball in 1982 (M=3.592, Br=0.2%-1.3% from ψ ' $\rightarrow \gamma X$, never confirmed by other experiments.)
- > experimental challenge: search for real photons ~50MeV
- \triangleright Published results about $\eta_c(2S)$ observation:

Experiment	$M [\mathrm{MeV}]$	$\Gamma [{ m MeV}]$	Process
Belle [1]	$3654 \pm 6 \pm 8$		$B^{\pm} \to K^{\pm} \eta_c(2S), \eta_c(2S) \to K_S K^{\pm} \pi^{\top}$
CLEO $[2]$	$3642.9 \pm 3.1 \pm 1.5$	$6.3 \pm 12.4 \pm 4.0$	$\gamma \gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [3]	$3630.8 \pm 3.4 \pm 1.0$	$17.0 \pm 8.3 \pm 2.5$	$\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm}\pi^{\mp}$
BaBar [4]	$3645.0 \pm 5.5^{+4.9}_{-7.8}$	_	$e^+e^- \to J/\psi c\bar{c}$
PDG [5]	3638 ± 4	14 ± 7	_

Combined with the results based on two-photon processes from BaBar and Belle reported at ICHEP 2010, the world average $\Gamma(\eta_c(2S))=12\pm3$ MeV.

► Decay mode studied: $ψ' → γη_c(2S) → γKsKπ$ (K+K-p⁰ etc. in progress). Better chance with ~106M y' data at BESIII.

Mass fitting

Mass spectrum Fitting

- \bullet N($\eta_c(2S)$) = 50.6 \pm 9.7.
- lacktriangle Pure statistical significance more than 6σ .
- lacktriangle Significance with systematic variations is still more than 5σ .

Preliminary measurements from $\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma KsK\pi$

$$M(\eta_c(2S))=3638.5\pm2.3_{stat}\pm1.0_{sys}$$
 (MeV/c²)

$$\Rightarrow$$
 Br(ψ ' $\rightarrow \gamma \eta_c(2S) \rightarrow \gamma KsK\pi$)=(2.98 \pm 0.57_{stat} \pm 0.48_{sys}) \times 10⁻⁶

$$Br(\eta_c(2S) \rightarrow KK\pi) = (1.9 \pm 0.4 \pm 1.1)\%$$
 from BaBar

$$>$$
Br($ψ' \rightarrow γη_c(2S)$)=(4.7 ± 0.9_{stat} ± 3.0_{sys}) × 10⁻⁴

CLEO-c: <7.6×10⁻⁴ (@90% CL) (PRD81,052002(2010))

Potential model: (0.1-6.2)×10-4 (PRL89,162002(2002))

Future Plan @BESIII

- ~0.5 fb⁻¹ at $\psi(4040)$ taken already
 - -Search for XYZ states
 - -Hadronic transitions of $\psi(4040)$
 - -Radiative transitions of $\psi(4040)$
- ~0.7 B-1.0 B $\psi(2S)$ events are expected in 2012

Summary

- ➤ High luminosity by **BEPCII** and the good performance of **BESIII** give us better chance to study the chamonium spectroscopy.
- > Study of h_c at BESIII (inclusive & exclusive) gives the measurements of mass, width of h_c as well as $Br(\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$).
- Precise measurement of the properties of η_c done at BESIII. The observed distorted η_c line shape could be described successfully by including an interfering non-resonant amplitude.
- > Searching for $\eta_c(25)$ in the M1 transition $\psi' \rightarrow \gamma \eta_c(25)$.
- > More results will come out soon at BESIII.

Acknowledgment

International Workshop on Heavy Quarkonium 2011 GSI, Darmstadt, Germany

Backups

Mass spectrum fitting

PDF=
$$\sigma \bigotimes (\epsilon |e^{i\phi}f_1\mathcal{S} + \alpha Non|^2 f_2) + BKG$$

- > S: signal function (BW with mass width floated)
- **Non**: non-resonant γX_i PDF (all assumed to 0⁻⁺)
- > **BKG**: the sum of other backgrounds $\pi^0 X_i$ + other rare ψ ' decays + continuum, fixed in the fitting
- \triangleright ϕ : interference phase between η_c decay and non-resonant contribution

Fit results for individual modes:

it results for marvidual modes.							
mode(i)	signal yield	lε(%)	mass (MeV/c^2)	width(MeV)	ϕ_i	$\chi^2/d.o.f$	significance
$K_S K^+ \pi^-$	880.4	35.0	2984.7 ± 1.2	32.5 ± 2.3	2.9 ± 0.3	1.1	6.4
$K^+K^-\pi^0$	948.4	25.0	2980.3 ± 1.5	30.5 ± 2.4	2.4 ± 0.4	0.9	3.4
$\eta\pi^{+}\pi^{-}$	573.4	25.0	2982.4 ± 1.8	31.0 ± 3.3	2.2 ± 0.2	1.2	3.8
$K_SK^+\pi^+\pi^-\pi^-$	432.3	11.0	2986.9 ± 2.1	34.1 ± 3.3	2.3 ± 0.2	0.7	4.4
$K^+K^-\pi^+\pi^-\pi^0$	1033.6	11.0	2985.4 ± 1.3	29.1 ± 2.8	2.6 ± 0.2	1.2	7.0
$3(\pi^+\pi^-)$	664.4	17.0	2986.8 ± 1.3	33.7 ± 3.1	2.5 ± 0.1	1.1	7.0
combined	4532.5	-	2984.5 ± 0.6	31.7 ± 1.1	2.5 ± 0.1	_	-
C.L.	-	-	1.1%	89%	28%	-	-

Constant fitting gives $\chi^2/\text{ndf}=5.142/5$

Interference

Results of the fits for different modes

$\eta_{c.}$ the lightest charmonium state

η_c lineshape from $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$

The $\eta_{\mathcal{C}}$ lineshape is not distorted in the $h_{\mathcal{C}} \rightarrow \gamma \eta_{\mathcal{C}}$ Detail analysis of η_{c} parameters is ongoing!

Mass spectrum representation

- The 4C kinematic fitting used to select the γKsKπ candidates (χ^2_{4C} <50)
- > Still some KsK π BG events contribute the γ KsK π candidates with a fake photon.
- The invariant mass from 4C-kinematic fits make the BG $\psi' \rightarrow KsK\pi$ contaminates the $\eta_c(2S)$ mass region (3.6~3.66GeV).
- ➤ The mass from 3C-kinematic fits (the measured energy of the photon is free) is little biased by the fake photon.
- Difference small between 4C and 3C for signal events

So the 3C fit mass used to determine the yields and parameters

Slide 31

More consistency checks

- Difference between the BG estimation and mass fitting DN= 12 ± 14
- Branching ratios for $\psi' \rightarrow \gamma \chi_{cJ} \rightarrow \gamma KsK\pi$

From this analysis (stat. err. only)

-					
		N_{obs}	ϵ	$\mathcal{B}(\psi' \to \gamma \chi_{cJ}, \chi_{cJ} \to K_S^0 K^{\pm} \pi^{\mp})$	${\mathcal B}$ from PDG
	χ_{c1}	7065 ± 88	27.2%	$(3.54 \pm 0.15) \times 10^{-4}$	$(3.39 \pm 0.34) \times 10^{-4}$
	χ_{c2}	1204 ± 37	26.0%	$(6.31 \pm 0.30) \times 10^{-5}$	$(5.81 \pm 0.91) \times 10^{-5}$

• The distributions of the selected photons $M_{KsKp} \in (3.6, 3.66) \text{ GeV/c}^2$:

Entries/3 Me V

