

Charmonium production in pp collisions at 7 TeV with the CMS experiment

Outline

* J/ ψ and ψ' ; X(3872); χ_{c1} and χ_{c2}

Alessandra Fanfani University & INFN of Bologna **on behalf of the CMS Collaboration**

QWG2011 Int. Workshop on Heavy Quarkonium GSI, Germany, 4-7 October 2011

- Production of charmonium states still constitutes a challenge for QCD calculations
 - * NLO calculation (color singlet) for hadroproduction only became available in 2007 (*Maltoni et al.*). In recent NLO calculations, color octet components have been included^{(*) (**)}
 - * χ_{cJ} production and the ratio $\sigma(\chi_{c2}) / \sigma(\chi_{c2})$ provide further tests for NRQCD and heavy quarkonium production mechanisms (***)
- A number of unexpected (X,Y,Z) states have been discovered
 - * One of the first and most prominent states, the X(3872), has been studied in detail but, as of now, its nature still remains unclear
 - * LHC allows studies in a new energy regime where NRQCD predictions exist for the X(3872) cross section (****)
 - (*) K.T. Chao et al., Phys. Rev. Lett. 106: 042002, 2011
 - (**) M. Butenschon and B. Kniehl, Phys. Lett. 106:022003, 2011
 - (***) Y.Q. Ma, K. Wang, K.T. Chao, Phys. Rev. D83:111503, 2011
 - (****) P. Artoisenet and E. Braaten, Phys. Rev. D81:114018, 2010

- CMS detector key ingredients for charmonium analysis
 - Muon detectors for trigger and high purity muon identification
 - Silicon Tracker detector for excellent track momentum resolution and vertices position

- Low p_T di-muon triggers in 2010 optimized for J/ ψ , adapting to rapidly evolving instantaneous luminosity
 - * At LHC startup the trigger requirements allowed us to go down to zero quarkonium p_T in the forward region

• used for the fist CMS paper (*) based on $\int Ldt = 314 \text{ nb}^{-1}$

* Data collected at higher luminosity

• used to extend the results based on $\int Ldt = 36.7 \text{ pb}^{-1}$

(*) Eur. Phys. J. C71 (2011) 1575

J/ψ and $\psi(2S)$ yields extraction

- * Unbinned Maximum Likelihood fit to invariant mass distributions
- J/ψ: 6-70 GeV in five rapidity bins

CMS Preliminary

- Crystal-Ball + Gaussian signal
- exponential background

ψ(2S): 5.5-30 GeV in three rapidity bins

- Fit to ψ' and $J/\psi + 2 \exp$. bkg.
 - CB tail parameters and resolution (scaled by mass) in common
 - Pole mass ratio fixed to PDG values

• Mass resolution ~20 MeV for |y| < 0.5 , ~50 MeV for |y| > 2.1

* Yields are corrected for di-muon efficiency and acceptance

acceptance is strongly dependent on production polarization

\blacktriangleright CMS J/ ψ cross-section measurement from 0 to 70 GeV/c

Nice agreement among different triggers/methods

- Statistical errors 2 to 9%
- Systematics of few % (except polarization)
 - * Largest systematics:
 - at the boundary of the acceptance (FSR)
 - at very high pT where the correlation between 2 muons is large

(Ref. [4]) Eur. Phys. J. C71 (2011) 1575

Non prompt J/ ψ fraction

D fit to mass and pseudo proper decay length

$$l_{\mathrm{J/\psi}} = \mathrm{L_{xy}} \cdot \mathrm{m_{J/\psi}/p_T}$$

- Decay length parameterization:
 - resolution function for prompt decays
 - convolution with exponential for non-prompt
 - different contributions from the side-bands for bkg

Fit techniques

- core resolution function given by one Gaussian using "per event error" σ_l
 - plus <1% of a second Gaussian for incorrect PV assignment

 In the ψ(2S) case: simultaneous fit together with the J/ψ, using some constraints (same resolution and mean, same effective background lifetimes)

• NRQCD *prompt* predictions (including feed-down for J/ψ) in excellent agreement with the data

- * Typical uncertainties ~5 [20]% on J/ ψ [ψ (2S)] cross-sections
- * Polarization uncertainty in 4 "extreme" scenarios:
 - Helicity frame (T-L): 18-20% for J/ ψ and 25-28% for ψ (2S)
 - Collins-Soper frame (T-L) : 6-15% for both
- cross-sections not corrected for (MC-dep.) acceptance also available

Non-prompt cross-sections

- Good comparison with
 FONNL predictions for J/ψ
- Overall shift for ψ' prediction
 - possibly due to $BR(B\rightarrow \psi' X)$ big uncertainty

Largest systematic
 from μ correlation

- Largest systematic
 from background lifetime
- At high pT, spectra of both states fall more rapidly than FONNL

Cross-section ratio R: most of the systematics cancel

- * No significant variation over rapidity: averaged within |y|<2.4
- Statistical errors ~3 to 5%, systematic uncertainty ~10% (acceptance dominated) - except polarization
- ★ The polarization uncertainty on R ranges from 12% to 20%

► $B \rightarrow \psi(2S)$ X Branching Fraction (Preliminary)

Measured from the non-prompt cross-section ratio fitting the data with FONLL or EvtGen curves: $BR(B\rightarrow\psi'X) =$ $[3.08 \pm 0.12 \text{ (stat,sys)} \pm 0.42 \text{ (BR}_{PDG}) \pm 0.06 \text{ (th.)}] \times 10^{-3}$

- uncertainty of 14.3%
 - PDG error is 50%: BR($B \rightarrow \psi' X$)_{PDG} = [4.8 ± 2.4] × 10⁻³
- main uncertainties from PDG BR

The X(3872) state

• Established a clear X(3872) signal in the decay channel J/ $\psi \pi^+ \pi^-$ using the 2010 CMS data

- * pairs of good quality opposite-charge tracks with $\Delta R(\pi, J/\psi) < 0.7$
- # 4-track vertex fit probability >1%
 - J/ψ mass fixed to the PDG value
- kinematic region:

$p_T(X) > 8 \text{ GeV and } |y(X)| < 2.2$

- Unbinned maximum likelihood fit $m_{\Psi(2S)} = 3685.9 \pm 0.1 \text{ MeV}$ $m_{\chi(3872)} = 3870.2 \pm 1.9 \text{ MeV}$ $\sigma 1_{\Psi(2S)} = 8.1 \pm 0.6 \text{ MeV}$
 - $\sigma_{2\psi(2S)}^{2} = 3.3 \pm 0.3 \text{ MeV}$ $\sigma_{X(3872)}^{2} = 6.3 \pm 1.3 \text{ MeV}$
- PDG values

$$\begin{split} m_{\psi(2S)} &= 3686.09 \, \pm \, 0.04 \; \text{MeV} \\ m_{X(3872)} &= 3871.57 \, \pm \, 0.25 \; \text{MeV} \end{split}$$

X(3872) to ψ' inclusive cross section ratio

* Extract the yields from $J/\psi \pi\pi$ mass fit

$$\mathbf{R} = \frac{\mathbf{N}_{\mathrm{X}(3872)}}{\mathbf{N}_{\Psi(2\mathrm{S})}} \mathbf{/C}$$

Extract the correction factor from MC studies

$$\mathbf{C} = \frac{\operatorname{Acc}_{J/\Psi}(X) \cdot \varepsilon_{J/\Psi}(X) \cdot A_{\pi\pi}(X) \cdot \varepsilon_{\pi\pi}(X)}{\operatorname{Acc}_{J/\Psi}(\Psi') \cdot \varepsilon_{J/\Psi}(\Psi') \cdot A_{\pi\pi}(\Psi') \cdot \varepsilon_{\pi\pi}(\Psi')}$$

- Pythia 6 with mass of χ_{c1} (J^{PC}=1⁺⁺) set to 3.872 GeV
- Null polarization assumed
- 30% non-prompt fraction assumed

 $\mathbf{R} = \frac{\sigma(pp \rightarrow X(3872) + anything) \cdot BR(X(3872) \rightarrow J/\psi\pi + \pi -)}{\sigma(pp \rightarrow \psi' + anything) \cdot BR(\psi' \rightarrow J/\psi\pi + \pi -)}$

$p_{T}(X) > 8 \text{ GeV and } y(X) < 2.2$	uncertainty source	Tot 10%	
$P = 0.087 \pm 0.017$ (stat.)	Fit models	5.3%	
$\pm 0.009 \text{ (stat.)} \leftarrow \\ \pm 0.009 \text{ (syst.)} \leftarrow \\ \underline{\text{CMS-PAS-BPH-10-018}} \text{ in CDS}$	Non-prompt fraction; changes $30 \pm 20\%$		
	Lack of knowledge of pT(X) shape	3.5%	
	Limited MC statistic	1.8%	
	Pion tracking efficiency Data driven check with $\psi' \rightarrow J/\psi \pi \pi$ and $\psi' \rightarrow \mu \mu$	4%	

Lacking $BR(X(3872) \rightarrow J/\psi \pi + \pi - \text{ to relate to theory calculations (different kinematic range):}$ P. Artoisenet & E. Braaten Phys. Rev. D81:114018,2010

- ▶ Higher instantaneous luminosity in 2011 \rightarrow limited bandwidth
- Big effort in CMS to define tighter triggers allowing a good B-physics program with the high statistics being collected

J/ ψ trigger in the barrel → New fiducial region: p_T(X) > 9 GeV and |y(X)| < 1.25

- In 2011 collected 10 times more X(3872) events improving the statistical uncertainty from 20% to 6%
- Cross-section ratio can be measured vs pT, together with the separation of the non-prompt fraction and the measurement of the X(3872) mass

$\chi_c \rightarrow J/\psi \gamma$ mass distribution

• Thanks to the CMS low pT track reconstruction, low energy photon conversions can be reconstructed with excellent resolution \rightarrow resolve the χ_{c1} and χ_{c2} peaks

* The χ_{c1} and χ_{c2} ratio can be measured vs pT * Main challenge: evaluation of the ratio of the γ reconstruction efficiencies

- Measurement of J/ψ cross section from 0 to 70 GeV/c with large rapidity coverage (|y|<2.4)</p>
- Differential cross-sections in pT and |y| of J/ψ and ψ(2S) mesons plus ratio of cross sections
 - * prompt and non-prompt contributions separated
 - measurements more precise than theory (except for polarization uncertainties)
- Results compared with NRQCD and FONNL predictions
 - # good agreement for prompt case
 - * at high pT steeper spectrum than prediction
- X(3872) to ψ(2S) inclusive cross-sections ratio in J/ψ π+π− channel → 2011 statistics allow further studies
 * pT differential cross-section ratio, non-prompt separation, mass
- \blacktriangleright Very good potential for χ_{cJ} production studies in CMS

BACKUP

J/ψ systematics

y range		0-0.9	0.9 - 1.2	1.2 - 1.6	1.6 - 2.1	2.1 - 2.4	
Quantity	Source	Relative uncertainty (in %)					
affected							
$m_{\mu\mu}$ fits	Statistical	1.2 - 8.9	1.5 - 7.1	1.6 - 8.4	1.2 - 3.2	2.3 – 3.9	
$\ell_{J/\psi}$ fits	Statistical	1.0 - 5.9	1.4 - 4.7	1.4 - 7.6	2.1 - 8.3	4.4 - 7.1	
Acceptance	FSR	0.0 - 1.5	0.0 - 2.5	0.0 - 4.2	0.7 - 8.0	0.5 - 3.5	
-	<i>p</i> _T calibration	0.0 - 0.6	0.0 - 0.6	0.0 - 0.8	0.1 - 0.6	0.0 - 0.8	
	Kinematical spectra	0.0 - 0.3	0.0 - 0.7	0.0 - 0.7	0.7 - 3.8	0.4 - 5.3	
	B polarization	0.0 - 0.5	0.0 - 0.4	0.0 - 0.5	0.1 - 0.8	0.3 - 1.3	
Efficiency	Single-muon efficiency	0.3 - 0.9	0.2 - 1.6	0.1 - 1.4	0.2 - 1.0	0.6 - 1.4	
	ρ factor	1.9 - 23.2	1.2 - 7.6	0.7 - 5.7	0.8 - 5.4	3.7 – 6.8	
Yields	Fit functions	0.6 - 3.4	0.4 - 2.8	0.5 - 2.8	0.8 - 2.2	1.0 - 4.2	
Luminosity	Luminosity	4	4	4	4	4	
b-fraction	Tracker misalignment	0.1 - 2.1	0.1 - 0.8	0.0 - 1.5	0.2 - 3.2	0.2 - 5.1	
	b-lifetime model	0.1 - 3.0	0.1 - 3.4	0.1 - 3.7	0.2 - 2.6	0.2 - 6.6	
	Vertex estimation	0.1 - 0.7	0.7 - 3.0	0.4 - 3.7	1.5 - 4.6	2.3 - 5.0	
	Background fit	0.0 - 0.2	0.1 - 1.4	0.1 - 1.0	0.0 - 2.5	0.1 - 1.2	
	Resolution model	0.2 - 3.5	0.0 - 4.2	0.8 - 3.5	1.1 - 5.0	1.1 - 4.4	
	Efficiency	0.4 - 2.1	0.9 – 3.3	0.5 - 9.9	0.3 – 3.3	1.6 - 10.5	
		$\langle \rangle$	/	× / _	/	>	

ψ' systematics

L L L L L L L L L L L L L L L L L L L	INFN Istituto Nazionale di Fisica Nucleare
·D. 10 °	

y range		0 - 1.2	1.2 - 1.6	1.6 - 2.4	
Quantity	Source	Relative uncertainty (in %)			
affected			_		
$m_{\mu\mu}$ fits	Statistical	5.6 – 14.8	7.5 – 31.7	7.3 - 24.1	
$\ell_{\psi(2S)}$ fits	Statistical	4.3 - 12.7	5.9 – 38.0	9.1 - 26.4	
Acceptance	FSR	0.0 - 3.9	0.5 - 3.4	0.3 - 4.1	
	$p_{\rm T}$ calibration	0.2 - 0.5	0.3 - 0.5	0.3 - 0.5	
	Kinematical spectra	0.1 - 1.2	0.0 - 0.9	0.7 - 2.0	
	B polarization	0.1 - 0.8	0.0 - 0.6	0.2 - 1.7	
Efficiency	Single-muon efficiency	0.1 - 0.5	0.1 - 0.6	0.2 - 0.9	
-	ρ factor	0.7 - 13.1	2.1 - 6.6	2.3 - 9.8	
Yields	Fit functions	1.2 - 3.7	0.6 - 12.1	3.1 - 10.0	
Luminosity	Luminosity	4	4	4	
b-fraction	Tracker misalignment	0.3 – 2.6	1.5 - 7.1	1.8 - 11.1	
	b-lifetime model	0.0 - 2.5	0.4 - 7.6	0.0 - 2.9	
	Vertex estimation	0.0 - 1.7	0.2 - 3.5	1.2 - 4.2	
	Background fit	1.0 - 6.8	2.2 - 10.0	2.5 – 15.3	
	Resolution model	0.5 - 3.5	0.1 - 4.6	0.9 – 24.9	
	Efficiency	0.5 — 7.8	0.9 - 6.3	0.5 – 13.8	

• Above pT \approx 20 GeV, more than 50% of the J/ ψ and ψ ' mesons result from B decays

- Tracker misalignment: data re-reconstructed in 3 "weak-mode" alignment scenarios and taking the maximum deviation as systematics
- B-lifetime model: "MC template" method used as alternative nonprompt PDF model
- Background fit: varying mass limits for the sideband fit which determines I_{qq} background parameters
- Pile-up: different choice criteria in case of multiple PVs
- ▶ Resolution model: double Gaussian → single Gaussian
- Different prompt/non-prompt efficiencies: evaluated from MC

First CMS paper on J/ψ

INFN

stituto Nazional

The CMS detector

Cross-section overview

$$\frac{d^2\sigma}{dp_{\tau}dy}(\psi) \times BR(\psi \rightarrow \mu\mu) = \frac{N_{fit}(\psi) \left\langle \frac{1}{A \cdot \varepsilon} \right\rangle}{\int L dt \cdot \Delta p_{\tau} \cdot \Delta y}$$

- N_{fit} = signal yield from fit to $\mu\mu$ invariant mass
- $\int \mathbf{L} dt = \text{integrated luminosity (4\% uncertainty)} \\ A = \text{geometrical and kinematical acceptance} \begin{cases} |\eta^{\mu}| < 1.2 & \rightarrow p_{T} > 4 \text{ GeV/c} \\ 1.2 < |\eta^{\mu}| < 2.4 & \rightarrow p_{T} > 3.3 \text{ GeV/c} \end{cases}$

- Strongly dependent on production polarization
- **ε** = dimuon efficiency = $\varepsilon(\mu^+) \varepsilon(\mu^-) \rho \varepsilon_{\text{vertex}}$
 - single muon trigger and reconstruction $\varepsilon(\mu)$, data-driven via Tag & Probe
 - vertexing of opposite sign dimuons (Prob>1%)
 - selection based on high quality tracks associated to muon segments: cuts on n_{hits} , χ^2 , $|d_{xy}|$, $|d_z|$
 - ρ express the correlation between the two μ efficiencies

• trigger settings remove too close μ (to reduce single μ faking double μ), inducing sizable correlations \rightarrow Offline rejection of forward muons bending towards each other

