

J/ψ and Υ at STAR

Rosi Reed For the STAR Collaboration

Quarkonia as a QGP probe

- J/ ψ and Υ Can be great probes but to understand the suppression due to color screening we should quantify Т
 - Production mechanism
 - Cold Nuclear Matter Effects
 - Hot Nuclear Matter Effects

Requires measuring J/ψ and Υ at a wide range in \sqrt{s} STAR adds to this effort with its large acceptance + fast trigger Rosi Reed - Heavy Quarkonium 2011 2

PRL 99, 211602 (2007)

STAR detector and Particle ID

Acceptance

|η|<1, 0<φ<2π

Year 2009 72% of full TOF

Year 2010 100% of full TOF

Time Projection Chamber

dE/dx, momentum

Time Of Flight detector

time $1/\beta$

ElectroMagnetic Calorimeter

E/p, Trigger

J/ψ spectra

COM prediction (for direct J/ ψ only) leaves no room for feed-down CSM predicts a much steeper trend than our data CEM seems to describe our data in the large p_T range

Tsallis Blast-Wave model (TBW) describes our data with $\beta = 0$ TBW prediction (light hadron parameters) is harder than data $\beta=0$ vs. regeneration? Rosi Reed - Heavy Quarkonium 2011

$B \rightarrow J/\psi + X$

 J/ψ -hadron azimuthal correlations are used to separate direct J/ψ from feed-down from B

Pythia simulations of prompt and $B \rightarrow J/\psi$ azimuthal correlation are fit to the data to determine the relative yield

J/ψ hadron correlations

 $B \rightarrow J/\psi + X$ contributes 10-25% of J/ψ at $p_T > 4$ GeV/c at 200 GeV

Consistent with the upper boundary of CEM+FONLL calculation

Consistency between hadron spectra indicate associated hadrons are dominantly from light quarks or gluons not heavy quarks

$J/\psi R_{AA}$ vs p_T and centrality

$J/\psi R_{AA}$ increases with p_T in all centralities

Rosi Reed - Heavy Quarkonium 2011

Υ at STAR

We have learned much from the J/ $\psi,$ what can we learn from $\Upsilon?$

Decay channel: $\Upsilon \rightarrow e^+e^-$

Pros

Small background at M~10 GeV/c² Co-mover absorption is small at 200 GeV

Recombination negligible at 200 GeV

Cons

Low rate of 10⁻⁹ per minbias p+p interaction

Good resolution needed to separate 3 S-states

Υ(1S+2S+3S) cross-section p+p 200 GeV

Rosi Reed - Heavy Quarkonium 2011

$\Upsilon(1S+2S+3S)$ cross-section

STAR 2006 $\sqrt{s}=200$ GeV p+p $\Upsilon+\Upsilon'+\Upsilon'' \rightarrow e^+e^-$ cross section consistent with pQCD and world data trend

Di-electron Yield 0-60% Au+Au

Run 10 Data # of minimum Bias events= 4.62x10⁹ # Triggers= 50M

Raw yield of $\Upsilon \rightarrow e^+e^-$ with $|y| < 0.5 = 196.6 \pm 35.8$

Di-electron Yield by Centrality Peripheral Central

How do we remove the Drell-Yan+bb contribution?

Extracting $\Upsilon(1S+2S+3S)$ Yield

Current resolution does not allow for a separation of the 2S+3S states

Large theoretical uncertainty in the Drell-Yan and bb yield

How do we extract a yield unbiased by our initial suppression assumptions?

Drell-Yan+bb =
$$\frac{A}{(1 + \frac{m}{m_0})^n}$$

n = 4.59, m₀ = 2.7

Rosi Reed - Heavy Quarkonium 2011

Extracting $\Upsilon(1S+2S+3S)$ Yield

- Fit has 2 free parameters:
 - Yield of $\Upsilon(1S+2S+3S)$
 - •Yield of Drell-Yan + bb

- Y yield does <u>NOT</u> come from the line-shape!
 - $\Upsilon = N_{+-} N_{--} N_{++} \int DY + b\overline{b}$
 - Y masses are fixed to PDG Values
 - Ratios of 1S to 2S to 3S fixed to PDG values
 - Other effects come from simulation Rosi Reed - Heavy Quarkonium 2011

Υ Yield by centrality

- System uncertainties
 - p+p luminosity and BBC trigger efficiency
 - $-\Upsilon$ Line-shape
 - Drell-Yan and bb background

 Υ (1S+2S+3S) R_{AA}

Υ and J/ ψ comparison vs N_{part}

Agreement between low pT J/ ψ and Υ is interesting

 J/ψ and $\Upsilon(2S)$ have similar binding energy, difference in R_{AA} could help understand systematics

Comparison STAR and CMS

Phys. Rev. Lett. 107, 052302 (2011) 2S+3S/1S suppression

Conclusions

- STAR measured $J/\psi \rightarrow e^+e^-$ and $\Upsilon(1S+2S+3S) \rightarrow e^+e^-$ at
- $\sqrt{s_{NN}}$ =200 GeV in p+p and Au+Au collisions
- In p+p collisions CEM can describe J/ ψ and Υ (1S+2S+3S)
- The ratio of $B \to J/\psi$ to inclusive J/ψ is 10-25% at $p_T > 4$ GeV/c
- Away side spectra from J/ ψ -h correlation consistent with h-h
- In Au+Au collisions
 - $J/\psi v_2$ consistent with zero
 - J/ ψ R_AA increases with increasing p_T
 - In 20-60% high-p_T J/ ψ R_{AA}~1
 - In 0-20% high-p_T J/ ψ is significantly suppressed
 - Υ (1S+2S+3S) suppressed in central collisions! 3σ away from $R_{AA} = 1$

Back-up

Υ Trigger and Analysis

Rosi Reed - Heavy Quarkonium 2011

Observed Upsilon Signal

Upsilon d+Au Cross Section

 σ =35 ± 4(stat.) ± 5(syst.) nb

No Silicon Tracker!

Reduces EM material budget from 0.06 to 0.01 radiation lengths. Removed in Run 8 and beyond.

Rosi Reed UHRank Quarkonjum 2011

Slide 27

Υ at STAR

Rosi Reed - Quarkonium Workshop

Analysis Techniques

Electron PID

Electron purity is ~98% in p+p for single electron case

E/p and dE/dx of matched tracks are used to select e⁺ and e⁻ tracks

Rosi Reed - Quarkonium Workshop

Analysis Techniques

Line shape is a crystal function 160 parameterized by a comparison with 140 120 simulation 100 $f(x;\alpha,n,\overline{x},\sigma) = \begin{cases} \exp(-\frac{(x-\overline{x})^2}{2\sigma^2}), \text{ for } \frac{x-\overline{x}}{\sigma} > -\alpha \\ A(B-\frac{x-\overline{x}}{\sigma})^{-n}, \text{ for } \frac{x-\overline{x}}{\sigma} \le -\alpha \end{cases}$ 80 60 -40 20 $B = \frac{n}{|\alpha|} - |\alpha| \qquad A = \left(\frac{n}{|\alpha|}\right)^n \exp\left(-\frac{|\alpha|^2}{2}\right)$ 6 7 9 10 Drell-Yan+bb = $\frac{m}{(1+\frac{m}{m})^n}$ Parameterization of non-Combinatoric $n = 4.59, m_0 = 2.7$ m_0 background: Rosi Reed - Heavy Quarkonium 2011 31 31 Rosi Reed - Quarkonium Workshop

Y(1S+2S+3S) cross-section New cross-section measurement with ~x3 the statistics to be available shortly

32 32