



# HEAVY QUARKONIUM PRODUCTION IN PB-PB COLLISIONS AT ATLAS

Iwona Grabowska-Bold (AGH UST, Kraków) On behalf of the ATLAS Collaboration Heavy Quarkonium 2011, GSI, Darmstadt, Oct 4-7th, 2011



## Heavy lons at the LHC



- □ First lead-lead data from the LHC collected on tape in 2010,
  - Excellent performance of the LHC machine,
  - Excellent performance of the detectors,
- □ Huge energy jump from RHIC
  - factor of 14 in the center-of-mass energy!



- Highest temperatures ever achieved in the laboratory,
- Access to new probes and processes,
- In this talk we discuss:
  - Di-muon production: J/ $\psi$  and Z
  - Results on W production.





- Quarkonia dissociation due to color screening is considered as a promising signature of quark-gluon plasma (QGP) formation
  - Various quarkonia states are expected to "melt" at different temperatures,



- □  $J/\psi$  suppression has already been seen at SPS and RHIC but details are poorly understood, interplay of cold and hot effects,
- □ J/ $\psi$  enhancement by regeneration of J/ $\psi$  from the (large) number of uncorrelated cc pairs could also be tested at the LHC,
- Weak bosons have not been observed in Au-Au collisions at RHIC,
  - Test of nuclear PDFs,
  - Standard candle for other processes,
- □ This opens perspectives for the LHC experiments.





# Heavy Ion Run in 2010





- First heavy ion run at  $\sqrt{s_{NN}} = 2.76 TeV$ 
  - Nov 4<sup>th</sup>-Dec 6<sup>th</sup>, 2010,
  - ATLAS recorded 9.2  $\mu$  b<sup>-1</sup> of PbPb data,
    - With 1  $\mu$  b<sup>-1</sup> magnetic field-off data,
  - Data recording efficiency > 95%,
  - Fraction of data passing data-quality criteria > 99%.
- □ Prospects for 2011
  - 40-80 μ b<sup>-1</sup> data at 2.76 TeV.

| Inner Tracking<br>Detectors                                                                                                                                                                             |     |     | Calorimeters |            |            |      | Muon Detectors |      |     |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------|------------|------------|------|----------------|------|-----|-----|
| Pixel                                                                                                                                                                                                   | SCT | TRT | LAr<br>EM    | LAr<br>HAD | LAr<br>FWD | Tile | MDT            | RPC  | CSC | TGC |
| 99.7                                                                                                                                                                                                    | 100 | 100 | 99.2         | 100        | 100        | 100  | 100            | 99.6 | 100 | 100 |
| Luminosity weighted relative detector uptime and good quality data delivery during 2010 stable beams in PbPb collisions at Vs <sub>NN</sub> =2.76 TeV between November 8th and 17 <sup>th</sup> (in %). |     |     |              |            |            |      |                |      |     |     |



## Data Triggering



Triggering strategy: record to tape a minimum bias sample, trigger efficiency 100% for n<sub>tracks</sub>>20.



Main minimum bias triggers:

- Minimum Bias Trigger Scintillators (MBTS),
- Zero Degree Calorimeter (ZDC),
- Hits counting in the Inner Tracker (ID),
- The LUCID integrating Cherenkov detector



<u>Recording rates:</u> ~500 Hz in the peak









# Earlier J/ $\psi$ measurements



- J/ψ suppression in HI collisions as a function of centrality already observed in past experiments
- Various experiments roughly consistent with each other
- Possible dependence on rapidity and also transverse momentum.



Heavy Quarkonium 2011, Darmstadt, Oct 4-7<sup>th</sup>



## $J/\psi$ event selection



#### Analysis selection:

- Integrated luminosity analyzed: 7  $\,\mu\,b^{-1}$ ,
- J/ $\psi \rightarrow \mu^+ \mu^-$  channel explored,
- Primary vertex required in the minimum bias-triggered data sample,
- Muons combined in the Inner Tracker and Muon
- Spectrometer with  $p_T>3$  GeV and  $|\eta|<2.5$ . This results in 80% of  $J/\psi$  with  $p_T>6.5$  GeV,
- 80-100% centrality bin excluded from the analysis due to larger systematic uncertainty in determining a number of binary collisions.



- ${\sf J}/\psi$  yields in each centrality bin are obtained using a sideband technique:
- $\rightarrow$  Signal mass window: 2.95 < m<sub>µµ</sub> < 3.25 GeV,
- $\rightarrow$  Sideband mass window: 2.4 < m<sub>µµ</sub> < 2.8 GeV and 3.4 < m<sub>µµ</sub> < 3.8 GeV,
- Cross-check yields using a maximum likelihood fit with the mass resolution left as free parameter,
- □ Two different background models used: first and second order polynomial







superimposed J/ $\psi$  events

from PYTHIA onto PbPb

efficiency determination,

explored: 0-10% and

 $\checkmark$  Also centrality

dependence

reproduced.

40-80%,

well

selected with  $p_T > 500$  MeV,

events from HIJING,

from pp at sqrt(s)=2.76TeV



Heavy Quarkonium 2011, Darmstadt, Oct 4-7<sup>th</sup>



### Systematic uncertainties



#### Reconstruction efficiency

- Variation of the reconstruction efficiency with centrality due to the larger occupancy in the Inner Tracker,
- Stringent track quality requirements are made w.r.t. the pp ones,
- Extraction of a number of signal events
  - Use un-binned maximum likelihood fit with mass resolution as a free parameter,
  - Explore two different background parameterizations with a first or second order polynomial.

|                   | Centrality | Reco. eff.<br>[%] | Sig. extr.<br>[%] | Total syst.<br>[%] |
|-------------------|------------|-------------------|-------------------|--------------------|
| Central events    | 0-10%      | 6.8               | 5.2               | 8.6                |
| 1                 | 10-20%     | 5.3               | 6.5               | 8.4                |
|                   | 20-40%     | 3.3               | 6.8               | 7.5                |
| Peripheral events | 40-80%     | 2.3               | 5.6               | 6.1                |



# Relative J/ $\psi$ yields





Hypothesis: linear scaling of a number of  ${\rm J}/\psi$  with a number of binary nucleon-nucleon collisions

- Relative J/ $\psi$  yield in "i-th" bin=N<sub>i</sub><sup>corr</sup>/ N<sub>40-80%</sub><sup>corr</sup>, where N<sub>i</sub><sup>corr</sup> is a corrected yield of J/ $\psi$  mesons,
  - Yields include  $B \rightarrow J/\psi$  as well as prompt  $J/\psi$  production.
- Compare with R<sub>coll</sub><sup>i</sup>=N<sub>coll</sub><sup>i</sup>/N<sub>coll</sub><sup>40-80%</sup>, where N<sub>coll</sub><sup>i</sup> is a mean number of binary collisions in "i-th" bin from the Glauber model,
- A clear difference as a function of centrality between both numbers, indicating a deviation from the expectation based on QCD factorization.

Heavy Quarkonium 2011, Darmstadt, Oct 4-7<sup>th</sup>



- Vertical error bars: statistical uncertainty, shaded regions: statistical and systematic uncertainties,
- We observe a centrality dependent suppression of the J/ $\psi$  yield,
  - □ Probability of no suppression:  $p(\chi^2, ndof) = 0.11\%$ . (including systematics in  $\chi^2$ ),
- Similar result when integrating PHENIX result over  $p_{\tau}$  despite different momentum ranges.



- J/ $\psi$  yield normalized to  ${\sf R}_{\sf coll}{}^{\sf i}$  and divided by the peripheral yield,
  - Vertical error bars: statistical uncertainty, shaded regions: statistical and systematic uncertainties,
- We observe a centrality dependent suppression of the J/ $\psi$  yield,

□ Probability of no suppression:  $p(\chi^2, ndof) = 0.11\%$ . (including systematics in  $\chi^2$ ),

- ALICE shows weaker suppression than ATLAS but at much larger  $\mid \eta \mid$  and lower p<sub>T</sub>.



#### More results to come soon





- ATLAS published results on J/ $\psi \rightarrow \mu \mu$ studies in PbPb collisions so far,
- It is fully capable to perform also other measurements similarly as in pp collisions,
  - See a talk by M. Biglietti on Tuesday,
- Further PbPb results will be reported soon.

Heavy Quarkonium 2011, Darmstadt, Oct 4-7th



### $Z \rightarrow e^+e^-$ candidate







AGH

Heavy lon Collision with a Z→µµ Candidate

T

AS









 $\checkmark$  First published observation of the Z boson peak in PbPb collisions at the LHC,

 $\checkmark$  38 candidates are selected in the mass window of 66 to 116 GeV,

✓ No conclusion can be inferred about the Z yield scaling with a number of binary collisions because of limited statistics.
Heavy Quarkonium 2011, Darmstadt, Oct -

Analysis selection similar to J/ $\psi$  :

- Integrated luminosity analyzed: 7  $\mu$  b<sup>-1</sup>,
- $Z \rightarrow \mu^+ \mu^-$  channel explored,

- Primary vertex required in the minimum biastriggered data sample,

- Muons combined in the Inner Tracker and Muon Spectrometer with  $p_T > 20$  GeV and  $\mid \eta \mid$  <2.5.





#### W production



- Theory predicts an order of magnitude more W than Z produced at 2.76 TeV,
- Measurement of  $W \rightarrow \mu \nu$  requires missing energy term to be reconstructed, which is unreliable in a Pb+Pb environment,
- Therefore, we try to rely only on a p<sub>T</sub> distribution of muons
  - Muons from W are on average more energetic than muons from QCD processes,
  - At high p<sub>T</sub> two dominating sources of single muons are b-quark decays and W decays,
  - Veto di-muons with  $m_{\mu \mu} > 66 \text{ GeV} (Z/DY \text{ candidates})$ ,
  - Find the best estimate of number of W by fitting signal and background to data
    - Template method.



Divide Pb+Pb dataset in subsets of charge, pseudorapidity ( $\eta$ ) and centrality and fit each subset independently.



#### W yields and charge asymmetry





- □ No suppression hypothesis (flat line) is fitted to the data with  $\chi^2$ /dof =5.72/3 (p=0.13).
  - Result is consistent with no suppression of W bosons,
  - Statistical uncertainty dominates, systematics come from a number of binary collisions and template fits,

#### □ Ratio $R_{w/z} = 10.5 \pm 2.3$ for 5 $\mu$ b<sup>-1</sup>

- Good agreement with Standard Model prediction!
- Precision test of W charge asymmetry provides information on PDFs,
  - Nuclear effects may give modifications to PDFs,
  - Statistical uncertainty is still limiting but with higher accumulated statistics a detailed measurement of the charge asymmetry as a function of centrality will be feasible.



#### Summary



- First measurements of  $J/\psi$ , Z and W production in muon channels in Pb+Pb collisions at sqrt(s<sub>NN</sub>)=2.76 TeV in ATLAS were presented,
- Observation of suppression of J/ $\psi$  in deconfined matter confirms results from earlier lower energy experiments,
- Observation of no suppression for W bosons confirms that they are produced at the initial phase of the collisions and that neither the W nor the muon interact with the medium,
- Ratio of W/Z production in Pb+Pb collisions as well as the W+/W- ratio agree with the Standard Model predictions,
- $\square$   $W \rightarrow \mu$  charge asymmetry versus pseudorapidity was presented
  - Limited statistics, but we expect that higher integrated luminosity will allow us to explore the nuclear modifications to the PDF,
- Future Plans
  - □ 5-10 times more Pb-Pb statistics should be available by the end of 2011,
  - □ Use runs with p-p collisions at 2.76 TeV for direct comparisons.





### Back-up slides





- At HLT only a simple selection on a time difference between two MBTS sides is applied
  - No requirement on physics objects as jets, electrons, muons, etc.



Heavy Quarkonium 2011, Darmstadt, Oct 4-7th



# $J/\psi$ suppression





FIG. 3 (color online).  $J/\psi R_{AA}$  versus  $p_T$  for several centrality bins in Au + Au collisions. Mid (forward) rapidity data are shown with open (solid) circles. See text for description of the errors and Ref. [21] for data tables.

- J/ψ suppression in HI collisions as a function of centrality already observed in past experiments
- □ PHENIX measurement in Au-Au collisions @  $\sqrt{S_{NN}}$ =200 GeV

$$R_{AA} = \frac{d^2 N_{J/\psi}^{AA}/dp_T dy}{N_{\text{coll}} d^2 N_{J/\psi}^{pp}/dp_T dy},$$





#### Cross-section and non-prompt / prompt yields measured by ATLAS



Nuclear Physics B 850 (2011), 387

Heavy Quarkonium 2011, Darmstadt, Oct 4-7<sup>th</sup>



#### J/ $\psi$ suppression

#### Comparison with other measurements





#### Glauber fits for ATLAS



- We are using FCal energy sum, as before
- Use standard Glauber MC (<u>http://arXiv.org/abs/arXiv:0805.4411</u>)
  - R=6.62 fm, a=0.546 fm (skin depth)
- Assume both participants and collisions contribute
  - "Two component model", controlled by parameter "x"

$$\Sigma E_{T,FCal} = E_{T,pp} \left( (1-x) \frac{N_{part}}{2} + x N_{coll} \right)$$

- x=0.13±0.01(stat)±0.05(syst) found to describe RHIC data
- Incorporate FCal energy resolution and noise
  - Let detector noise be a free parameter (sum of cells)
  - Resolution assumed to be 100%/√(E(GeV))
- Input data distribution is FCal Et from mbSpTrk selection
  - Cuts requiring good vertex (>1 track), MBTS (DeltaT<3ns), ZDC (AND)</li>