Spectroscopy of the XYZ states at BABAR.

Antimo Palano
INFN and University of Bari, Italy
on behalf of the BABAR collaboration

8th International Workshop on Heavy Quarkonium 2011
GSI, Germany, 4-7 October 2011

Introduction.

Belle claims for the discovery of exotic charged charmonium states in B decays. $Z^{+}(4430) \rightarrow \psi(2 S) \pi^{+}$observed the decay $B \rightarrow \psi(2 S) K \pi$ (Phys. Rev. Lett. 100, 142001, (2008)),(Phys. Rev. D 80, $031104(\mathrm{R})(2009)), Z_{1}(4050)^{+}$and $Z_{2}(4250)^{+}$observed in the decay to $\chi_{c 1} \pi^{+}$in $B \rightarrow \chi_{c 1} K \pi$ (Phys.Rev.D 78, 072004, (2008))\square BaBar published the search for $Z^{+}(4430) \rightarrow \psi(2 S) \pi^{+}$with negative results (Phys. Rev. D 79, 112001 (2009)).No signal was also observed in the $J / \psi \pi$ system in the study of the $B \rightarrow J / \psi K \pi$ decay.
\square A lot of theoretical and experimental discussion. A charged charmonium state is not a simple $q \bar{q}$ meson.

The use of charge conjugate reactions is implied throughout.

Introduction.

Main points of discussion are:- Interference effects between amplitudes in 3-body B decay Dalitz plots produce peaks in quasi-two-body mass projections which may not be due to real states.
A dramatic demonstration comes from charm decays. Dalitz plot of $D^{0} \rightarrow \bar{K}^{0} K^{+} K^{-}$and projection along the $\bar{K}^{0} K^{+}$axis: structures are not due to resonances.

- The angular structures in $B \rightarrow \psi(2 S) K \pi$ and $B \rightarrow \chi_{c 1} K \pi$ decays are very complex and cannot be described by only two variables as it is done in a simple Dalitz plot analysis.The present analysis from $B A B A R$ searches for $Z_{1}(4050)^{+}$and $Z_{2}(4250)^{+}$in $B \rightarrow \chi_{c 1} K \pi$ decays.

Reconstructed B decay modes.

\square We reconstruct the following B decays:

$$
\begin{aligned}
\bar{B}^{0} \rightarrow \pi^{+} K^{-} \chi_{c 1} & \rightarrow J / \psi \gamma \\
B^{+} \rightarrow \pi^{+} K_{S}^{0} \chi_{c 1} & \rightarrow J / \psi \gamma
\end{aligned}
$$We also make use of the following B decays:

$$
\begin{aligned}
& \bar{B}^{0} \rightarrow \pi^{+} K^{-} J / \psi \\
& B^{+} \rightarrow \pi^{+} K_{S}^{0} J / \psi
\end{aligned}
$$

\square where $J / \psi \rightarrow \mu^{+} \mu^{-}$or $J / \psi \rightarrow e^{+} e^{-}$Particle identification applied to all the tracks, except for the K_{S}^{0} daughters. For electrons Bremsstrahlung recovery is applied. J / ψ and K_{S}^{0} fitted with mass constraint. Geometrical vertex fit performed to the B meson. Require 0.2 cm flight distance for K_{S}^{0}. In the $\chi_{c 1} \rightarrow J / \psi \gamma$ decay, $E_{\gamma}>190 \mathrm{MeV}$. Require vertex probabilities $>0.1 \%$
\square Experimental $J / \psi \pi^{+}$mass resolution: $2-3 \mathrm{MeV} / c^{2}$ in the region of the Z resonances.Integrated luminosity: $429 \mathrm{fb}^{-1}$.

Reconstruction of $B \rightarrow \chi_{c 1} K \pi$.

Signals of $\chi_{c 1} \rightarrow J / \psi \gamma$ after $\pm 2 \sigma$ selection on $m_{E S}$ and ΔE.
$\square \Delta E$ after $\pm 2 \sigma$ selection on $m_{E S}$ and $m(J / \psi \gamma)$.

$\Delta E \equiv E_{B}^{*}-\sqrt{s} / 2$,
$m_{\mathrm{ES}} \equiv \sqrt{\left(\left(s / 2+\vec{p}_{i} \cdot \vec{p}_{B}\right) / E_{i}\right)^{2}-\vec{p}_{B}^{2}}$,
$\left(E_{i}, \vec{p}_{i}\right)$ is the initial state $e^{+} e^{-}$four-momentum vector in the lab. and \sqrt{s} is the c.m. energy. E_{B}^{*} is the B meson energy in the c.m., \vec{p}_{B} is its lab. momentum.

Parameters from fits to the ΔE distributions.

Channel	$\sigma_{\Delta E}$	events	Purity \%
$\bar{B}^{0} \rightarrow \pi^{+} K^{-} \chi_{c 1}$	7.3 ± 0.3	1863	78.3 ± 0.9
$B^{+} \rightarrow \pi^{+} K_{S}^{0} \chi_{c 1}$	7.0 ± 0.4	628	79.7 ± 1.6

Efficiency.

Use signal Phase Space Monte Carlo simulations.Parametrize the efficiency as a function of $m(K \pi)$ and $\cos \theta$, where θ is the K helicity angle.Divide into slices of $m(K \pi)$ and fit the efficiency dependence in $\cos \theta$ using $L=0,12$ Legendre polynomials.$\epsilon(\cos \theta)=\sum_{L=0}^{12} a_{L} Y_{L}^{0}(\cos \theta)$
\square Fit the $a_{L}(m(K \pi))$ using $5^{t h}$ order polynomials. 岩Plot fitted efficiencies in the $(m(K \pi), \cos \theta)$ plane ${ }^{\circ}$.

Efficiency as a function of the $\chi_{c 1} \pi$ mass.Decrease at the edges due to the loss of slow pions and kaons.No problem with efficiency at the Z masses.

Comparison between BaBar and Belle data.

$\square \bar{B}^{0} \rightarrow \chi_{c 1} K^{-} \pi^{+}$Dalitz plot and efficiency: Belle.
$\square \bar{B}^{0} \rightarrow \chi_{c 1} K^{-} \pi^{+}$Dalitz plot and efficiency: BaBar.

\square Efficiency and resolution similar in the two experiments.
\square BaBar data do not show any horizontal strong enhancements.
$\square \bar{B}^{0}$ data. BaBar: Total 1458 events, Belle: 2126 events. Scaling by the different luminosities (0.71) expect: 1509 events. In addition, $499 B^{+}$events.
\square Total: 1957 events. Almost the same statistics as Belle.

Signal and Background.

Within statistics \bar{B}^{0} and B^{+}Dalitz plots are similar and have been combined.$B \rightarrow \chi_{c 1} K \pi$ total Dalitz plot for signal and background.

\square Uncorrected total Dalitz plot projections for signal and background.

We obtain background-subtracted and efficiency-corrected distributions by subtracting the sideband distributions and weighting each event by: $1 / \epsilon(m(K \pi), \cos \theta)$.

Branching fractions.

\square To estimate the relative Branching Fractions we obtain the yields from fits to the ΔE experimental distributions and correct for efficiency.
\square We obtain:

$$
\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow \chi_{c 1} K^{-} \pi^{+}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow J / \psi K^{-} \pi^{+}\right)}=0.474 \pm 0.013 \pm 0.062 \quad \frac{\mathcal{B}\left(B^{+} \rightarrow \chi_{c 1} K^{0} \pi^{+}\right)}{\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{0} \pi^{+}\right)}=0.501 \pm 0.024 \pm 0.090
$$

$\square \bar{B}^{0}$ and B^{+}ratios are consistent.
\square Systematic uncertainties:

Contribution	Fractional error	Fractional error
	$\bar{B}^{0} \rightarrow \chi_{c 1} K^{-} \pi^{+}$	$B^{+} \rightarrow \chi_{c 1} K_{S}^{0} \pi^{+}$
1. Background subtraction	0.037	0.063
2. Efficiency	0.015	0.039
3. Efficiency binning	0.011	0.019
4. $\chi_{c 1}$ branching fraction	0.044	0.044
5. γ reconstruction	0.018	0.018
6. ΔE and m_{ES} selections	0.010	0.010
Total	0.062	0.090

\square Multiplying by the $B \rightarrow J / \psi K \pi$ branching fractions measured by the same experiment (Phys. Rev. D 79, 112001 (2009)), we obtain:
$\mathcal{B}\left(\bar{B}^{0} \rightarrow \chi_{c 1} K^{-} \pi^{+}\right)=(5.11 \pm 0.15 \pm 0.67) \times 10^{-4}, \quad \mathcal{B}\left(B^{+} \rightarrow \chi_{c 1} K^{0} \pi^{+}\right)=(5.52 \pm 0.28 \pm 0.99) \times 10^{-4}$

Fits to the $K \pi$ mass spectra.

\square Binned χ^{2} fits to the background-subtracted and efficiency-corrected $K \pi$ mass spectra in terms of S, P, and D wave amplitudes.
\square Fitting function: $\frac{d N}{d m^{\prime} K \pi}=N \times\left[f_{S}\left(\frac{G_{S}}{\int G_{S}^{d m_{K} \pi}}\right)+f_{P}\left(\frac{G_{P}}{\int G_{P}^{d m} K \pi}\right)+f_{D}\left(\frac{G_{D}}{\int G_{D} d m_{K \pi}}\right)\right]$
\square where the fractions f are such that: $f_{S}+f_{P}+f_{D}=1$.
\square The P - and D-wave intensities are expressed in terms of relativistic Breit-Wigner with parameters fixed to the PDG values for $K^{*}(892)$ and K_{2}^{*} (1430) respectively.
\square For S-wave contribution we make use of the LASS parametrization.
\square Results from the fit.

Channel	S-wave	P-wave	D-wave	$\chi^{2} / N D F$
$\bar{B}^{0} \rightarrow \pi^{+} K^{-} \chi_{c 1}$	40.4 ± 2.2	37.9 ± 1.3	11.4 ± 2.0	$58 / 54$
		10.3 ± 1.5		
$B^{+} \rightarrow \pi^{+}{ }^{+}{ }_{S}^{0} \chi_{c 1}$	42.4 ± 3.5	37.1 ± 3.2	10.1 ± 3.1	$55 / 54$
		10.4 ± 2.5		

\square Need for a small P-wave contribution from $K^{*}(1680)(\approx 10 \%)$, not present in the $B \rightarrow J / \psi K \pi$ decays or $B \rightarrow \psi(2 S) K \pi$.
\square S-wave contribution larger than in $B \rightarrow J / \psi K \pi$ decays, where is $\approx 16 \%$.

The $K \pi$ Legendre polynomial moments.

\square Add \bar{B}^{0} and B^{+}data. Weight the events by the $Y_{L}^{0}(\cos \theta)$ Legendre polynomials.\square Efficiency-corrected and background-subtracted distributions.
\square We observe the $S-P$ interference in the $\left\langle Y_{1}^{0}\right\rangle$ moment.Significant enhancement in Y_{1}^{0} at $\approx 1.7 \mathrm{GeV}$ indicating the presence of a P -wave.We observe the presence of the spin-1 $K^{*}(890)$ in the $<Y_{2}^{0}>$ moment.
\square We have evidence for the spin-2 K_{2}^{*} (1430) resonance in the $<Y_{4}^{0}>$ moment.
$\square<Y_{6}^{0}>$ is consistent with zero.

MC simulations.

A localized structure in the $\chi_{c 1} \pi$ mass spectrum shows its effect in high L Legendre polynomial moments $\left\langle Y_{L}^{0}\right\rangle$.$\square$ We now attempt to describe the $\chi_{c 1} \pi$ mass distribution using the information from the $K \pi$ system only.
\square We also limit L to its minimum value.
\square We generate a large number of MC events according to the following model.

- $B \rightarrow \chi_{c 1} K \pi$ events are generated according to phase-space. The B is generated according to a Gaussian lineshape having parameters fitted to the data.
- We label $w_{m(K \pi)}$ the weight corresponding to the fit to the $K \pi$ mass projection.
- We incorporate the measured $K \pi$ angular structure by giving weight w_{L} to each event according to the expression:

$$
w_{L}=\sum_{i=0}^{L_{m a x}}<Y_{i}^{N}>Y_{i}^{0}(\cos \theta)
$$

where $Y_{i}^{N}=Y_{i}^{0} / n$ are the normalized moments. The Y_{i}^{N} are evaluated for the $m(K \pi)$ value by linear interpolation over consecutive $m(K \pi)$ mass intervals.

- The total weight is thus:

$$
w=w_{m(K \pi)} \cdot w_{L}
$$The generated distributions, weighted by the total weight w, are then normalized to the number of data events after background-subtraction and efficiency-correction.

MC simulations: $B \rightarrow J / \psi K \pi$

We test the method on $B \rightarrow J / \psi \pi K$ where there is no evidence for narrow or broad Z resonances.We vary $L_{\max }$ between 4 and 6 and obtain the best description of the data with $L_{\max }=5$.| $L_{\max }$ | $\chi^{2} / N D F$ |
| :---: | :---: |
| 4 | $223 / 152$ |
| 5 | $162 / 152$ |
| 6 | $180 / 152$ |MC/data comparison, the dotted line shows the effect of removing the angular w_{L} weight.


```
MC simulations: B }->\mp@subsup{\chi}{c1}{}K
```

\square Similar results are obtained for the $B \rightarrow \chi_{c 1} K \pi$ channel.

$L_{\max }$	$\chi^{2} / N D F$
4	$53 / 58$
5	$46 / 58$
6	$49 / 58$
"mixed"	$63 / 58$

$\square B \rightarrow J / \psi K \pi$ and $B \rightarrow \chi_{c 1} K \pi$ data can be described using a similar approach.
\square This indicates that there is no need for additional resonant structure in order to describe the $\chi_{c 1} \pi$ mass distribution.

\square We also use a "mixed" Legendre polynomial composition, using $L_{\max }=3$ for $m(K \pi)<1.2 \mathrm{GeV}$ and $L_{\max }=4$ above.
\square This is justified by the fact that only spin 0 and spin 1 resonances are present in the low mass region.This representation also gives an excellent description of the $\bar{B}^{0} \rightarrow \chi_{c 1} K \pi$ data.
\square We will use this"mixed" representation for computing upper limits on Z production.

How would a Z resonance show up?

\square We artificially add $\mathrm{a} \approx 25 \%$ contribution of a scalar $Z_{2}(4250)^{+} \rightarrow \chi_{c 1} \pi$ resonance in the $\bar{B}^{0} \rightarrow \pi^{+} K^{-} \chi_{c 1}$ data.
\square These MC toy events are obtained from MC data, weighted by a Breit-Wigner.
\square We then compute Legendre polynomial moments for the whole sample and predict the $\chi_{c 1} \pi$ mass spectrum using the same algorithm as for real data.
\square Using the "mixed" method, the resulting MC simulation does not describe the MC data well: $\chi^{2} / N D F=140 / 58$

\square red dots indicate the $B^{0} \rightarrow \pi^{-} K^{+} \chi_{c 1}$ data, crosses indicate the total sample.

Search for Z resonances.

We now fit the $\chi_{c 1} \pi$ mass spectrum using the following model:Assume the prediction from the MC simulation ("mixed") as background.\square Include two scalar Breit-Wigner with parameters fixed to the Belle measurements.
\square Fit the full data set (Total).

Data	Resonance	N_{σ}	Fraction (\%)
a) Total	$Z_{1}(4050)^{+}$	1.1	1.6 ± 1.4
	$Z_{2}(4250)^{+}$	2.0	4.8 ± 2.4
b) Total	$Z(4150)^{+}$	1.1	4.0 ± 3.8
c) Window	$Z_{1}(4050)^{+}$	1.2	3.5 ± 3.0
	$Z_{2}(4250)^{+}$	1.3	6.7 ± 5.1
d) Window	$Z(4150)^{+}$	1.7	13.7 ± 8.0

\square Repeat the fits in the $b) 1.0<m^{2}(K \pi)<1.75 \mathrm{GeV}^{2} / c^{4}$ window, where Belle reports the maximum resonant activity (25% of the dataset).

In all cases we obtain very low $(\leq 2 \sigma)$ statistical significances.

Limits on Z production.

\square Significances do not change significantly if we modify the Z parameters within their statistical errors.
\square We obtain the following 90 \% C.L. upper limits:

$$
\begin{aligned}
\mathcal{B}\left(\bar{B}^{0} \rightarrow Z_{1}^{+} K^{-}\right) \times\left(\mathcal{B}\left(Z_{1}^{+} \rightarrow \chi_{c 1} \pi^{+}\right)<1.8 \times 10^{-5}\right. \\
\mathcal{B}\left(\bar{B}^{0} \rightarrow Z_{2}^{+} K^{-}\right) \times\left(\mathcal{B}\left(Z_{2}^{+} \rightarrow \chi_{c 1} \pi^{+}\right)<4.0 \times 10^{-5}\right.
\end{aligned}
$$

\square To be compared with Belle values of $\left(3_{-0.8}^{+1.5}+3.7\right) \times 10^{-5}$ and $\left(4_{-0.9}^{+2.3+0.5}+19.7\right) \times 10^{-5}$ respectively.
\square For only one Z we obtain:

$$
\mathcal{B}\left(\bar{B}^{0} \rightarrow Z^{+} K^{-}\right) \times\left(\mathcal{B}\left(Z^{+} \rightarrow \chi_{c 1} \pi^{+}\right)<4.7 \times 10^{-5}\right.
$$

Conclusions.

We have studied the decays $B \rightarrow \chi_{c 1} K \pi$ with charged and neutral B mesons and measured their branching fractions.The $K \pi$ resonant structure and angular distributions of \bar{B}^{0} and B^{+}are similar.\square The resonant structure and angular distributions for $B \rightarrow \chi_{c 1} K \pi$ are different from that of $B \rightarrow J / \psi K \pi$.
\square We model the $B \rightarrow \chi_{c 1} K \pi$ decay using only the information on the resonant structure and angular distributions from the $K \pi$ system and obtain an excellent description of the $\chi_{c 1} \pi$ mass distribution.
\square We test if additional resonant structures are able to improve the data description but obtain very low statistical significances.
\square We measure limits on Z production.These limits do not rule out statistically the existence of Z resonances.However, we obtain a good description of the data without the need for additional resonances decaying to $\chi_{c 1} \pi$.

