Spectroscopy of the XYZ states at BABAR.

Antimo Palano

INFN and University of Bari, Italy
on behalf of the BABAR collaboration

8th International Workshop on Heavy Quarkonium 2011 GSI, Germany, 4 - 7 October 2011

Introduction.

□ Belle claims for the discovery of exotic charged charmonium states in B decays.

$$Z^+(4430) \to \psi(2S)\pi^+$$
 observed the decay $B \to \psi(2S)K\pi$ (Phys. Rev. Lett. 100, 142001, (2008)),(Phys. Rev. D 80, 031104(R) (2009)), $Z_1(4050)^+$ and $Z_2(4250)^+$ observed in the decay to $\chi_{c1}\pi^+$ in $B \to \chi_{c1}K\pi$ (Phys.Rev.D 78, 072004, (2008))

- \square BaBar published the search for $Z^+(4430) \to \psi(2S)\pi^+$ with negative results (Phys. Rev. D 79, 112001 (2009)).
- \square No signal was also observed in the $J/\psi\pi$ system in the study of the $B\to J/\psi K\pi$ decay.
- \Box A lot of theoretical and experimental discussion. A charged charmonium state is not a simple $q\bar{q}$ meson.

The use of charge conjugate reactions is implied throughout.

Introduction.

□ Main points of discussion are:

• Interference effects between amplitudes in 3-body B decay Dalitz plots produce peaks in quasi-two-body mass projections which may not be due to real states. A dramatic demonstration comes from charm decays. Dalitz plot of $D^0 \to \bar{K}^0 K^+ K^-$ and projection along the $\bar{K}^0 K^+$ axis: structures are not due to resonances.

• The angular structures in $B \to \psi(2S)K\pi$ and $B \to \chi_{c1}K\pi$ decays are very complex and cannot be described by only two variables as it is done in a simple Dalitz plot analysis.

 \square The present analysis from BABAR searches for $Z_1(4050)^+$ and $Z_2(4250)^+$ in $B \to \chi_{c1} K \pi$ decays.

Reconstructed B decay modes.

 \square We reconstruct the following B decays:

$$\bar{B}^0 \to \pi^+ K^- \chi_{c1} \to J/\psi \gamma$$

$$B^+ \to \pi^+ K_S^0 \chi_{c1} \to J/\psi \gamma$$

 \square We also make use of the following B decays:

$$\bar{B}^0 \to \pi^+ K^- J/\psi$$

 $B^+ \to \pi^+ K^0_S J/\psi$

- \Box where $J/\psi \to \mu^+\mu^-$ or $J/\psi \to e^+e^-$
- \Box Particle identification applied to all the tracks, except for the K_S^0 daughters. For electrons Bremsstrahlung recovery is applied. J/ψ and K_S^0 fitted with mass constraint. Geometrical vertex fit performed to the B meson. Require 0.2 cm flight distance for K_S^0 . In the $\chi_{c1} \to J/\psi \gamma$ decay, $E_{\gamma} > 190$ MeV. Require vertex probabilities > 0.1%
- \square Experimental $J/\psi \pi^+$ mass resolution: 2-3 MeV/ c^2 in the region of the Z resonances.
- \square Integrated luminosity: 429 fb⁻¹.

Reconstruction of $B \to \chi_{c1} K \pi$.

 \square Signals of $\chi_{c1} \to J/\psi \gamma$ after $\pm 2\sigma$ selection on m_{ES} and ΔE .

 \square ΔE after $\pm 2\sigma$ selection on m_{ES} and $m(J/\psi \gamma)$.

$$\begin{split} \Delta E &\equiv E_B^* - \sqrt{s}/2, \\ m_{\mathrm{ES}} &\equiv \sqrt{((s/2 + \vec{p}_i \cdot \vec{p}_B)/E_i)^2 - \vec{p}_B^2}, \end{split}$$

 (E_i, \vec{p}_i) is the initial state e^+e^- four-momentum vector in the lab. and \sqrt{s} is the c.m. energy.

 E_B^* is the B meson energy in the c.m., \vec{p}_B is its

lab. momentum.

 \square Parameters from fits to the ΔE distributions.

Channel	$\sigma_{\Delta E}$	events	Purity %
$\overline{B}^0 \to \pi^+ K^- \chi_{c1}$	7.3 ± 0.3	1863	78.3 ± 0.9
$B^+ \to \pi^+ K_S^0 \chi_{c1}$	7.0 ± 0.4	628	79.7 ± 1.6

 \square Background estimated from the ΔE sidebands.

Efficiency.

- □ Use signal Phase Space Monte Carlo simulations.
- \square Parametrize the efficiency as a function of $m(K\pi)$ and $\cos\theta$, where θ is the K helicity angle.
- \Box Divide into slices of $m(K\pi)$ and fit the efficiency dependence in $\cos\theta$ using L=0,12 Legendre polynomials.

$$\epsilon(cos\theta) = \sum_{L=0}^{12} a_L Y_L^0(cos\theta)$$

- \square Fit the $a_L(m(K\pi))$ using 5^{th} order polynomials.
- \square Plot fitted efficiencies in the $(m(K\pi), \cos\theta)$ plane.

- \square Decrease at the edges due to the loss of slow pions and kaons.
- \square No problem with efficiency at the Z masses.

Comparison between BaBar and Belle data.

 $\Box \ \bar{B}^0 \to \chi_{c1} K^- \pi^+$ Dalitz plot and efficiency: Belle.

- $\Box \ \bar{B}^0 \to \chi_{c1} K^- \pi^+$ Dalitz plot and efficiency: BaBar.

- □ Efficiency and resolution similar in the two experiments.
- □ BaBar data do not show any horizontal strong enhancements.
- \Box \bar{B}^0 data. BaBar: Total 1458 events, Belle: 2126 events. Scaling by the different luminosities (0.71) expect: 1509 events. In addition, 499 B^+ events.
- □ Total: 1957 events. Almost the same statistics as Belle.

Signal and Background.

- \square Within statistics \bar{B}^0 and B^+ Dalitz plots are similar and have been combined.
- $\square B \to \chi_{c1} K \pi$ total Dalitz plot for signal and background.

□ Uncorrected total Dalitz plot projections for signal and background.

 \Box We obtain background-subtracted and efficiency-corrected distributions by subtracting the sideband distributions and weighting each event by: $1/\epsilon(m(K\pi), \cos\theta)$.

Branching fractions.

- \Box To estimate the relative Branching Fractions we obtain the yields from fits to the ΔE experimental distributions and correct for efficiency.
- □ We obtain:

$$\frac{\mathcal{B}(\overline{B}^0 \to \chi_{c1} K^- \pi^+)}{\mathcal{B}(\overline{B}^0 \to J/\psi K^- \pi^+)} = 0.474 \pm 0.013 \pm 0.062 \qquad \frac{\mathcal{B}(B^+ \to \chi_{c1} K^0 \pi^+)}{\mathcal{B}(B^+ \to J/\psi K^0 \pi^+)} = 0.501 \pm 0.024 \pm 0.090$$

- $\square \overline{B}^0$ and B^+ ratios are consistent.
- □ Systematic uncertainties:

Contribution	Fractional error $\overline{B}^0 \to \chi_{c1} K^- \pi^+$	Fractional error $B^+ \to \chi_{c1} K_S^0 \pi^+$
1. Background subtraction	0.037	0.063
2. Efficiency	0.015	0.039
3. Efficiency binning	0.011	0.019
4. χ_{c1} branching fraction	0.044	0.044
5. γ reconstruction	0.018	0.018
6. ΔE and $m_{ ext{ES}}$ selections	0.010	0.010
Total	0.062	0.090

 \square Multiplying by the $B \to J/\psi K\pi$ branching fractions measured by the same experiment (Phys. Rev. D 79, 112001 (2009)), we obtain:

$$\mathcal{B}(\overline{B}^0 \to \chi_{c1} K^- \pi^+) = (5.11 \pm 0.15 \pm 0.67) \times 10^{-4}, \qquad \mathcal{B}(B^+ \to \chi_{c1} K^0 \pi^+) = (5.52 \pm 0.28 \pm 0.99) \times 10^{-4}$$

Fits to the $K\pi$ mass spectra.

 \Box Binned χ^2 fits to the background-subtracted and efficiency-corrected $K\pi$ mass spectra in terms of S, P, and D wave amplitudes.

$$\Box \text{ Fitting function: } \frac{dN}{dm_{K\pi}} = N \times \left[f_S \left(\frac{G_S}{\int G_S dm_{K\pi}} \right) + f_P \left(\frac{G_P}{\int G_P dm_{K\pi}} \right) + f_D \left(\frac{G_D}{\int G_D dm_{K\pi}} \right) \right]$$

 $\hfill\Box$ where the fractions f are such that: $f_S+f_P+f_D=1.$

 \square The P- and D-wave intensities are expressed in terms of relativistic Breit-Wigner with parameters fixed to the PDG values for $K^*(892)$ and $K_2^*(1430)$ respectively.

☐ For S-wave contribution we make use of the LASS parametrization.

□ Results from the fit.

Channel	S-wave	P-wave	D-wave	χ^2/NDF
$\bar{B}^0 \to \pi^+ K^- \chi_{c1}$	40.4 ± 2.2	37.9 ± 1.3	11.4 ± 2.0	58/54
		10.3 ± 1.5		
$B^+ \to \pi^+ K^0_S \chi_{c1}$	42.4 ± 3.5	37.1 ± 3.2	10.1 ± 3.1	55/54
		10.4 ± 2.5		

 \square Need for a small P-wave contribution from $K^*(1680)$ (≈ 10 %), not present in the $B \to J/\psi K\pi$ decays or $B \to \psi(2S)K\pi$.

 \Box S-wave contribution larger than in $B \to J/\psi K\pi$ decays, where is $\approx 16 \%$.

The $K\pi$ Legendre polynomial moments.

- \Box Add \overline{B}^0 and B^+ data. Weight the events by the $Y_L^0(\cos\theta)$ Legendre polynomials.
- □ Efficiency-corrected and background-subtracted distributions.

- \square We observe the S-P interference in the $\langle Y_1^0 \rangle$ moment.
- \square Significant enhancement in Y_1^0 at ≈ 1.7 GeV indicating the presence of a P-wave.
- \square We observe the presence of the spin-1 $K^*(890)$ in the $< Y_2^0 >$ moment.
- \square We have evidence for the spin-2 $K_2^*(1430)$ resonance in the $< Y_4^0 >$ moment.
- $\Box < Y_6^0 >$ is consistent with zero.

MC simulations.

- \Box A localized structure in the $\chi_{c1}\pi$ mass spectrum shows its effect in high L Legendre polynomial moments $\langle Y_L^0 \rangle$.
- \square We now attempt to describe the $\chi_{c1}\pi$ mass distribution using the information from the $K\pi$ system only.
- \square We also limit L to its minimum value.
- □ We generate a large number of MC events according to the following model.
 - $B \to \chi_{c1} K \pi$ events are generated according to phase-space. The B is generated according to a Gaussian lineshape having parameters fitted to the data.
 - We label $w_{m(K\pi)}$ the weight corresponding to the fit to the $K\pi$ mass projection.
 - We incorporate the measured $K\pi$ angular structure by giving weight w_L to each event according to the expression:

$$w_L = \sum_{i=0}^{L_{max}} \langle Y_i^N \rangle Y_i^0(\cos \theta)$$

where $Y_i^N = Y_i^0/n$ are the normalized moments. The Y_i^N are evaluated for the $m(K\pi)$ value by linear interpolation over consecutive $m(K\pi)$ mass intervals.

• The total weight is thus:

$$w = w_{m(K\pi)} \cdot w_L$$

 \Box The generated distributions, weighted by the total weight w, are then normalized to the number of data events after background-subtraction and efficiency-correction.

MC simulations: $B \rightarrow J/\psi K\pi$

- \square We test the method on $B \to J/\psi \pi K$ where there is no evidence for narrow or broad Z resonances.
- \square We vary L_{max} between 4 and 6 and obtain the best description of the data with $L_{max}=5$.

L_{max}	χ^2/NDF
4	223/152
5	162/152
6	180/152

 \square MC/data comparison, the dotted line shows the effect of removing the angular w_L weight.

MC simulations: $B \to \chi_{c1} K \pi$

 \square Similar results are obtained for the $B \to \chi_{c1} K \pi$ channel.

L_{max}	χ^2/NDF
4	53/58
5	46/58
6	49/58
"mixed"	63/58

- $\square B \to J/\psi K\pi$ and $B \to \chi_{c1} K\pi$ data can be described using a similar approach.
- \Box This indicates that there is no need for additional resonant structure in order to describe the $\chi_{c1}\pi$ mass distribution.

- \Box This is justified by the fact that only spin 0 and spin 1 resonances are present in the low mass region.
- \Box This representation also gives an excellent description of the $\overline{B}^0 \to \chi_{c1} K \pi$ data.
- \square We will use this "mixed" representation for computing upper limits on Z production.

How would a Z resonance show up?

- \Box We artificially add a $\approx 25\%$ contribution of a scalar $Z_2(4250)^+ \to \chi_{c1}\pi$ resonance in the $\overline{B}{}^0 \to \pi^+ K^- \chi_{c1}$ data.
- □ These MC toy events are obtained from MC data, weighted by a Breit-Wigner.
- \Box We then compute Legendre polynomial moments for the whole sample and predict the $\chi_{c1}\pi$ mass spectrum using the same algorithm as for real data.
- \Box Using the "mixed" method, the resulting MC simulation does not describe the MC data well: $\chi^2/NDF=140/58$

 \Box red dots indicate the $B^0 \to \pi^- K^+ \chi_{c1}$ data, crosses indicate the total sample.

Search for Z resonances.

- \square We now fit the $\chi_{c1}\pi$ mass spectrum using the following model:
- \square Assume the prediction from the MC simulation ("mixed") as background.
- □ Include two scalar Breit-Wigner with parameters fixed to the Belle measurements.
- \square Fit the full data set (Total).

Data	Resonance	N_{σ}	Fraction $(\%)$
a) Total	$Z_1(4050)^+$	1.1	1.6 ± 1.4
	$Z_2(4250)^+$	2.0	4.8 ± 2.4
b) Total	$Z(4150)^{+}$	1.1	4.0 ± 3.8
c) Window	$Z_1(4050)^+$	1.2	3.5 ± 3.0
	$Z_2(4250)^+$	1.3	6.7 ± 5.1
d) Window	$Z(4150)^{+}$	1.7	13.7 ± 8.0

 \square Repeat the fits in the $b)1.0 < m^2(K\pi) < 1.75 \; GeV^2/c^4$ window, where Belle reports the maximum resonant activity (25 % of the dataset).

 \Box In all cases we obtain very low ($\leq 2\sigma$) statistical significances.

Limits on Z production.

- \square Significances do not change significantly if we modify the Z parameters within their statistical errors.
- \square We obtain the following 90 % C.L. upper limits:

$$\mathcal{B}(\bar{B}^0 \to Z_1^+ K^-) \times (\mathcal{B}(Z_1^+ \to \chi_{c1} \pi^+) < 1.8 \times 10^{-5}$$

$$\mathcal{B}(\bar{B}^0 \to Z_2^+ K^-) \times (\mathcal{B}(Z_2^+ \to \chi_{c1} \pi^+) < 4.0 \times 10^{-5}$$

- \square To be compared with Belle values of $(3^{+1.5}_{-0.8}, 3^{+3.7}_{-1.6}) \times 10^{-5}$ and $(4^{+2.3}_{-0.9}, 3^{+19.7}_{-0.5}) \times 10^{-5}$ respectively.
- \square For only one Z we obtain:

$$\mathcal{B}(\overline{B}^0 \to Z^+ K^-) \times (\mathcal{B}(Z^+ \to \chi_{c1} \pi^+) < 4.7 \times 10^{-5}$$

Conclusions.

- \square We have studied the decays $B \to \chi_{c1} K \pi$ with charged and neutral B mesons and measured their branching fractions.
- \Box The $K\pi$ resonant structure and angular distributions of \overline{B}^0 and B^+ are similar.
- \Box The resonant structure and angular distributions for $B \to \chi_{c1} K \pi$ are different from that of $B \to J/\psi K \pi$.
- \Box We model the $B \to \chi_{c1} K \pi$ decay using only the information on the resonant structure and angular distributions from the $K \pi$ system and obtain an excellent description of the $\chi_{c1} \pi$ mass distribution.
- \Box We test if additional resonant structures are able to improve the data description but obtain very low statistical significances.
- □ We measure limits on Z production.
- \square These limits do not rule out statistically the existence of Z resonances.
- \Box However, we obtain a good description of the data without the need for additional resonances decaying to $\chi_{c1}\pi$.