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)

Ultrasoft gluons. Virtual emissions that change the color state of
the pair
Nomenclature used:

Energy∼ Potential + Ultrasoft contribution

physical observable

IR divergent

UV divergent. Conveniently calculated with effective theory
potential Non-Relativistic QCD

Also use pNRQCD to perform resummation of logarithms
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r0 is the lattice reference scale

N3(2)LL accuracy: α
1+[3(2)+n]
s lnn αs with n ≥ 0
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To do the previous lattice comparison we need r0ΛMS as input

r0ΛMS = 0.602± 0.048

Capitani et al. [ALPHA Collaboration]’99

But uncertainty, induced by it, is larger than unknown higher
order terms in the static energy. Use lattice comparison to
extract r0ΛMS

- Lattice comparison requires scheme that cancels leading
renormalon −→ introduces dimensional scale, ̺

- Natural value around the inverse of the center of the
r-range, ̺ ∼ 3.25r−1

0

- Structure of renormalization group equations (singlet-octet
mixing) introduces dependence on a constant, K2

- Power counting: K2 ∼ ΛMS
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Find values of r0ΛMS that are allowed by lattice data

Convergent perturbative series and agreement with lattice
improves when perturbative order is increased

Procedure in detail:

1. Vary ̺ (by ±25%) around natural value

2. Fit r0ΛMS for each value of ̺ and at each order in pert. th.

3. Select ̺’s for which χ2 decreases when increasing pert.
order

4. Select values that respect power counting for K2
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Use weighted (inverse χ2) average for the central value
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To assign the error:

- Weighted standard deviation

- Difference with weighted average at previous order

- Additionally, redo analysis with alternative weight
assignments (p-value, constant). Results are compatible.
Quote error to cover whole range

Error assigned must account for uncertainties due to neglected
higher order terms
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Final result:
r0ΛMS = 0.622+0.019

−0.015

Compatible but more precise than number used previously
(r0ΛMS = 0.602± 0.048)
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Such a higher order calculation of the static energy is useful in
practice and is needed

Accuracy r0ΛMS

N2LL 0.619± 0.13
N3LL 0.622± 0.012

N3LL result improves the precision of the N2LL determination by
an order of magnitude
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Exactly the same procedure can be done in the unquenched case

r0Λ
unq.

MS
−→ r0

Using value of αs as input, determination of r0

r0Λ
unq.

MS
−→ ΛMS

Using value of r0 as an input allows for a novel independent
determination of αs
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- Static energy is now known at high orders in perturbation
theory

- Such high order calculation is needed

- Agreement with lattice

- Extraction of r0ΛMS

- New determination: r0ΛMS = 0.622+0.019
−0.015

- Same procedure could be performed with unquenched data
and would provide a determination of αs

Thank you
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