Precision determination of $r_0 \Lambda_{\overline{\mathrm{MS}}}$ from the QCD static energy

Xavier Garcia i Tormo

Universität Bern

(work done with Nora Brambilla, Joan Soto and Antonio Vairo)

Phys. Rev. Lett. 105 (2010) 212001. [arXiv:1006.2066 [hep-ph]]

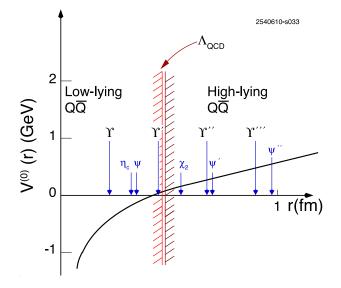
$\boldsymbol{u}^{\scriptscriptstyle b}$	
b UNIVERSITÄT	
BERN	

Xavier Garcia i Tormo

UNIVERSITÄT BERN

Introduction

Energy between a static quark and a static antiquark separated a distance r, QCD static energy $E_0(r)$. Basic object to understand the behavior of QCD


Xavier Garcia i Tormo

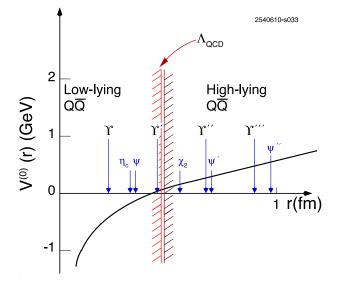
 u^{\flat}

UNIVERSITÄT BERN

Introduction

Energy between a static quark and a static antiquark separated a distance r, QCD static energy $E_0(r)$. Basic object to understand the behavior of QCD

From N. Brambilla et al., Eur. Phys. J. C71 (2011) 1534


Xavier Garcia i Tormo

Introduction

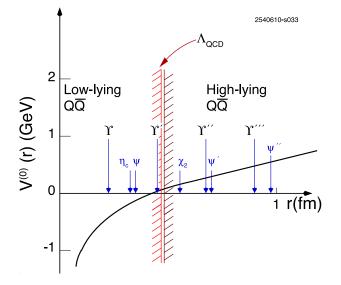
BERN

Energy between a static quark and a static antiquark separated a distance r, QCD static energy $E_0(r)$. Basic object to understand the behavior of QCD

From N. Brambilla et al., Eur. Phys. J. C71 (2011) 1534

Short-distance part \longleftrightarrow Long-distance part

QWG8. GSI Darmstadt - October 7 2011 - 2 / 12


Xavier Garcia i Tormo

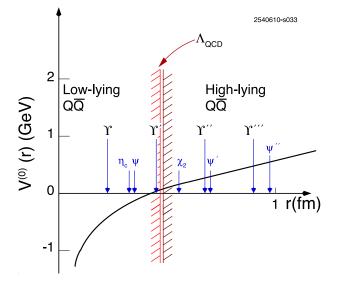
Introduction

 $u^{\scriptscriptstyle b}$

Energy between a static quark and a static antiquark separated a distance r, *QCD static energy* $E_0(r)$. Basic object to understand the behavior of QCD

From N. Brambilla et al., Eur. Phys. J. C71 (2011) 1534

Short-distance part \longleftrightarrow Long-distance part \downarrow Perturbation theory


Xavier Garcia i Tormo

Introduction

 $u^{\scriptscriptstyle b}$

Energy between a static quark and a static antiquark separated a distance r, *QCD static energy* $E_0(r)$. Basic object to understand the behavior of QCD

From N. Brambilla et al., Eur. Phys. J. C71 (2011) 1534

Short-distance part \longleftrightarrow Long-distance part \downarrow Perturbation theory

Xavier Garcia i Tormo

^b UNIVERSITÄT BERN

$$E_0(r) \sim -C_F \frac{\alpha_s}{r} \left(1 + O(\alpha_s) + O(\alpha_s^2) + O(\alpha_s^3, \alpha_s^3 \ln \alpha_s) + \cdots \right)$$

Xavier Garcia i Tormo

$$E_0(r) \sim -C_F \frac{\alpha_s}{r} \left(1 + O(\alpha_s) + O(\alpha_s^2) + O(\alpha_s^3, \alpha_s^3 \ln \alpha_s) + \cdots \right)$$

Completely known

Xavier Garcia i Tormo

$$E_0(r) \sim -C_F \frac{\alpha_s}{r} \left(1 + O(\alpha_s) + O(\alpha_s^2) + O(\alpha_s^3, \alpha_s^3 \ln \alpha_s) + \cdots \right)$$

Ultrasoft gluons. Virtual emissions that change the color state of the pair

Xavier Garcia i Tormo

$$E_0(r) \sim -C_F \frac{\alpha_s}{r} \left(1 + O(\alpha_s) + O(\alpha_s^2) + O(\alpha_s^3, \alpha_s^3 \ln \alpha_s) + \cdots \right)$$

$\mathsf{Energy} \sim \mathsf{Potential} + \mathsf{Ultrasoft} \ \mathsf{contribution}$

Xavier Garcia i Tormo

$$E_0(r) \sim -C_F \frac{\alpha_s}{r} \left(1 + O(\alpha_s) + O(\alpha_s^2) + O(\alpha_s^3, \alpha_s^3 \ln \alpha_s) + \cdots \right)$$

 $Energy \sim Potential + Ultrasoft contribution$

physical observable

Xavier Garcia i Tormo

$$E_0(r) \sim -C_F \frac{\alpha_s}{r} \left(1 + O(\alpha_s) + O(\alpha_s^2) + O(\alpha_s^3, \alpha_s^3 \ln \alpha_s) + \cdots \right)$$

 $Energy \sim Potential + Ultrasoft contribution$

physical observable

IR divergent

Xavier Garcia i Tormo

$$E_0(r) \sim -C_F \frac{\alpha_s}{r} \left(1 + O(\alpha_s) + O(\alpha_s^2) + O(\alpha_s^3, \alpha_s^3 \ln \alpha_s) + \cdots \right)$$

 $Energy \sim Potential + Ultrasoft contribution$

physical observable

IR divergent

UV divergent

Xavier Garcia i Tormo

$$E_0(r) \sim -C_F \frac{\alpha_s}{r} \left(1 + O(\alpha_s) + O(\alpha_s^2) + O(\alpha_s^3, \alpha_s^3 \ln \alpha_s) + \cdots \right)$$

```
Energy \sim Potential + Ultrasoft contribution
```

physical observable

IR divergentRequire regularization. Scheme dependentUV divergent

Xavier Garcia i Tormo

$$E_0(r) \sim -C_F \frac{\alpha_s}{r} \left(1 + O(\alpha_s) + O(\alpha_s^2) + O(\alpha_s^3, \alpha_s^3 \ln \alpha_s) + \cdots \right)$$

 $Energy \sim Potential + Ultrasoft contribution$

physical observable

IR divergent

UV divergent. Conveniently calculated with effective theory *potential Non-Relativistic QCD*

Xavier Garcia i Tormo

$$E_0(r) \sim -C_F \frac{\alpha_s}{r} \left(1 + O(\alpha_s) + O(\alpha_s^2) + O(\alpha_s^3, \alpha_s^3 \ln \alpha_s) + \cdots \right)$$

 $Energy \sim Potential + Ultrasoft contribution$

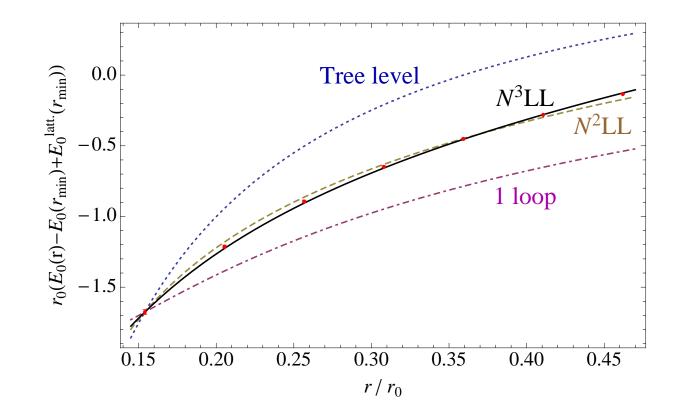
physical observable

IR divergent

UV divergent. Conveniently calculated with effective theory *potential Non-Relativistic QCD*

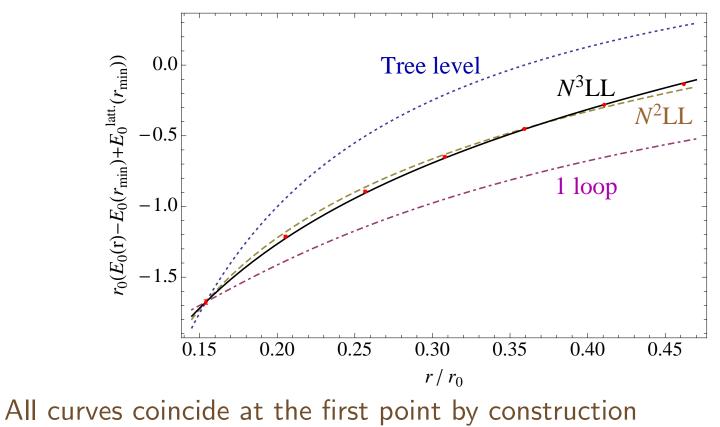
Also use pNRQCD to perform resummation of logarithms

Xavier Garcia i Tormo

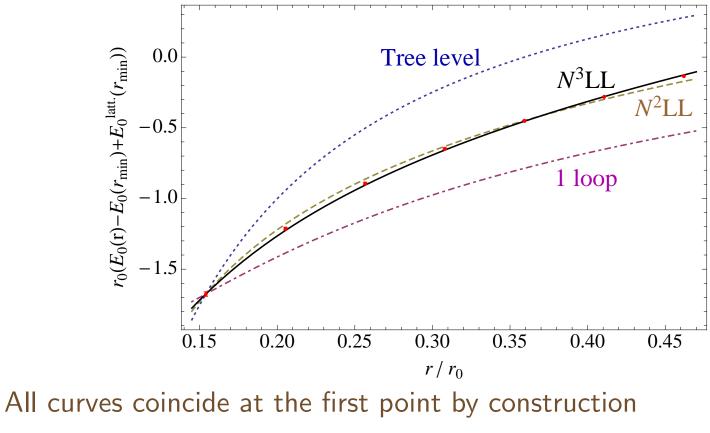


^b UNIVERSITÄT BERN

Compare the static energy with lattice data (of Necco, Sommer'02, $n_f = 0$)

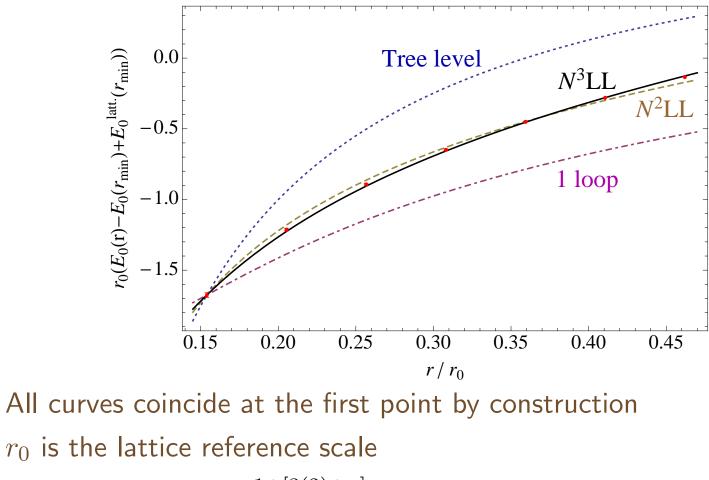

Xavier Garcia i Tormo

Xavier Garcia i Tormo



QWG8. GSI Darmstadt - October 7 2011 - 4 / 12

Xavier Garcia i Tormo



 r_0 is the lattice reference scale

Xavier Garcia i Tormo

 $\mathsf{N}^{3(2)}\mathsf{LL}$ accuracy: $\alpha_{\mathrm{s}}^{1+[3(2)+n]}\ln^n\alpha_{\mathrm{s}}$ with $n\geq 0$

Xavier Garcia i Tormo

^b UNIVERSITÄT BERN

$r_0 \Lambda_{\overline{\mathrm{MS}}}$ determination

To do the previous lattice comparison we need $r_0\Lambda_{\overline{\mathrm{MS}}}$ as input

$r_0 \Lambda_{\overline{\mathrm{MS}}} = 0.602 \pm 0.048$

Capitani et al. [ALPHA Collaboration]'99

Xavier Garcia i Tormo

$r_0 \Lambda_{\overline{\mathrm{MS}}}$ determination

To do the previous lattice comparison we need $r_0\Lambda_{\overline{\mathrm{MS}}}$ as input

 $r_0 \Lambda_{\overline{\mathrm{MS}}} = 0.602 \pm 0.048$

Capitani et al. [ALPHA Collaboration]'99

But uncertainty, induced by it, is larger than unknown higher order terms in the static energy.

Xavier Garcia i Tormo

$r_0 \Lambda_{\overline{\mathrm{MS}}}$ determination

To do the previous lattice comparison we need $r_0\Lambda_{\overline{\mathrm{MS}}}$ as input

$$r_0 \Lambda_{\overline{\mathrm{MS}}} = 0.602 \pm 0.048$$

Capitani et al. [ALPHA Collaboration]'99

But uncertainty, induced by it, is larger than unknown higher order terms in the static energy. Use lattice comparison to extract $r_0\Lambda_{\overline{\rm MS}}$

Xavier Garcia i Tormo

$r_0 \Lambda_{\overline{\mathrm{MS}}}$ determination

To do the previous lattice comparison we need $r_0\Lambda_{\overline{\mathrm{MS}}}$ as input

$$r_0 \Lambda_{\overline{\mathrm{MS}}} = 0.602 \pm 0.048$$

Capitani et al. [ALPHA Collaboration]'99

But uncertainty, induced by it, is larger than unknown higher order terms in the static energy. Use lattice comparison to extract $r_0\Lambda_{\overline{\rm MS}}$

- Lattice comparison requires scheme that cancels leading renormalon

$r_0 \Lambda_{\overline{\mathrm{MS}}}$ determination

To do the previous lattice comparison we need $r_0\Lambda_{\overline{\mathrm{MS}}}$ as input

$$r_0 \Lambda_{\overline{\mathrm{MS}}} = 0.602 \pm 0.048$$

Capitani *et al.* [ALPHA Collaboration]'99 But uncertainty, induced by it, is larger than unknown higher order terms in the static energy. Use lattice comparison to extract $r_0\Lambda_{\overline{\mathrm{MS}}}$

- Lattice comparison requires scheme that cancels leading renormalon \longrightarrow introduces dimensional scale, ϱ

$r_0 \Lambda_{\overline{\mathrm{MS}}}$ determination

To do the previous lattice comparison we need $r_0\Lambda_{\overline{\mathrm{MS}}}$ as input

$$r_0 \Lambda_{\overline{\mathrm{MS}}} = 0.602 \pm 0.048$$

Capitani *et al.* [ALPHA Collaboration]'99 But uncertainty, induced by it, is larger than unknown higher order terms in the static energy. Use lattice comparison to extract $r_0\Lambda_{\overline{\mathrm{MS}}}$

- Lattice comparison requires scheme that cancels leading renormalon \longrightarrow introduces dimensional scale, ϱ
 - Natural value around the inverse of the center of the $r\text{-range},~\varrho\sim 3.25 r_0^{-1}$

Xavier Garcia i Tormo

To do the previous lattice comparison we need $r_0\Lambda_{\overline{\mathrm{MS}}}$ as input

$$r_0 \Lambda_{\overline{\mathrm{MS}}} = 0.602 \pm 0.048$$

Capitani *et al.* [ALPHA Collaboration]'99 But uncertainty, induced by it, is larger than unknown higher order terms in the static energy. Use lattice comparison to extract $r_0\Lambda_{\overline{\mathrm{MS}}}$

- Lattice comparison requires scheme that cancels leading renormalon \longrightarrow introduces dimensional scale, ϱ
 - Natural value around the inverse of the center of the $r\text{-range},~\varrho\sim 3.25 r_0^{-1}$
- Structure of renormalization group equations (singlet-octet mixing) introduces dependence on a constant, K_2

QWG8. GSI Darmstadt - October 7 2011 – 5 / 12

Xavier Garcia i Tormo

$r_0 \Lambda_{\overline{\mathrm{MS}}}$ determination

To do the previous lattice comparison we need $r_0\Lambda_{\overline{\mathrm{MS}}}$ as input

$$r_0 \Lambda_{\overline{\mathrm{MS}}} = 0.602 \pm 0.048$$

Capitani *et al.* [ALPHA Collaboration]'99 But uncertainty, induced by it, is larger than unknown higher order terms in the static energy. Use lattice comparison to extract $r_0\Lambda_{\overline{\mathrm{MS}}}$

- Lattice comparison requires scheme that cancels leading renormalon \longrightarrow introduces dimensional scale, ϱ
 - Natural value around the inverse of the center of the $r\text{-}\mathrm{range},~\varrho\sim 3.25 r_0^{-1}$
- Structure of renormalization group equations (singlet-octet mixing) introduces dependence on a constant, K_2
 - Power counting: $K_2 \sim \Lambda_{\overline{\mathrm{MS}}}$

Xavier Garcia i Tormo

^b UNIVERSITÄT BERN

Find values of $r_0\Lambda_{\overline{\mathrm{MS}}}$ that are allowed by lattice data

Xavier Garcia i Tormo

Convergent perturbative series and agreement with lattice improves when perturbative order is increased

Convergent perturbative series and agreement with lattice improves when perturbative order is increased

Procedure in detail:

Xavier Garcia i Tormo

Convergent perturbative series and agreement with lattice improves when perturbative order is increased

Procedure in detail:

1. Vary ϱ (by $\pm 25\%$) around natural value

Xavier Garcia i Tormo

Convergent perturbative series and agreement with lattice improves when perturbative order is increased

Procedure in detail:

1. Vary ϱ (by $\pm 25\%$) around natural value

2. Fit $r_0 \Lambda_{\overline{\text{MS}}}$ for each value of ϱ and at each order in pert. th.

Convergent perturbative series and agreement with lattice improves when perturbative order is increased

Procedure in detail:

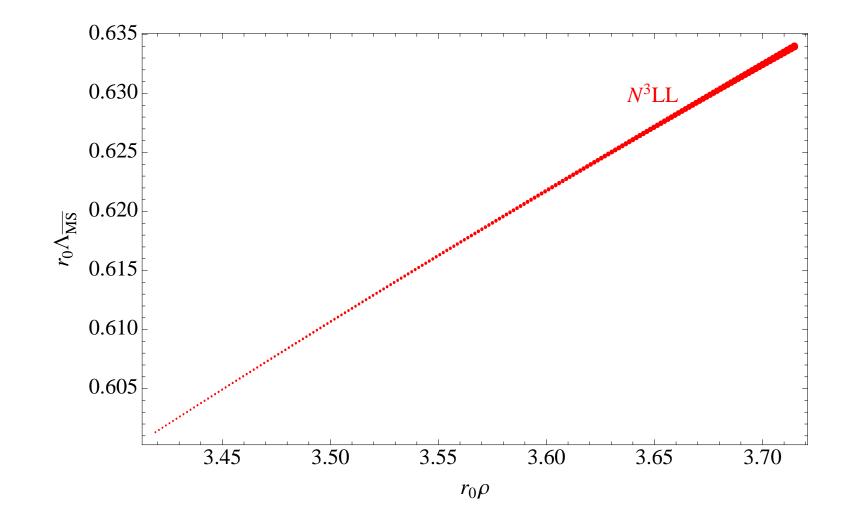
1. Vary ρ (by $\pm 25\%$) around natural value

2. Fit $r_0 \Lambda_{\overline{\mathrm{MS}}}$ for each value of ϱ and at each order in pert. th.

3. Select ϱ 's for which χ^2 decreases when increasing pert. order

Xavier Garcia i Tormo

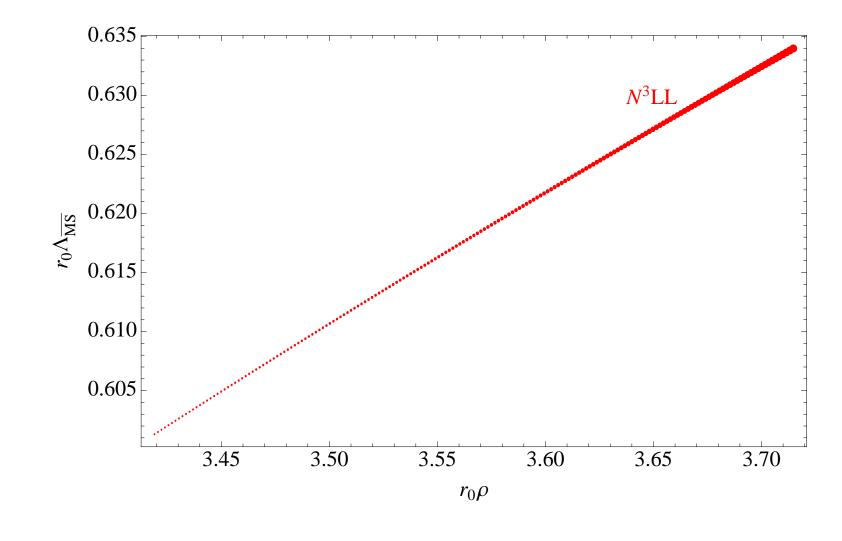
Convergent perturbative series and agreement with lattice improves when perturbative order is increased


Procedure in detail:

1. Vary ρ (by $\pm 25\%$) around natural value

- 2. Fit $r_0 \Lambda_{\overline{\mathrm{MS}}}$ for each value of ϱ and at each order in pert. th.
- 3. Select ρ 's for which χ^2 decreases when increasing pert. order
- 4. Select values that respect power counting for K_2

Xavier Garcia i Tormo



QWG8. GSI Darmstadt - October 7 2011 - 7 / 12

Xavier Garcia i Tormo

Use weighted (inverse χ^2) average for the central value

Xavier Garcia i Tormo

To assign the error:

Xavier Garcia i Tormo

- Weighted standard deviation

Xavier Garcia i Tormo

- Weighted standard deviation
- Difference with weighted average at previous order

Xavier Garcia i Tormo

- Weighted standard deviation
- Difference with weighted average at previous order
- Additionally, redo analysis with alternative weight assignments (*p*-value, constant)

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

- Weighted standard deviation
- Difference with weighted average at previous order
- Additionally, redo analysis with alternative weight assignments (*p*-value, constant). Results are compatible

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

- Weighted standard deviation
- Difference with weighted average at previous order
- Additionally, redo analysis with alternative weight assignments (*p*-value, constant). Results are compatible. Quote error to cover whole range

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

- Weighted standard deviation
- Difference with weighted average at previous order
- Additionally, redo analysis with alternative weight assignments (*p*-value, constant). Results are compatible.
 Quote error to cover whole range

Error assigned must account for uncertainties due to neglected higher order terms

Xavier Garcia i Tormo

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

Final result:

$$r_0 \Lambda_{\overline{\rm MS}} = 0.622^{+0.019}_{-0.015}$$

Xavier Garcia i Tormo

Final result:

$$r_0 \Lambda_{\overline{\rm MS}} = 0.622^{+0.019}_{-0.015}$$

Compatible but more precise than number used previously $(r_0 \Lambda_{\overline{\text{MS}}} = 0.602 \pm 0.048)$

Xavier Garcia i Tormo

Remarks

Xavier Garcia i Tormo

Remarks

Such a higher order calculation of the static energy is useful in practice and is needed

Xavier Garcia i Tormo

Remarks

Such a higher order calculation of the static energy is useful in practice and is needed

Accuracy	$r_0\Lambda_{\overline{ m MS}}$
N^2LL	0.619 ± 0.13
N^3LL	0.622 ± 0.012

Xavier Garcia i Tormo

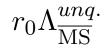
Remarks

Such a higher order calculation of the static energy is useful in practice and is needed

Accuracy	$r_0\Lambda_{\overline{ m MS}}$
N^2LL	0.619 ± 0.13
N^3LL	0.622 ± 0.012

 $N^{3}LL$ result improves the precision of the $N^{2}LL$ determination by an order of magnitude

Xavier Garcia i Tormo



Exactly the same procedure can be done in the unquenched case

Xavier Garcia i Tormo

Exactly the same procedure can be done in the unquenched case

Xavier Garcia i Tormo

Exactly the same procedure can be done in the unquenched case

$$r_0 \Lambda_{\overline{\mathrm{MS}}}^{unq.} \longrightarrow r_0$$

Using value of α_s as input, determination of r_0

Xavier Garcia i Tormo

Exactly the same procedure can be done in the unquenched case

 $r_0 \Lambda_{\overline{\mathrm{MS}}}^{unq.} \longrightarrow r_0$

Using value of α_s as input, determination of r_0

$$r_0 \Lambda_{\overline{\mathrm{MS}}}^{unq.} \longrightarrow \Lambda_{\overline{\mathrm{MS}}}$$

Xavier Garcia i Tormo

Exactly the same procedure can be done in the unquenched case

$$r_0 \Lambda_{\overline{\mathrm{MS}}}^{unq.} \longrightarrow r_0$$

Using value of α_s as input, determination of r_0

$$r_0 \Lambda_{\overline{\mathrm{MS}}}^{unq.} \longrightarrow \Lambda_{\overline{\mathrm{MS}}}$$

Using value of r_0 as an input allows for a novel independent determination of α_s

Xavier Garcia i Tormo

Conclusions

- Static energy is now known at high orders in perturbation theory

Xavier Garcia i Tormo

Conclusions

- Static energy is now known at high orders in perturbation theory
- Such high order calculation is needed

Xavier Garcia i Tormo

Conclusions

- Static energy is now known at high orders in perturbation theory
- Such high order calculation is needed
 - Agreement with lattice

Xavier Garcia i Tormo

Conclusions

- Static energy is now known at high orders in perturbation theory
- Such high order calculation is needed
 - Agreement with lattice
 - Extraction of $r_0\Lambda_{\overline{\mathrm{MS}}}$

Xavier Garcia i Tormo

Conclusions

- Static energy is now known at high orders in perturbation theory
- Such high order calculation is needed
 - Agreement with lattice
 - Extraction of $r_0\Lambda_{\overline{\mathrm{MS}}}$
- New determination: $r_0 \Lambda_{\overline{\rm MS}} = 0.622^{+0.019}_{-0.015}$

Xavier Garcia i Tormo

Conclusions

- Static energy is now known at high orders in perturbation theory
- Such high order calculation is needed
 - Agreement with lattice
 - Extraction of $r_0\Lambda_{\overline{\mathrm{MS}}}$
- New determination: $r_0 \Lambda_{\overline{\rm MS}} = 0.622^{+0.019}_{-0.015}$
- Same procedure could be performed with unquenched data and would provide a determination of α_s

Xavier Garcia i Tormo

Conclusions

- Static energy is now known at high orders in perturbation theory
- Such high order calculation is needed
 - Agreement with lattice
 - Extraction of $r_0\Lambda_{\overline{\mathrm{MS}}}$
- New determination: $r_0 \Lambda_{\overline{\rm MS}} = 0.622^{+0.019}_{-0.015}$
- Same procedure could be performed with unquenched data and would provide a determination of α_s

Thank you

Xavier Garcia i Tormo