

The France-Stanford Center for Interdisciplinary Studies

Quarkonium physics at a fixed-target experiment with the proton and lead LHC beams

Jean-Philippe Lansberg IPN Orsay, Université Paris-Sud

8th Quarkonium Working Group Workshop

October 4 - 7, 2011 GSI, Darmstadt, Deutschland

with F. Fleuret (LLR), S.J. Brodsky (SLAC), C. Hadjidakis (IPN), ...

Part I

A fixed-target experiment using the LHC beam(s): generalities

J.P. Lansberg (IPNO, Paris-Sud XI U.) Q physics at a LHC fixed-target experiment

Generalities

• pp or pA with a 7 TeV p beam : $\sqrt{s} \simeq 115 \text{ GeV}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generalities

- pp or pA with a 7 TeV p beam : $\sqrt{s} \simeq 115 \text{ GeV}$
- Same ballpark as electron-ion colliders

 \rightarrow complementary

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generalities

- *pp* or *pA* with a 7 TeV *p* beam : $\sqrt{s} \simeq 115$ GeV
- Same ballpark as electron-ion colliders \rightarrow complementary
- For *pA*, a Fermi motion of 0.2 GeV would induce a spread of 10 % of \sqrt{s}

S.Fredriksson, NPB 94 (1975) 337

イロト イポト イラト イラト

Generalities

- *pp* or *pA* with a 7 TeV *p* beam : $\sqrt{s} \simeq 115$ GeV
- Same ballpark as electron-ion colliders \rightarrow complementary
- For *pA*, a Fermi motion of 0.2 GeV would induce a spread of 10 % of \sqrt{s}

S.Fredriksson, NPB 94 (1975) 337

• The beam may be extracted using "Strong cristalline field"

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

イロト イポト イラト イラト

Generalities

- *pp* or *pA* with a 7 TeV *p* beam : $\sqrt{s} \simeq 115$ GeV
- Same ballpark as electron-ion colliders
- For *pA*, a Fermi motion of 0.2 GeV would induce a spread of 10 % of \sqrt{s}

S.Fredriksson, NPB 94 (1975) 337

 \rightarrow complementary

The beam may be extracted using "Strong cristalline field"

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

Expected luminosities with 5 × 10⁸ p/s extracted (1cm-long target)

Target	ρ (g.cm-3)	A	L (μb ⁻¹ .s ⁻¹)	ℒ (pb ⁻¹ .у ⁻¹)
Liq. H ₂	0.07	1	21	210
Liq. D ₂	0.16	2	24	240
Be	1.85	9	60	600
Cu	8.96	64	40	400
w	19.1	185	30	300
Pb	11.35	207	16	160

(preliminary !)

Generalities

- *pp* or *pA* with a 7 TeV *p* beam : $\sqrt{s} \simeq 115$ GeV
- Same ballpark as electron-ion colliders
- For *pA*, a Fermi motion of 0.2 GeV would induce a spread of 10 % of \sqrt{s}

S.Fredriksson, NPB 94 (1975) 337

 \rightarrow complementary

The beam may be extracted using "Strong cristalline field"

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

Expected luminosities with 5 × 10⁸ p/s extracted (1cm-long target)

Target	ρ (g.cm-3)	Α	L (μb ⁻¹ .s ⁻¹)	ℒ (pb ⁻¹ .y ⁻¹)
Liq. H ₂	0.07	1	21	210
Liq. D ₂	0.16	2	24	240
Ве	1.85	9	60	600
Cu	8.96	64	40	400
W	19.1	185	30	300
Pb	11.35	207	16	160

(preliminary !)

• Using NA51-like 1.2m-long liquid H_2 & D_2 targets, $\mathcal{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$

Generalities

- *pp* or *pA* with a 7 TeV *p* beam : $\sqrt{s} \simeq 115$ GeV
- Same ballpark as electron-ion colliders
- For *pA*, a Fermi motion of 0.2 GeV would induce a spread of 10 % of \sqrt{s}

S.Fredriksson, NPB 94 (1975) 337

 \rightarrow complementary

The beam may be extracted using "Strong cristalline field"

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

Expected luminosities with 5 × 10⁸ p/s extracted (1cm-long target)

Target	ρ (g.cm-3)	A	⊥ (µb ⁻¹ .s ⁻¹)	ℒ (pb ⁻¹ .y ⁻¹)
Liq. H ₂	0.07	1	21	210
Liq. D ₂	0.16	2	24	240
Ве	1.85	9	60	600
Cu	8.96	64	40	400
w	19.1	185	30	300
Pb	11.35	207	16	160

(preliminary !)

- Using NA51-like 1.2m-long liquid H₂ & D₂ targets, L<sub>H₂/D₂ ≃ 20 fb⁻¹y⁻¹
 </sub>
- For comparison, PHENIX recorded lumi for Run9 pp at 200 GeV: 16 pb⁻¹ & Run8 dAu at 200 GeV : 0.08 pb⁻¹

J.P. Lansberg (IPNO, Paris-Sud XI U.) Q physics at a LHC fixed-target experiment

Generalities

• *Pbp* or *PbA* with a 2.75 TeV Pb beam : $\sqrt{s} \simeq 72$ GeV

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generalities

- *Pbp* or *PbA* with a 2.75 TeV Pb beam : $\sqrt{s} \simeq 72$ GeV
- Cristal channeling is also possible (to extract a few per cent of the beam)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generalities

- *Pbp* or *PbA* with a 2.75 TeV Pb beam : $\sqrt{s} \simeq 72$ GeV
- Cristal channeling is also possible (to extract a few per cent of the beam)
- Requires cristals highly resistant to radiations: progress with diamonds

P. Ballin et al., NIMB 267 (2009) 2952

< ロ > < 同 > < 回 > < 回 >

Generalities

- *Pbp* or *PbA* with a 2.75 TeV Pb beam : $\sqrt{s} \simeq 72$ GeV
- Cristal channeling is also possible (to extract a few per cent of the beam)
- Requires cristals highly resistant to radiations: progress with diamonds

P. Ballin et al., NIMB 267 (2009) 2952

• Expected luminosities with 7×10^5 Pb/s extracted (1cm-long target)

				0 0 /
Target	ρ (g.cm ⁻³)	A	\mathcal{L} (mb ⁻¹ .s ⁻¹)= $\int \mathcal{L}$ (nb ⁻¹ .yr ⁻¹)	
Liq. H ₂	0.07	1	28	
Liq. D ₂	0.16	2	34	(Preliminary !)
Ве	1.85	9	84	
Cu	8.96	64	56	
w	19.1	185	42	
Pb	11.35	207	22	

Generalities

- *Pbp* or *PbA* with a 2.75 TeV Pb beam : $\sqrt{s} \simeq 72$ GeV
- Cristal channeling is also possible (to extract a few per cent of the beam)
- Requires cristals highly resistant to radiations: progress with diamonds

P. Ballin et al., NIMB 267 (2009) 2952

• Expected luminosities with 7×10^5 Pb/s extracted (1cm-long target)

Target	ρ (g.cm-³)	А	\mathcal{L} (mb ⁻¹ .s ⁻¹)= $\int \mathcal{L}$ (nb ⁻¹ .yr ⁻¹)	
Liq. H ₂	0.07	1	28	
Liq. D ₂	0.16	2	34	(Preliminary !)
Ве	1.85	9	84	
Cu	8.96	64	56	
w	19.1	185	42	
Pb	11.35	207	22	

 For comparison, Phenix recorded lumi for Run10 AuAu at 200 GeV: 1.3 nb⁻¹ & AuAu at 62 GeV: 0.11 nb⁻¹

Part II

AFTER as a quarkonium observatory in pp

(constraining the glue at large x in the proton)

J.P. Lansberg (IPNO, Paris-Sud XI U.) Q physics at a LHC fixed-target experiment

-

• Big theoretical complications

12 N A 12

Big theoretical complications

• Direct production is not dominant (neither indirect –via χ_Q –)

Big theoretical complications

- Direct production is not dominant (neither indirect –via χ_Q –)
- Naive application of pQCD (CSM) fails to describe $d\sigma/dP_T$ at LO

(after all, it is at large P_T that it would be safer to extract reliable info)

∃ ► < ∃ ►</p>

Big theoretical complications

- Direct production is not dominant (neither indirect –via χ_Q –)
- Naive application of pQCD (CSM) fails to describe $d\sigma/dP_T$ at LO

(after all, it is at large P_T that it would be safer to extract reliable info)

• Different competing models: CSM, NRQCD-COM, CEM, *k_T* fact.

A B F A B F

Big theoretical complications

- Direct production is not dominant (neither indirect –via χ_Q –)
- Naive application of pQCD (CSM) fails to describe dσ/dP_T at LO (after all, it is at large P_T that it would be safer to extract reliable info)
- Different competing models: CSM, NRQCD-COM, CEM, k_T fact.
- At larger \sqrt{s} (or P_T), the *B* enter the game

< 回 > < 三 > < 三 >

Big theoretical complications

- Direct production is not dominant (neither indirect –via χ_Q –)
- Naive application of pQCD (CSM) fails to describe dσ/dP_T at LO (after all, it is at large P_T that it would be safer to extract reliable info)
- Different competing models: CSM, NRQCD-COM, CEM, k_T fact.
- At larger \sqrt{s} (or P_T), the *B* enter the game
- All this calls for very involved theoretical computations or experimental measurements

・ロット (雪) (き) (き)

Big theoretical complications

- Direct production is not dominant (neither indirect –via χ_Q –)
- Naive application of pQCD (CSM) fails to describe dσ/dP_T at LO (after all, it is at large P_T that it would be safer to extract reliable info)
- Different competing models: CSM, NRQCD-COM, CEM, k_T fact.
- At larger \sqrt{s} (or P_T), the *B* enter the game
- All this calls for very involved theoretical computations or experimental measurements
- Even at low P_T , things are not easy

・ロット (雪) (き) (き)

Big theoretical complications

- Direct production is not dominant (neither indirect –via χ_Q –)
- Naive application of pQCD (CSM) fails to describe dσ/dP_T at LO (after all, it is at large P_T that it would be safer to extract reliable info)
- Different competing models: CSM, NRQCD-COM, CEM, k_T fact.
- At larger \sqrt{s} (or P_T), the *B* enter the game
- All this calls for very involved theoretical computations or experimental measurements
- Even at low P_T , things are not easy
 - Specific difficulties to measure the χ_{c,b}
 - Reduced acceptance/efficiencies at the LHC (CMS, ATLAS)

< 日 > < 同 > < 回 > < 回 > < 回 > <

Big theoretical complications

- Direct production is not dominant (neither indirect –via χ_Q –)
- Naive application of pQCD (CSM) fails to describe dσ/dP_T at LO (after all, it is at large P_T that it would be safer to extract reliable info)
- Different competing models: CSM, NRQCD-COM, CEM, k_T fact.
- At larger \sqrt{s} (or P_T), the *B* enter the game
- All this calls for very involved theoretical computations or experimental measurements
- Even at low P_T , things are not easy
 - Specific difficulties to measure the χ_{c,b}
 - Reduced acceptance/efficiencies at the LHC (CMS, ATLAS)
 - Very large theoretical uncertainty (mass, $\alpha_s(\mu_R)$)

Big theoretical complications

- Direct production is not dominant (neither indirect –via χ_Q –)
- Naive application of pQCD (CSM) fails to describe dσ/dP_T at LO (after all, it is at large P_T that it would be safer to extract reliable info)
- Different competing models: CSM, NRQCD-COM, CEM, k_T fact.
- At larger \sqrt{s} (or P_T), the *B* enter the game
- All this calls for very involved theoretical computations or experimental measurements
- Even at low P_T , things are not easy
 - Specific difficulties to measure the χ_{c,b}
 - Reduced acceptance/efficiencies at the LHC (CMS, ATLAS)
 - Very large theoretical uncertainty (mass, $\alpha_s(\mu_R)$)
 - Yet, very sensitive on $g(x, Q^2)$ where it is not well known

イロト 不得 トイヨト イヨト

- To put an end to production controversies (since 1995 !), we need
 - a study of direct J/ψ yield (χ_c only measured in *pp* by CDF and PHENIX)
 - a study of direct Y(nS) (χ_b only measured in pp by CDF (1 point))
 - a study of the polarisation of direct yields

(at least in 2 frames or 2D distrib.)

A D N A B N A B N A B N

+ probably associated production

- To put an end to production controversies (since 1995 !), we need
 - a study of direct J/ψ yield (χ_c only measured in *pp* by CDF and PHENIX)
 - a study of direct Y(nS) (χ_b only measured in *pp* by CDF (1 point))
 - a study of the polarisation of direct yields

(at least in 2 frames or 2D distrib.)

A D N A B N A B N A B N

- + probably associated production
- $\chi_{c,b}$ production is badly known, even worse for the η_c

- To put an end to production controversies (since 1995 !), we need
 - a study of direct J/ψ yield (χ_c only measured in *pp* by CDF and PHENIX)
 - a study of direct Y(nS) (χ_b only measured in *pp* by CDF (1 point))
 - a study of the polarisation of direct yields

(at least in 2 frames or 2D distrib.)

- + probably associated production
- $\chi_{c,b}$ production is badly known, even worse for the η_c
- The latter are potentially better probes of glue in pp

- To put an end to production controversies (since 1995 !), we need
 - a study of direct J/ψ yield (χ_c only measured in *pp* by CDF and PHENIX)
 - a study of direct Y(nS) (χ_b only measured in *pp* by CDF (1 point))
 - a study of the polarisation of direct yields

(at least in 2 frames or 2D distrib.)

ヘロト 不得 トイヨト イヨト 二日

- + probably associated production
- $\chi_{c,b}$ production is badly known, even worse for the η_c
- The latter are potentially better probes of glue in pp

• LO processes are $gg \rightarrow \begin{cases} \chi_{c,b,2} \\ \eta_{c,b} \end{cases}$

- To put an end to production controversies (since 1995 !), we need
 - a study of direct J/ψ yield (χ_c only measured in *pp* by CDF and PHENIX)
 - a study of direct Y(nS) (χ_b only measured in *pp* by CDF (1 point))
 - a study of the polarisation of direct yields

(at least in 2 frames or 2D distrib.)

- + probably associated production
- $\chi_{c,b}$ production is badly known, even worse for the η_c
- The latter are potentially better probes of glue in pp

• LO processes are
$$gg \rightarrow \begin{cases} \chi_{c,b,2} \\ \eta_{c,b} \end{cases}$$

For that, we need

- To put an end to production controversies (since 1995 !), we need
 - a study of direct J/ψ yield (χ_c only measured in *pp* by CDF and PHENIX)
 - a study of direct Y(nS) (χ_b only measured in *pp* by CDF (1 point))
 - a study of the polarisation of direct yields

(at least in 2 frames or 2D distrib.)

- + probably associated production
- $\chi_{c,b}$ production is badly known, even worse for the η_c
- The latter are potentially better probes of glue in pp
- LO processes are $gg \rightarrow \begin{cases} \chi_{c,b,2} \\ \eta_{c,b} \end{cases}$
- For that, we need
 - high stats

 \rightarrow wide acceptance (also help not to bias 1D polarisation analyses)

- To put an end to production controversies (since 1995 !), we need
 - a study of direct J/ψ yield (χ_c only measured in *pp* by CDF and PHENIX)
 - a study of direct Y(nS) (χ_b only measured in *pp* by CDF (1 point))
 - a study of the polarisation of direct yields

(at least in 2 frames or 2D distrib.)

- + probably associated production
- $\chi_{c,b}$ production is badly known, even worse for the η_c
- The latter are potentially better probes of glue in pp
- LO processes are $gg \rightarrow \begin{cases} \chi_{c,b,2} \\ \eta_{c,b} \end{cases}$
- For that, we need
 - high stats

 \rightarrow wide acceptance (also help not to bias 1D polarisation analyses)

a vertex detector

- To put an end to production controversies (since 1995 !), we need
 - a study of direct J/ψ yield (χ_c only measured in *pp* by CDF and PHENIX)
 - a study of direct Y(nS) (χ_b only measured in *pp* by CDF (1 point))
 - a study of the polarisation of direct yields

(at least in 2 frames or 2D distrib.)

- + probably associated production
- $\chi_{c,b}$ production is badly known, even worse for the η_c
- The latter are potentially better probes of glue in pp

• LO processes are
$$gg \rightarrow \begin{cases} \chi_{c,b,2} \\ \eta_{c,b} \end{cases}$$

- For that, we need
 - high stats

 \rightarrow wide acceptance (also help not to bias 1D polarisation analyses)

- a vertex detector
- state-of-the-art calorimetry for $\gamma (\chi_Q \rightarrow^3 S_1 + \gamma, \eta_c \rightarrow \gamma \gamma)$

- To put an end to production controversies (since 1995 !), we need
 - a study of direct J/ψ yield (χ_c only measured in *pp* by CDF and PHENIX)
 - a study of direct Y(nS) (χ_b only measured in pp by CDF (1 point))
 - a study of the polarisation of direct yields

(at least in 2 frames or 2D distrib.)

- + probably associated production
- $\chi_{c,b}$ production is badly known, even worse for the η_c
- The latter are potentially better probes of glue in pp

• LO processes are
$$gg \rightarrow \begin{cases} \chi_{c,b,2} \\ \eta_{c,b} \end{cases}$$

- For that, we need
 - high stats

 \rightarrow wide acceptance (also help not to bias 1D polarisation analyses)

- a vertex detector
- state-of-the-art calorimetry for $\gamma \ (\chi_Q \rightarrow^3 S_1 + \gamma, \eta_c \rightarrow \gamma \gamma)$
- adapted triggers (Big issue for CMS and ATLAS)

A Fixed Target ExpeRiment: A quarkonium observatory

Interpolating the world data set:

	$N_{J/\Psi}_{N_{J/\Psi}} (y^{-1})$	Ν _Υ (γ ⁻¹) _{Νγ} = Α∠σ _γ
Liq. H ²	pranching and 0.6 10 ⁹	per unit of rapidity) 10 ⁶
(1m) Liq. D ²	1.5 10 9	23 10 ⁵
Ве	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
w	1.7 10 9	27 10 ⁵
Pb	1. 10 ⁹	16 10 ⁵

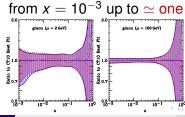
A Fixed Target ExpeRiment: A quarkonium observatory

- Interpolating the world data set:
- Rates expected at RHIC in 2011: *J*/ψ: 10⁶ in *pp*, Y: 10⁴ in *pp*

	$N_{J/\Psi}_{N_{J/\Psi}} (y^{-1})$	$N_{\Upsilon} (y^{-1})$ $N_{\chi} = A \mathcal{L} \sigma_{\chi}$ per unit of rapidity)
Liq. H ²	0.6 10 ⁹	10 ⁶
Liq. D ²	1.5 10 ⁹	23 10 ⁵
Ве	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
W	1.7 10 9	27 10 ⁵
Pb	1. 10 ⁹	16 10 ⁵

- Interpolating the world data set:
- Rates expected at RHIC in 2011: *J*/ψ: 10⁶ in *pp*, Y: 10⁴ in *pp*
- 2-3 orders of magnitude higher here (RHIC yields are much lower in dAu compared to pA here)

		$N_{J/\Psi}_{N_{J/\Psi} = A\mathcal{L}\sigma_{\Psi}}(y^{-1})$	N _Υ (Υ ⁻¹) _{N_Y} = ALσ _Y
ĺ	Liq. H ²	0.6 10 ⁹	l per unit of rapidity) <mark></mark> 10 ⁶
		1.5 10 ⁹	23 10 ⁵
	Ве	0.2 10 ⁹	2.7 10 ⁵
)	Cu	0.8 10 9	13 10 ⁵
	W	1.7 10 9	27 10 ⁵
	Pb	1. 10 9	16 10 ⁵


- Interpolating the world data set:
- Rates expected at RHIC in 2011: *J*/ψ: 10⁶ in *pp*, Y: 10⁴ in *pp*
- 2-3 orders of magnitude higher here (RHIC yields are much lower in dAu compared to pA here)
- Numbers are for only one unit of y about 0

	$N_{J/\Psi}(y^{-1})$	N _Υ (y ⁻¹) _{N_Y = ALσ_Y}
(with I	pranching and	per unit of rapidity)
Liq. H ²	0.6 10 ⁹	10 ⁶
	1.5 10 ⁹	23 10 ⁵
Be	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
w	1.7 10 9	27 10 ⁵
Pb	1. 10 ⁹	16 10 ⁵

- Interpolating the world data set:
- Rates expected at RHIC in 2011: *J*/ψ: 10⁶ in *pp*, Y: 10⁴ in *pp*
- 2-3 orders of magnitude higher here (RHIC yields are much lower in dAu compared to pA here)
- Numbers are for only one unit of y about 0
- Unique access in the backward region

	$N_{J/\Psi}(y^{-1})$ $N_{J/\Psi} = AL\sigma_{\Psi}$	$N_{\Upsilon}(y^{-1})$ $N_{\chi} = A\mathcal{L}\sigma_{\chi}$ per unit of rapidity)
Liq. H ²	0.6 10 ⁹	10 ⁶
Liq. D ²	1.5 10 ⁹	23 10 ⁵
Be	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
w	1.7 10 9	27 10 ⁵
Pb	1. 10 ⁹	16 10 ⁵

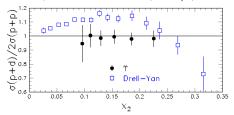
- Interpolating the world data set:
- Rates expected at RHIC in 2011: *J*/ψ: 10⁶ in *pp*, Y: 10⁴ in *pp*
- 2-3 orders of magnitude higher here (RHIC yields are much lower in dAu compared to pA here)
- Numbers are for only one unit of y about 0
- Unique access in the backward region
- Probe of the (very) large x in the target
- AIM/HOPE: Extract $g(x, Q^2)$ with Q^2 as low as 10 GeV²

	$\underset{N_{J/\Psi} \in A\mathcal{L}\sigma_{\Psi}}{N_{J/\Psi} = A\mathcal{L}\sigma_{\Psi}}$	Ν _Υ (Υ ⁻¹) _{Ν_Υ} = ΑΔσ _Υ
Liq. H ²	oranching and 0.6 10 ⁹	per unit of rapidity) 10 ⁶
Liq. D ²	1.5 10 ⁹	23 10 ⁵
Ве	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
w	1.7 10 9	27 10 ⁵
Pb	1. 10 9	16 10 ⁵

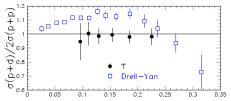
- Interpolating the world data set:
- Rates expected at RHIC in 2011: *J*/ψ: 10⁶ in *pp*, Y: 10⁴ in *pp*
- 2-3 orders of magnitude higher here (RHIC yields are much lower in dAu compared to pA here)
- Numbers are for only one unit of y about 0
- Unique access in the backward region
- Probe of the (very) large x in the target
- AIM/HOPE: Extract $g(x, Q^2)$ with Q^2 as low as 10 GeV² from $x = 10^{-3}$ up to \simeq one
- Absolutely complementary to eRHIC (and LHeC) whose focus would be low-x.

	$N_{J/\Psi}(y^{-1})_{N_{J/\Psi} = A\mathcal{L}\sigma_{\Psi}}$	N _Υ (y ⁻¹) _{N_Y} = A⊥σ _Y
Liq. H ²	0.6 10 ⁹	10⁶
	1.5 10 ⁹	23 10 ⁵
Ве	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
w	1.7 10 9	27 10 ⁵
Pb	1. 10 9	16 10 ⁵

- Interpolating the world data set:
- Rates expected at RHIC in 2011: *J*/ψ: 10⁶ in *pp*, Y: 10⁴ in *pp*
- 2-3 orders of magnitude higher here (RHIC yields are much lower in dAu compared to pA here)
- Numbers are for only one unit of y about 0
- Unique access in the backward region
- Probe of the (very) large x in the target
- AIM/HOPE: Extract $g(x, Q^2)$ with Q^2 as low as 10 GeV² from $x = 10^{-3}$ up to \simeq one
- Absolutely complementary to eRHIC (and LHeC)

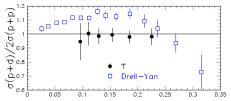

whose focus would be low-x.

 Use of pp vs pd → access to the gluon content in the neutron in a wide x domain


cf. E866, Phys. Rev. Lett. 100 062301 (2008)

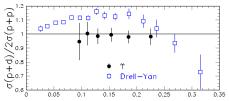
	$N_{J/\Psi}(y^{-1})_{N_{J/\Psi}=A\mathcal{L}\sigma_{\Psi}}$	$N_{\Upsilon}(y^{-1})$
Liq. H ²	oranching and	per unit of rapidity) 10 ⁶
(1m) Liq. D ²	1.5 10 ⁹	23 10 ⁵
Be	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
w	1.7 10 ⁹	27 10 ⁵
Pb	1. 10 ⁹	16 10 ⁵

E866 opened the way: $g_n(x, Q^2 \simeq 100 \text{GeV}^2) \simeq g_p(x, Q^2 \simeq 100 \text{GeV}^2)$



E866 opened the way: $g_n(x, Q^2 \simeq 100 \text{GeV}^2) \simeq g_p(x, Q^2 \simeq 100 \text{GeV}^2)$

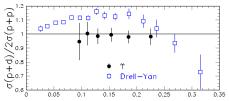
Such a measurement could be extended²


E866 opened the way: $g_n(x, Q^2 \simeq 100 \text{GeV}^2) \simeq g_p(x, Q^2 \simeq 100 \text{GeV}^2)$

Such a measurement could be extended²

• to lower x: down to $\simeq 8 \times 10^{-3}$ with Y

E866 opened the way: $g_n(x, Q^2 \simeq 100 \text{GeV}^2) \simeq g_p(x, Q^2 \simeq 100 \text{GeV}^2)$

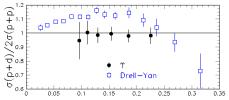


Such a measurement could be extended²

- to lower x: down to $\simeq 8 \times 10^{-3}$ with Y
- to lower Q^2 with J/ψ (also to $10 \times \text{ lower } x$)

Beware of factorisation breaking effects for $x_{projectile} \rightarrow 1$

E866 opened the way: $g_n(x, Q^2 \simeq 100 \text{GeV}^2) \simeq g_p(x, Q^2 \simeq 100 \text{GeV}^2)$


Such a measurement could be extended²

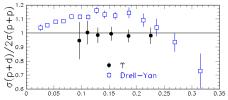
- to lower x: down to $\simeq 8 \times 10^{-3}$ with Y
- to lower Q^2 with J/ψ (also to $10 \times \text{lower } x$)

Beware of factorisation breaking effects for $x_{projectile} \rightarrow 1$

Quarkonium production on deuterium target could be analysed for $x_{target} > 1$

E866 opened the way: $g_n(x, Q^2 \simeq 100 \text{GeV}^2) \simeq g_p(x, Q^2 \simeq 100 \text{GeV}^2)$

Such a measurement could be extended²


- to lower x: down to $\simeq 8 \times 10^{-3}$ with Y
- to lower Q^2 with J/ψ (also to $10 \times \text{lower } x$)

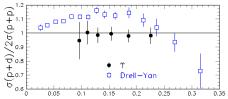
Beware of factorisation breaking effects for $x_{projectile} \rightarrow 1$

Quarkonium production on deuterium target could be analysed for $x_{target} > 1$

Need for high lumi: long deuterium target ?

E866 opened the way: $g_n(x, Q^2 \simeq 100 \text{GeV}^2) \simeq g_p(x, Q^2 \simeq 100 \text{GeV}^2)$

Such a measurement could be extended²


- to lower x: down to $\simeq 8 \times 10^{-3}$ with Y
- to lower Q^2 with J/ψ (also to $10 \times \text{lower } x$)

Beware of factorisation breaking effects for $x_{projectile} \rightarrow 1$

Quarkonium production on deuterium target could be analysed for $x_{target} > 1$

- Need for high lumi: long deuterium target ?
- Unique probe of the deuteron internal dynamics (even for $x_{target} < 1$)

E866 opened the way: $g_n(x, Q^2 \simeq 100 \text{GeV}^2) \simeq g_p(x, Q^2 \simeq 100 \text{GeV}^2)$

Such a measurement could be extended²

- to lower x: down to $\simeq 8 \times 10^{-3}$ with Y
- to lower Q^2 with J/ψ (also to $10 \times \text{lower } x$)

Beware of factorisation breaking effects for $x_{projectile} \rightarrow 1$

Quarkonium production on deuterium target could be analysed for $x_{target} > 1$

- Need for high lumi: long deuterium target ?
- Unique probe of the deuteron internal dynamics (even for $x_{target} < 1$)

J.P. Lansberg (IPNO, Paris-Sud XI U.) Q physics at a LHC fixed-target experiment

Part III

AFTER as a quarkonium observatory in pA

(Precision analysis of Cold Nuclear Matter Effects)

J.P. Lansberg (IPNO, Paris-Sud XI U.) Q physics at a LHC fixed-target experiment

< 6 b

• The target versatility of a fixed-target experiment is undisputable

4 3 5 4 3

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects / the energy dependence of σ^{abs}

A B F A B F

< 6 b

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects / the energy dependence of σ^{abs}
- However, strong need for cross checks from various measurements

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects / the energy dependence of σ^{abs}
- However, strong need for cross checks from various measurements
 - shadowing: open charm/beauty

need for a vertex detector

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects / the energy dependence of σ^{abs}
- However, strong need for cross checks from various measurements
 - shadowing: open charm/beauty

need for a vertex detector

• formation time: χ_c , η_c , ψ'

need for excellent photon calorimetry

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects / the energy dependence of σ^{abs}
- However, strong need for cross checks from various measurements
 - shadowing: open charm/beauty

need for a vertex detector

• formation time: χ_c , η_c , ψ'

need for excellent photon calorimetry

absorption: charmonium vs. bottomonium

need for luminosity

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
- However, strong need for cross checks from various measurements
 - shadowing: open charm/beauty

need for a vertex detector

• formation time: χ_c , η_c , ψ'

need for excellent photon calorimetry

absorption: charmonium vs. bottomonium

need for luminosity

• The backward kinematics is very useful for large-*x_{target}* studies

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects / the energy dependence of σ^{abs}
- However, strong need for cross checks from various measurements
 - shadowing: open charm/beauty

need for a vertex detector

• formation time: χ_c , η_c , ψ'

need for excellent photon calorimetry

absorption: charmonium vs. bottomonium

need for luminosity

- The backward kinematics is very useful for large-x_{target} studies
 - What is the amount of Intrinsic charm ? Is it color filtered ? relevant to understand E866 data

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects / the energy dependence of σ^{abs}
- However, strong need for cross checks from various measurements
 - shadowing: open charm/beauty

need for a vertex detector

• formation time: χ_c , η_c , ψ'

need for excellent photon calorimetry

absorption: charmonium vs. bottomonium

need for luminosity

- The backward kinematics is very useful for large-*x_{target}* studies
 - What is the amount of Intrinsic charm ? Is it color filtered ?

relevant to understand E866 data

・ロト ・ 四ト ・ ヨト ・ ヨト

• Is there an EMC effect for gluon ? (reminder: EMC region 0.3 < x < 0.7)

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects / the energy dependence of σ^{abs}
- However, strong need for cross checks from various measurements
 - shadowing: open charm/beauty

need for a vertex detector

• formation time: χ_c , η_c , ψ'

need for excellent photon calorimetry

• absorption: charmonium vs. bottomonium

need for luminosity

- The backward kinematics is very useful for large-*x_{target}* studies
 - What is the amount of Intrinsic charm ? Is it color filtered ?
 - relevant to understand E866 data
 - Is there an EMC effect for gluon ? (reminder: EMC region 0.3 < x < 0.7)

● In general one should be careful with factorization breaking effects: This calls for different measurements to (in)validate factorization = ∽

• Reminder:

	$N_{J/\Psi}(y^{-1})$	N _Υ (γ ⁻¹) _{N_Y} = AL _{σ_Y}
Liq. H ²	pranching and 0.6 10 ⁹	per unit of rapidity) 10 ⁶
	1.5 10 9	23 10 ⁵
Ве	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
W	1.7 10 9	27 10 ⁵
Pb	1. 10 9	16 10 ⁵

ъ

Image: Image:

- Reminder:
- Total yield measured by PHENIX during *d*Au Run08: $9 \times 10^5 J/\psi$ (inclusive yield in nearly 3 units of *y*!)

	$N_{J/\Psi}_{N_{J/\Psi} = A\mathcal{L}\sigma_{\Psi}}$	N _Υ (γ ⁻¹) _{N_Y} = ALσ _Y
Liq. H ²	pranching and 0.6 10 ⁹	per unit of rapidity) 10 ⁶
	1.5 10 9	23 10 ⁵
Ве	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
W	1.7 10 9	27 10 ⁵
Pb	1. 10 ⁹	16 10 ⁵

A

• Reminder:

- Total yield measured by PHENIX during *d*Au Run08: $9 \times 10^5 J/\psi$ (inclusive yield in nearly 3 units of *y*!)
- In principle, one can get Pb1000 times more J/ψ (in 1 unit of y), allowing for

	$N_{J/\Psi}(y^{-1})$	N _Υ (γ ⁻¹) _{N_Y} = AL _{σ_Y}
Liq. H ²	branching and 0.6 10 9	per unit of rapidity) 10 ⁶
(1m) Liq. D ²	1.5 10 ⁹	23 10 ⁵
Ве	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
W	1.7 10 9	27 10 ⁵
Pb	1. 10 9	16 10 ⁵

• Reminder:

- Total yield measured by PHENIX during *d*Au Run08: $9 \times 10^5 J/\psi$ (inclusive yield in nearly 3 units of *y*!)
- In principle, one can get P^{b} 1000 times more J/ψ (in 1 unit of y), allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$

Target	$N_{J/\Psi}(y^{-1})$	N _Υ (y ⁻¹) _{N_Y = ALσ_Y}
(with I	branching and	per unit of rapidity)
Liq. H ²	0.6 10 ⁹	10 ⁶
	1.5 10 ⁹	23 10 ⁵
Ве	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
w	1.7 10 9	27 10 ⁵
Pb	1. 10 9	16 10 ⁵

4 A 1

• Reminder:

- Total yield measured by PHENIX during *d*Au Run08: $9 \times 10^5 J/\psi$ (inclusive yield in nearly 3 units of *y*!)
- In principle, one can get P^{b} 1000 times more J/ψ (in 1 unit of y), allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$
 - Polarisation measurement as function of *A*, the centrality, *y* and *P_T*: For *α^{octet} ≠ α^{singlet}*, probe of different obsorption of octets & singlets ?

	$N_{J/\Psi}(y^{-1})$	$N_{\Upsilon} (Y^{-1})$ $N_{\Upsilon} = A \mathcal{L} \sigma_{\Upsilon}$
Liq. H ²		per unit of rapidity) 10 ⁶
(1m)	0.6 10 ⁹	10.
	1.5 10 9	23 10 ⁵
Ве	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
w	1.7 10 9	27 10 ⁵
Pb	1. 10 ⁹	16 10 ⁵

inder:

• Reminder:

- Total yield measured by PHENIX during *d*Au Run08: $9 \times 10^5 J/\psi$ (inclusive yield in nearly 3 units of *y*!)
- In principle, one can get P^{b} 1000 times more J/ψ (in 1 unit of y), allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$
 - Polarisation measurement as function of *A*, the centrality, *y* and *P*_T : For $\alpha^{octet} \neq \alpha^{singlet}$, probe of different obsorption of octets & singlets ?
 - Ratio ψ' over direct J/ψ measurement in pA

	$N_{J/\Psi}_{N_{J/\Psi}}\left(Y^{-1}\right)$	N _Υ (γ ⁻¹) _{N_Y = ALσ_Y}
(with I	branching and	per unit of rapidity)
Liq. H ²	0.6 10 ⁹	10 ⁶
	1.5 10 ⁹	23 10 ⁵
Be	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
W	1.7 10 9	27 10 ⁵
Pb	1. 10 9	16 10 ⁵

• Reminder:

- Total yield measured by PHENIX during *d*Au Run08: $9 \times 10^5 J/\psi$ (inclusive yield in nearly 3 units of *y*!)
- In principle, one can get P^{b} 1000 times more J/ψ (in 1 unit of y), allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$
 - Polarisation measurement as function of *A*, the centrality, *y* and *P*_T : For $\alpha^{octet} \neq \alpha^{singlet}$, probe of different obsorption of octets & singlets ?
 - Ratio ψ' over direct J/ψ measurement in pA
 - not to mention ratio with open charm, Drell-Yan, etc ...

(B)

	$N_{J/\Psi}(y^{-1})$	N _Υ (γ ⁻¹) _{N_Y = ALσ_Y}
Liq. H ²	oranching and 0.6 10 ⁹	per unit of rapidity) 10 ⁶
	1.5 10 9	23 10 ⁵
Ве	0.2 10 ⁹	2.7 10 ⁵
Cu	0.8 10 9	13 10 ⁵
w	1.7 10 9	27 10 ⁵
Pb	1. 10 9	16 10 ⁵

Part IV

Heavy-ion physics with AFTER in PbA collisions

(the quest for sequential quarkonium suppression)

J.P. Lansberg (IPNO, Paris-Sud XI U.) Q physics at a LHC fixed-target experiment

A >

Observation of J/ψ sequential suppression seems to be hindered by

• the Cold Nuclear Matter effects: non trivial and

... not well-known, after all

Observation of J/ψ sequential suppression seems to be hindered by

• the Cold Nuclear Matter effects: non trivial and

... not well-known, after all

- the difficulty to observe directly the excited states which would melt before the ground states
 - χ_c never studied in AA collisions
 - $\psi(2S)$ not yet studied in AA collisions at RHIC and the LHC

Observation of J/ψ sequential suppression seems to be hindered by

• the Cold Nuclear Matter effects: non trivial and

... not well-known, after all

- the difficulty to observe directly the excited states which would melt before the ground states
 - χ_c never studied in AA collisions
 - $\psi(2S)$ not yet studied in AA collisions at RHIC and the LHC
- the possibilities for cc̄ recombination
 - Open charm studies are difficult where recombination matters most i.e. at low P_T
 - Only indirect indications from the y and P_T dependence of R_{AA} –

that recombination may be at work

イロト 不得 トイヨト イヨト

- CNM effects may show a non-trivial y and P_T dependence too !
- not clear what v₂ tells us

A Fixed Target ExpeRiment: a quarkonium observatory in PbA

• The excellent capabilities in pA should help

- to reduce the CNM uncertainties
- to measure their dependence in y and P_T

Rough estimation of the yield: $2 \times 10^7 J/\psi$, $10^4 Y$ per year (10^6 sec)

A Fixed Target ExpeRiment: a quarkonium observatory in PbA

- The excellent capabilities in pA should help
 - to reduce the CNM uncertainties
 - to measure their dependence in y and P_T
- Even though recombination may not be large at 72 GeV:
 - Open charm may be well measured, via displaced e/μ or $D \rightarrow K\pi$ a priori even at low P_T thanks to the boost

Rough estimation of the yield: $2 \times 10^7 J/\psi$, $10^4 Y$ per year (10^6 sec)

A D N A B N A B N A B N

A Fixed Target ExpeRiment: a quarkonium observatory in PbA

- The excellent capabilities in pA should help
 - to reduce the CNM uncertainties
 - to measure their dependence in y and P_T
- Even though recombination may not be large at 72 GeV:
 - Open charm may be well measured, via displaced e/μ or $D \rightarrow K\pi$ a priori even at low P_T thanks to the boost
- last but not least, excited states would be studied
 - $\psi(2S)$ thanks to the statistics and the resolution
 - χ_c thanks the excellent colorimetry in high-multiplicity environment
 - cf. the CALICE detector using particle flow techniques
 - and maybe ... for the very first time the η_c

Rough estimation of the yield: $2 \times 10^7 J/\psi$, $10^4 Y$ per year (10^6 sec)

Part V

Spin Physics with AFTER

(the quest for gluon spin contributions)

J.P. Lansberg (IPNO, Paris-Sud XI U.) Q physics at a LHC fixed-target experiment

ъ

< 6 b

• A further undisputable property of fixed-target experiments is the possibility of polarising the target

see COMPASS, HERMES, CLAS, ...

4 D K 4 B K 4 B K 4 B K

• A further undisputable property of fixed-target experiments is the possibility of polarising the target

see COMPASS, HERMES, CLAS, ...

• The polarisation can be longitudinal and transverse

イロト イポト イラト イラ

• A further undisputable property of fixed-target experiments is the possibility of polarising the target

see COMPASS, HERMES, CLAS, ...

- The polarisation can be longitudinal and transverse
- Single Transverse Spin Asymmetries unravel the correlations between the parton k_T and the proton spin

 \rightarrow information on orbital motion of partons in the proton !

4 **A** N A **B** N A **B** N

• A further undisputable property of fixed-target experiments is the possibility of polarising the target

see COMPASS, HERMES, CLAS, ...

- The polarisation can be longitudinal and transverse
- Single Transverse Spin Asymmetries unravel the correlations between the parton k_T and the proton spin

 \rightarrow information on orbital motion of partons in the proton !

 Double Longitudinal Spin Asymmetries allow for the extraction of polarised PDFs

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• A further undisputable property of fixed-target experiments is the possibility of polarising the target

see COMPASS, HERMES, CLAS, ...

- The polarisation can be longitudinal and transverse
- Single Transverse Spin Asymmetries unravel the correlations between the parton k_T and the proton spin

\rightarrow information on orbital motion of partons in the proton !

- Double Longitudinal Spin Asymmetries allow for the extraction of polarised PDFs
- Double Transverse Spin Asymmetries probe transversity

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• A further undisputable property of fixed-target experiments is the possibility of polarising the target

see COMPASS, HERMES, CLAS, ...

- The polarisation can be longitudinal and transverse
- Single Transverse Spin Asymmetries unravel the correlations between the parton k_T and the proton spin

\rightarrow information on orbital motion of partons in the proton !

- Double Longitudinal Spin Asymmetries allow for the extraction of polarised PDFs
- Double Transverse Spin Asymmetries probe transversity
- The beam may become transversely polarised during the crystal extraction

M. Ukhanov, Nucl. Instrum. Meth. A 582 (2007) 378.

 \rightarrow to be experimentally checked \ldots

Information on the \mathcal{Q} production mechanisms can also obtained in:

< 6 b

Information on the Q production mechanisms can also obtained in: \rightarrow (single) polarised $p^{\uparrow}p$ collisions, e.g. Single Spin Asymmetry

Information on the Q production mechanisms can also obtained in: \rightarrow (single) polarised $p^{\uparrow}p$ collisions, e.g. Single Spin Asymmetry "a nonzero transverse SSA generated by a gluon Sivers TMD would be an evidence against large contributions from CO transition".

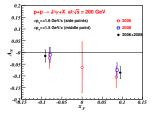
F. Yuan, PRD 78, 014024 (2008).

Information on the Q production mechanisms can also obtained in: \rightarrow (single) polarised $p^{\uparrow}p$ collisions, e.g. Single Spin Asymmetry "a nonzero transverse SSA generated by a gluon Sivers TMD would be an evidence against large contributions from CO transition".

• SSA \neq 0 in *pp*: indication for CSM (as seen below) ^{F. Yuan, PRD 78, 014024 (2008).}

Information on the Q production mechanisms can also obtained in: \rightarrow (single) polarised $p^{\uparrow}p$ collisions, e.g. Single Spin Asymmetry "a nonzero transverse SSA generated by a gluon Sivers TMD would be an evidence against large contributions from CO transition".

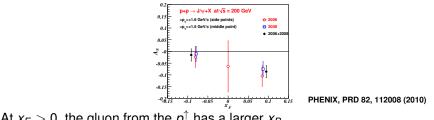
- SSA \neq 0 in *pp*: indication for CSM (as seen below) ^{F. Yuan, PRD 78, 014024 (2008).}
- SSA \neq 0 in *ep*: indication for COM


(I) > (A) > (A) > (A) > (A)

Information on the Q production mechanisms can also obtained in: \rightarrow (single) polarised $p^{\uparrow}p$ collisions, e.g. Single Spin Asymmetry "a nonzero transverse SSA generated by a gluon Sivers TMD would be an evidence against large contributions from CO transition".

- SSA \neq 0 in *pp*: indication for CSM (as seen below) ^{F. Yuan, PRD 78, 014024 (2008).}
- SSA \neq 0 in *ep*: indication for COM
- it comes from the (im)possibility of final state interferences

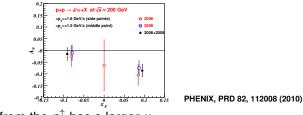
Information on the Q production mechanisms can also obtained in: \rightarrow (single) polarised $p^{\uparrow}p$ collisions, e.g. Single Spin Asymmetry "a nonzero transverse SSA generated by a gluon Sivers TMD would be an evidence against large contributions from CO transition".


- SSA \neq 0 in *pp*: indication for CSM (as seen below) ^{F. Yuan, PRD 78, 014024 (2008).}
- SSA \neq 0 in *ep*: indication for COM
- it comes from the (im)possibility of final state interferences

PHENIX, PRD 82, 112008 (2010)

Information on the Q production mechanisms can also obtained in: \rightarrow (single) polarised $p^{\uparrow}p$ collisions, e.g. Single Spin Asymmetry "a nonzero transverse SSA generated by a gluon Sivers TMD would be an evidence against large contributions from CO transition".

- F. Yuan, PRD 78, 014024 (2008). • SSA \neq 0 in *pp*: indication for CSM (as seen below)
- SSA \neq 0 in *ep*: indication for COM
- it comes from the (im)possibility of final state interferences


• At $x_F > 0$, the gluon from the p^{\uparrow} has a larger x_B

(B)

A D b 4 A b

Information on the Q production mechanisms can also obtained in: \rightarrow (single) polarised $p^{\uparrow}p$ collisions, e.g. Single Spin Asymmetry "a nonzero transverse SSA generated by a gluon Sivers TMD would be an evidence against large contributions from CO transition".

- SSA \neq 0 in *pp*: indication for CSM (as seen below) ^{F. Yuan, PRD 78, 014024 (2008).}
- SSA \neq 0 in *ep*: indication for COM
- it comes from the (im)possibility of final state interferences

- At $x_F > 0$, the gluon from the p^{\uparrow} has a larger x_B
- It knows more about the proton spin than at low $x_B \rightarrow SSA$ grows

• For now, such Transverse SSA can be used to discrimate between production mechanism

A b

- For now, such Transverse SSA can be used to discrimate between production mechanism
- The situation is likely to change in the future, allowing us to measure gluon Sivers function from quarkonia (J/ψ, χ_c, Y)

< 🗇 🕨

- For now, such Transverse SSA can be used to discrimate between production mechanism
- The situation is likely to change in the future, allowing us to measure gluon Sivers function from quarkonia (J/ψ, χ_c, Y)
- It remains to be investigated how quarkonium polarisation can be used to form DSA

Attempt in: J. L. Cortes, B. Pire, Phys. Rev. D38, 3586 (1988).

イロト イポト イラト イラト

- For now, such Transverse SSA can be used to discrimate between production mechanism
- The situation is likely to change in the future, allowing us to measure gluon Sivers function from quarkonia (J/ψ, χ_c, Y)
- It remains to be investigated how quarkonium polarisation can be used to form DSA

Attempt in: J. L. Cortes, B. Pire, Phys. Rev. D38, 3586 (1988).

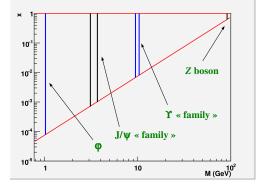
• Of course, transverse SSA can be studied in parallel for other mesons (*D*, *B*, ...)

- For now, such Transverse SSA can be used to discrimate between production mechanism
- The situation is likely to change in the future, allowing us to measure gluon Sivers function from quarkonia (J/ψ, χ_c, Y)
- It remains to be investigated how quarkonium polarisation can be used to form DSA

Attempt in: J. L. Cortes, B. Pire, Phys. Rev. D38, 3586 (1988).

- Of course, transverse SSA can be studied in parallel for other mesons (*D*, *B*, ...)
- In general, the backward region is the most favourable allowing for measurements in the large x region of the polarised nucleon

Part VI


More with AFTER

(Drell-Yan, jet and W/Z)

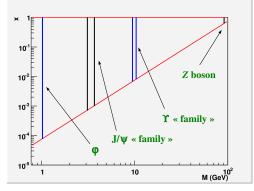
J.P. Lansberg (IPNO, Paris-Sud XI U.) Q physics at a LHC fixed-target experiment

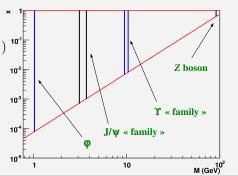
A dilepton observatory

 \rightarrow Region in x probed by dilepton production as function of $M_{\ell\ell}$

A dilepton observatory

- → Region in x probed by dilepton production as function of $M_{\ell\ell}$
- \rightarrow Above $c\bar{c}$: $x \in [10^{-3}, 1]$
- \rightarrow Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$




Image: A matrix and a matrix

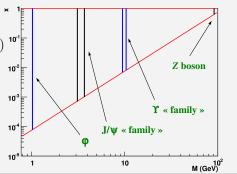
-

A dilepton observatory

- → Region in x probed by dilepton production as function of $M_{\ell\ell}$
- \rightarrow Above $c\bar{c}$: $x \in [10^{-3}, 1]$
- \rightarrow Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note: $x_{target} (\equiv x_2) > x_{projectile} (\equiv x_1)$ "backward" region

< ∃ >


A dilepton observatory

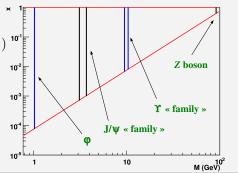
- → Region in x probed by dilepton production as function of $M_{\ell\ell}$
- \rightarrow Above $c\bar{c}$: $x \in [10^{-3}, 1]$
- \rightarrow Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note: $x_{target}(\equiv x_2) > x_{projectile}(\equiv x_1)$ "backward" region

- \rightarrow sea-quark asymetries via *p* and *d* studies
- at large(est) x: backward ("easy")

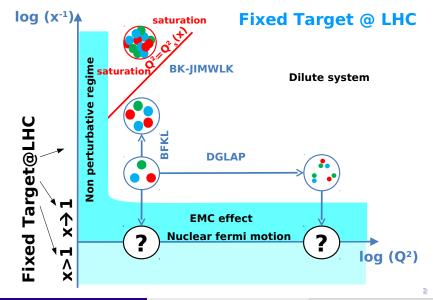
- at small(est) *x*: forward (need to stop the (extracted) beam)

• • • • • • • • • • • •

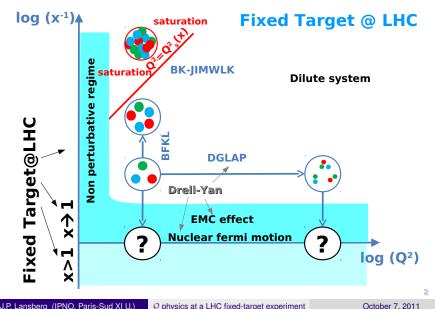

A dilepton observatory

- → Region in x probed by dilepton production as function of $M_{\ell\ell}$
- → Above $c\bar{c}$: $x \in [10^{-3}, 1]$
- \rightarrow Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note: $x_{target}(\equiv x_2) > x_{projectile}(\equiv x_1)$ "backward" region

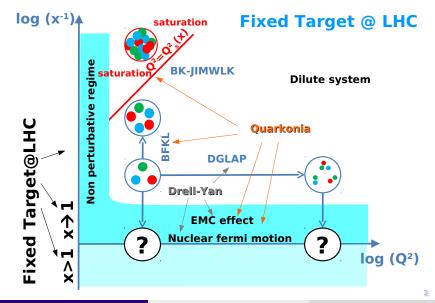

- \rightarrow sea-quark asymetries via *p* and *d* studies
- at large(est) x: backward ("easy")

- at small(est) *x*: forward (need to stop the (extracted) beam)

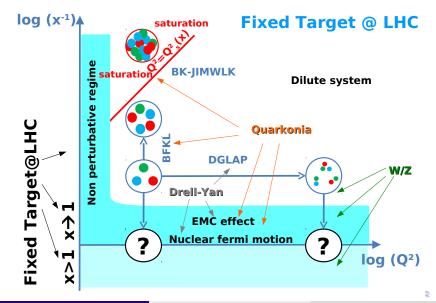


• • • • • • • • • • • •

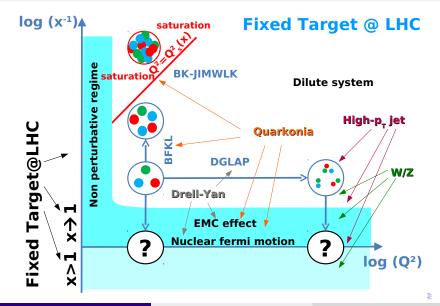
→ To do: to look at the rates to see how competitive this will be



J.P. Lansberg (IPNO, Paris-Sud XI U.) *Q* physics at a LHC fixed-target experiment



22/24


J.P. Lansberg (IPNO, Paris-Sud XI U.) Q physics at a LHC fixed-target experiment

J.P. Lansberg (IPNO, Paris-Sud XI U.) \mathcal{Q} physics at a LHC fixed-target experiment

J.P. Lansberg (IPNO, Paris-Sud XI U.) \mathcal{Q} physics at a LHC fixed-target experiment

J.P. Lansberg (IPNO, Paris-Sud XI U.) *Q* physics at a LHC fixed-target experiment

Part VII

Conclusion and outlooks

J.P. Lansberg (IPNO, Paris-Sud XI U.) Q physics at a LHC fixed-target experiment

4 3 > 4 3

• Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments

Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
 Extracting a few per cent of the beam → 5 × 10⁸ protons per sec

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s}_{NN} = 72 \text{ GeV}$

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s}_{NN} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s}_{NN} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (CNM effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)

- ロ ト - (理 ト - (ヨ ト - (ヨ ト -

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s}_{NN} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (CNM effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s}_{NN} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (CNM effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction
- A wealth of possible measurements:
 DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s}_{NN} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (CNM effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction
- A wealth of possible measurements:
 DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)
- Planned LHC long shutdown (< 2020 ?) could be used to install the extraction system

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s}_{NN} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (CNM effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction
- A wealth of possible measurements:
 DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)
- Planned LHC long shutdown (< 2020 ?) could be used to install the extraction system
- Very good complementarity with electron-ion programs

Part VIII

Backup slides

J.P. Lansberg (IPNO, Paris-Sud XI U.) \mathcal{Q} physics at a LHC fixed-target experiment

2

Beam extraction

• Beam extraction @ LHC

... there are extremely promising possibilities to extract 7 TeV protons from the circulating beam by means of a bent crystal.

••• The idea is to put a bent, single crystal of either Si or Ge (W would perform slightly better but needs substantial improvements in crystal quality) at a distance of $\simeq 7\sigma$ to the beam where it can intercept and deflect part of the beam halo by an angle similar to the one the foreseen dump kicking system will apply to the circulating beam.

... ions with the same momentum per charge as protons are deflected in a crystal with similar efficiencies

If the crystal is positioned at the kicking section, the whole dump system can be used for slow extraction of parts of the beam halo, the particles that are anyway lost subsequently at collimators.

< □ > < 同 > < 回 > < 回

Many hopes were put in quarkonium studies to extract gluon PDF

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also in *g g*-fusion process

4 3 5 4 3

< 6 b

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also in *g* − *g*-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

4 3 5 4 3

< 🗇 🕨

Many hopes were put in quarkonium studies to extract gluon PDF

- in photo/lepto production (DIS)
- but also in *g g*-fusion process
- mainly because of the presence of a natural "hard" scale: m_Q
- and the good detectability of a dimuon pair

PHYSICAL REVIEW D

VOLUME 37, NUMBER 5

1 MARCH 1988

< ロ > < 同 > < 回 > < 回 >

Structure-function analysis and ψ , jet, W, and Z production: Determining the gluon distribution

> A. D. Martin Department of Physics, University of Durham, Durham, England

R. G. Roberts Rutherford Appleton Laboratory, Didcot, Oxon, England

W. J. Stirling Department of Physics, University of Durham, Durham, England (Received 27 July 1987)

We perform a next-co-leading-order structure-function analysis of deep-inelastic μN and νN scattering data and find acceptable fits for a range of input gluon distributions which hare (1) "soft," (2) "hard,", and (3) which behave as $\sigma(G) \sim 1/\sqrt{x}$ at small x. J/ψ and prompt photon hadroproduction data are used to discriminate between the three sets. Set I, with the "soft" "gluon distribution, is favored. W, Z, and glue production data from the CERN collider are well described but do not distinguish between the sets of structure functions. The precision of the predictions for σ_{μ} and the mass of the top dupark. Finally we discuss how the gluon distribution at xery small x may be directly measured at DESY HERA.

J.P. Lansberg (IPNO, Paris-Sud XI U.) Q physics at a LHC fixed-target experiment

October 7, 2011 27 / 24

Many hopes were put in quarkonium studies to extract gluon PDF

- in photo/lepto production (DIS)
- but also in *g* − *g*-fusion process
- mainly because of the presence of a natural "hard" scale: m_Q
- and the good detectability of a dimuon pair

Z. Phys. C - Particles and Fields 38, 473-478 (1988)

J/ψ Production at large transverse momentum at hadron colliders

E.W.N. Glover^{1*}, A.D. Martin², W.J. Stirling²

¹ Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England

² Physics Department, University of Durham, Durham, DH1 3LE, England

Received 7 October 1987

Abstract. We calculate J/ψ hadroproduction and emphasize the importance of the J/ψ signal as a measure of $b\bar{b}$ production via the decay $B \rightarrow \psi X$ and of the gluon structure function at low x via χ hadroproduction followed by $\chi \rightarrow \psi \gamma$ decay. We compare with UA1 data and data at ISR energies and make predictions for ψ production at TEVATRON energies.

イロト 不得 トイヨト イヨト

Many hopes were put in quarkonium studies to extract gluon PDF

- in photo/lepto production (DIS)
- but also in *g g*-fusion process
- mainly because of the presence of a natural "hard" scale: m_Q
- and the good detectability of a dimuon pair

PHYSICAL REVIEW D

VOLUME 48, NUMBER 11

1 DECEMBER 1993

< ロ > < 同 > < 回 > < 回 >

 ψ production in $\overline{p}N$ and π^-N interactions at 125 GeV/c and a determination of the gluon structure functions of the \overline{p} and the π^-

C. Akerlof⁴ H. Areti,^{3,e} M. Binkley,² S. Conetti,^{3,4} B. Cox,^{3,4} J. Enagonio,² P. Mao,² C. Hojyat,² D. Judd,^{2,4} S. Katsanevas,³ R. D. Kephart,² C. Kourkoumelis,¹ P. Kraushart,^{4,4} P. Lebrun,^{3,4} P. K. Mallotrat,^{3,1} A. Markou,¹ P. O. Mazur,⁷ D. Nitz,⁴ L. K. Resvanis,¹ D. Ryan,³ T. Ryan,^{3,4} W. Schappert,^{3,ee} D. G. Stairs,³ R. Thun,⁴ F. Turkot,⁵ S. Tzamarias,^{1,4} G. Voulgaris,¹ R. L. Wagner,⁷ D. E. Wagoner,^{2,4} W. Yang,³ and Zhang Najijan³

(E537 Collaboration)

¹University of Athens, Athens, Greece ²Fermi National Accelerator Laboratory, Batavia, Illinois 60510 ³MGill University, Montreal, Quebec, Canada H3A 2T8 ⁴University of Michigan, Ann Arbor, Michigan 48109 ³Shandong University, Jinan, People's Republic of China (Received Pebruary 1993)

 New observables involving quarkonia are needed to pin down the production mechanism see e.g. JPL, talk at Quarkonium Production, Vienna, 18-21 April 2001

- New observables involving quarkonia are needed to pin down the production mechanism see e.g. JPL, talk at Quarkonium Production, Vienna, 18-21 April 2001
- They can also be promoted to new probes:

< ロ > < 同 > < 回 > < 回 >

- New observables involving quarkonia are needed to pin down the production mechanism see e.g. JPL, talk at Quarkonium Production, Vienna, 18-21 April 2001
- They can also be promoted to new probes: **Double** J/ψ production: a probe of gluon polarization?

S.P. Baranov¹, H. Jung²

¹P.N.Lebedev Physical Institute, Moscow 117924, Russia ²III. Physikalisches Institut, Lehrstuhl B, RWTH Aachen, Germany

Received: 5 July 1994/Revised version: 5 October 1994 Z. Phys. C 66, 647-651 (1995)

Abstract. We consider the process of direct simultaneous production of two J/ψ particles and discuss the possibility that it can be used as a tool to measure the gluon polarization in the colliding particles.

< 日 > < 同 > < 回 > < 回 > < 回 > <

- New observables involving quarkonia are needed to pin down the production mechanism see e.g. JPL, talk at Quarkonium Production, Vienna, 18-21 April 2001
- They can also be promoted to new probes:

PHYSICAL REVIEW D

VOLUME 49, NUMBER 9

1 MAY 1994

Associated $J/\psi + \gamma$ production as a probe of the polarized gluon distribution

M. A. Doncheski*

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706

C. S. Kim Department of Physics, Yonsei University, Seoul 120, Korea (Received 15 March 1993)

Associated production of J/ψ and a γ has recently been proposed as a clean probe of the gluon distribution. The same mechanism can be used to probe the polarized gluon content of the proton in polarized proton-proton collisions. We study $J/\psi + \gamma$ production at both polarized fixed target and polarized collider energies.

< 日 > < 同 > < 回 > < 回 > < 回 > <

- New observables involving quarkonia are needed to pin down the production mechanism see e.g. JPL, talk at Quarkonium Production, Vienna, 18-21 April 2001
- They can also be promoted to new probes: Pair production of J/ψ as a probe of double parton scattering at LHCb

C. H. Kom^{*} and W. J. Stirling[†]

Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

A. Kulesza[‡]

Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University D-52056 Aachen, Germany (Dated: May 24, 2011)

We argue that the recent LHCb observation of J/ψ -pair production indicates a significant contribution from double parton scattering, in addition to the standard single parton scattering component. We propose a method to measure the double parton scattering at LHCb using leptonic final states from the decay of two prompt J/ψ mesons.

(日)

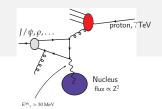
- New observables involving quarkonia are needed to pin down the production mechanism see e.g. JPL, talk at Quarkonium Production, Vienna, 18-21 April 2001
- They can also be promoted to new probes: Pair production of J/ψ as a probe of double parton scattering at LHCb

C. H. Kom^{*} and W. J. Stirling[†]

Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

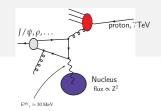
A. Kulesza[‡]

Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University D-52056 Aachen, Germany (Dated: May 24, 2011)


We argue that the recent LHCb observation of J/ψ -pair production indicates a significant contribution from double parton scattering, in addition to the standard single parton scattering component. We propose a method to measure the double parton scattering at LHCb using leptonic final states from the decay of two prompt J/ψ mesons.

• Double J/ψ , $J/\psi + \gamma$, $J/\psi + D$, ... can of course be studied with AFTER

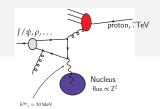
One exotic illustration of the potentialities: Ultra-peripheral collisions


One exotic illustration of the potentialities: Ultra-peripheral collisions

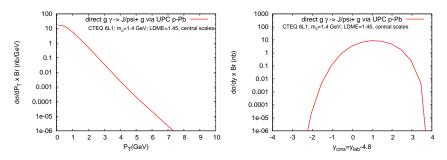
Inelastic photoproduction of J/ψ via UPC*

One exotic illustration of the potentialities: Ultra-peripheral collisions

Inelastic photoproduction of J/ψ via UPC*



Thanks to the boost: $W_{\gamma+p}^{max}$ for a coherent photon emission (Z^2 fact.) can be as high as 25 GeV !


< 6 b

One exotic illustration of the potentialities: Ultra-peripheral collisions

Inelastic photoproduction of J/ψ via UPC*

Thanks to the boost: $W_{\gamma+p}^{max}$ for a coherent photon emission (Z^2 fact.) can be as high as 25 GeV !

Disclaimer: these numbers suppose a dedicated trigger and are preliminary

J.P. Lansberg (IPNO, Paris-Sud XI U.)

Q physics at a LHC fixed-target experiment

October 7, 2011 29 / 24

A photon-proton collider at the LHC ?

• Rates for Inelastic J/ψ photoproduction are

large enough to be measured

A photon-proton collider at the LHC ?

- Rates for Inelastic J/ψ photoproduction are
 - large enough to be measured

• True also for diffractive J/ψ photoproduction

4 3 > 4 3

A photon-proton collider at the LHC ?

• Rates for Inelastic J/ψ photoproduction are

large enough to be measured

- True also for diffractive J/ψ photoproduction
- Handle on gluons (not sure though that one can compete in some way with EICs)

Z. Phys. C 76, 231-239 (1997)

ZEITSCHRIFT FÜR PHYSIK C © Springer-Verlag 1997

Diffractive J/ψ photoproduction as a probe of the gluon density

M.G. Ryskin¹, R.G. Roberts², A.D. Martin³, E.M. Levin^{1,4}

¹ Petersburg Nuclear Physics Institute, 188350, Gatchina, St. Petersburg, Russia

² Rutherford Appleton Laboratory, Chilton, OX11 0QX, UK

³ Department of Physics, University of Durham, Durham, DH1 3LE, UK

⁴ School of Astronomy and Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel

Received: 12 November 1996 / Revised version: 13 January 1997

Abstract. We use perturbative QCD, beyond the leading $\ln Q^2$ approximation, to show how measurements of diffractive J/ψ production at HERA can provide a sensitive probe of the gluon density of the proton at small values of Bjorken x. We estimate both the effect of the relativistic motion of the c and c within the J/ψ and of the rescattering of the ccquark pair on the proton. We find that the available data for diffractive J/ψ photoproduction can discriminate between the gluon distributions of the most recent sets of partons.