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Motivation and Background



@ Why the two photon transition Process?

# On theoretical side:

& Two-photon transition among hydrogen system is helpful to study the
hydrogen recombination in universe. (Kholupenko, Ivanchik, 2006)

@ Similar decay D* — D + 2y to extract the couplings oo, and ¢
(D.Guetta and P.Singer, 2000)

@ Radiative transition may help to test the meson-loop effect in heavy
qguarkonium states, however its uncertainty is large in one-photon

transition. ( T.Barnes, 2010 )
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€ On experimental side:
® An a?order subtle QED transition process.
@ The two-photon transition has been observed among positronium 1S
and 2S states in 80s. (S.Chu, A.P.Mills, 1982)

¢ CLEO reported Br(Y(3S) — Y(2S) +2y) = (5.0+0.7)% . (PDG 2010)
¢ In charmonium systems, it is observed by BESIII recently.



@ Preliminary Experimental Result
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@ Preliminary Experimental Result
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@ Theoretical Picture

@ Discrete part contribution:

¢ Leading order:

double E-1 transition via discrete nP

(n=1,2...) states (virtual and real parts).
(including main source of the background)

¢ Relativistic corrections:

relatively higher order v2 operator
corrections

\




@ Theoretical Picture

@ Discrete part contribution:

¢ Leading order:

double E-1 transition via discrete nP

(n=1,2...) states (virtual and real parts).
(including main source of the background)

¢ Relativistic corrections:

corrections

relatively higher order v2 operator

\

@ Hadron-loop contribution:
besides discrete contribution, the
DD®meson loop effect can also
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@ Discrete part contribution:

¢ Leading order:
double E-1 transition via discrete nP

(n=1,2...) states (virtual and real parts).
(including main source of the background)

¢ Relativistic corrections:

relatively higher order v2 operator \

corrections

@ Hadron-loop contribution:

besides discrete contribution, the b(25) T/
DD®meson loop effect can also
contribute.
D® D — loop
: Pin down the discrete part contribution,
Our i1dea P

there may left signal of meson loop effect!!



The Theoretical Frame work



@ Heavy Quarkonium Multiplet I

@ For those states have the same n and L, they can
expressed by a single multiplet J “#

1+ 1 = i,
JJUJl AL = _v‘ (Ii]qu HJLO::VQ, = Z E'Ju”iarﬁ}’vaﬂyﬁﬂf‘;‘“ﬁbi—lﬁﬁl—-.ﬁla
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v is the four-velocity of the multiplet state and
7y e 7y
v, K “=0,v,H_ =0




@ Heavy Quarkonium Multiplet II

€ Explicit Expression for L=S,P case:

1—)/

—q- 1+ y
¢ For L=S: J = (H1 yﬂ 07/5)

e For L=P: 2

u_ 1+)/ 1 1.
I =—=(H" 7a+\/§WV H1y+\/§(7/4 V)+Ko7/)



@ Heavy Quarkonium Multiplet II

€ Explicit Expression for L=S,P case:

1—)/

—q- 1+ y
¢ For L=S: J = (H1 yﬂ 07/5)

e For L=P: 2

u_ 1+)/ 1 1.
I =—=(H" 7a+ﬁwv H1y+\/§(7/4 V)+Ko7/)

@ Effective Lagrangian for radiative transition among S-
and P-wave states:

@ r[j (mS)J,(NP)VIF)+H.c.

Preserve CPT, gauge invariance,

. coupling constant Electromagnetic tensor
and heavy quark spin symmetry




@ E1 Transition Formula

@ Decay widths for the one-photon emission:

® mS--->nP+7: éﬂpms 5 |\/| —|—|\/|
(TS, >R +7)=(2341) 2 144 3 Ms M, )

® nP--->mS+7: P15
F(HSP] —)mgS1 —|—7/): 5‘;1 ) 3 (M +an) J-dependent

B " M_ M2,



@ E1 Transition Formula

@ Decay widths for the one-photon emission:

® mS--->nP+7v: éﬂPmS 2 M -|—M
(NS, —n°P, +7) =( +1)(1M 3( I\/|3I\/I 3)

® nP--->mS+7:
PP —>m P Mg M)

J-dependent

3 3

@ Numerical result of coupling constant:

TABLE I. The numerical values of the coupling constants 6"}}3 M5(GeV 1) are shown. For the

n = 1 case, the results are obtained by fitting the experimental data, and for n = 2, the results
are determined by comparing with the potential model predictions [26].

XCO(IP) Xc](lp) XCZ(IP) XCO(ZP) Xcl(zP) XCZ(ZP)

I/ 0.211 :230 0.228 5.27 X160 # 5.30 X 10 * 53410 2
i (25) 0.224 235 0.273 0410 0413 0.416




Discrete Contribution to Two
Photon Transition



@ Feynman Diagrams and Amplitude

€ Two Feynman diagrams
v(p2) ¥(pa) ¥(p2)

¥(25) Pn) ,§ A:éi J/¥(p1) 23)@0) ,§ ﬁ: J/¥(p1)

s(nP) cs(nP)

FIG. 1. The Feynman diagrams for #(2S) decay into J/ ¢ + 2y via intermediate states x.;(nP).

€ Feynman amplitude:
MTOt :MZCO(]-P)_I_Mch(lp)_I_MZCZ(]-P)_I_MZC(ZP)
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€ Feynman amplitude:
MTOt :MZCO(]-P)_I_Mch(lp)_I_MZCZ(]-P)_I_MZC(ZP)

€ Decay width is divided into four part:

L (23) = Iy +yy) =1

1P (M L2P

Account for the
relative phase

Sum of three individual 1P

1P interferences

Only 2P

1P,2P Interference




@ Numerical Result 1

€ Whole phase space region result:
[y =15.14keV = > T(w(2S) > x., +7)xBr(x, => Iy +y)
I /

Int

=5.95x10°keV, 2" =4.13x10°keV,I*" =2.80x10keV

Int

o>~ T2 >0

Int Int
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€ Whole phase space region result:
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@ Cut region:
0.15GeV <M <0.51GeV, 3.43GeV <M,  <3.49GeV,

[ =4.68x107keV, I''" =6.5x10keV

Int

%P =1.82x10*keV, T2" =4.78x10°keV

Int
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In cut region the interference effect can reach 20%!!




@ Numerical Result I

€ Branching ratio in cut region:

92x10™* for =0
BrEt (1 (2S) — J [y +27) = |
as (¥ (25) v+27) {le..60><10_4 for 6=r.



@ Numerical Result II

€ Branching ratio in cut region:
92x10™* for 6=0,
1.60x107* for O=r.

@ The polarization of J/ ¢ in final state:
(—1, Longitudinal
a=< 0,Unpolarized }
| 1 Transverse

Briy (w(28) = /1w +2y) =

a:FT -2I°, |
I';+200,

& If we use the same V*, a=0.
¢ Inthe whole region: a=-0.16.

& Inthe cut region, a=-0.122 and & =-0.107 for 6 =0 and
6 = 7t ,respectively. If only include three individual 1P
contribution, o =-0.078.

J/ wtends to be in longitudinal polarization state!!



@ Photon Spectrum I

@ 1P contribution in whole region:
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FIG. 2. The partial decay width as a function of the photon energy fraction x,: (a) the individual contribution of the three
xYor (J =0, 1, 2) states, corresponding to Fﬁi in (15), (b) the contribution of the interference terms between the three y.; (/ = 0, 1, 2)
states, corresponding to ['t in (15).



@ Photon Spectrum II

@ 2P effect in whole region:
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FIG. 3. The partial decay width as a function of the photon energy fraction x,: (a) the contribution of the 2P states, corresponding to
I'2F in (15), (b) the contribution of the interference terms between the 2P and the three 1P states, corresponding to F%r’lfp in (15).



@ Photon Spectrum II

€ Summary in cut region:
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FIG. 4. The discrete contributions to the photon energy spectrum of the #(2S) — J/is + ¥y process in the cut region: (a) the
contribution of the 1P states, corresponding to I'17; and I'f] in (15), (b) the contribution of the 2P states and of the interference terms
between 1P and 2P states, corresponding to I'¥ and to F%r’lfp m (15), (c) the total contribution for a different relative phase angle 6,

corresponding to the * sign in (15).



Comparison with MC
simulation



@ Description about the MC

€ In MC simulation, normally, only the individual part
" is taken into account.

® The non-relativistic Breit-Wigner is used to describe
the line shape of x .;(1P) state.

@ Double E1 transition factor k’k’, should be included.

% The decay widths and masses are from PDG 2010.



@ Description about the MC

€ In MC simulation, normally, only the individual part
" is taken into account.

® The non-relativistic Breit-Wigner is used to describe
the line shape of x .;(1P) state.

@ Double E1 transition factor k’k’, should be included.

% The decay widths and masses are from PDG 2010.

# Two questions left:

@ & Effect of the interference and higher excited states.
o @ Isthe non-relativistic Breit-Wigner a good approximation
In cut region?



@ Comparison in Cut Region

€ Photon spectrum in cut region:

4 —— %c(1P) Ind.
[ e BreitWigner
;\ ——— E1-scaled BreitWigner

FIG. 5. The MC simulation of the cascade decay of /(2S) —
(Jifryvq) x.;¥2 1n the cut region, where the branching fractions are
from PDG2010 [45]. The dotted line denotes the naive non-
relativistic Breit-Wigner simulation, the solid line is the simu-
lation including the &3, k3, factor, and the dashed line is the
contribution of the three individual y_;(1P) states, correspond-
ing to I'}f; in (15), calculated in this paper.



@ Comparison in Cut Region

€ Photon spectrum in cut region:

4 —— %c(1P} Ind.
-------------- BreitWigner
E1-scaled BreitWigner

FIG. 5. The MC simulation of the cascade decay of /(2S) —
(Jifryvq) x.;¥2 1n the cut region, where the branching fractions are

from PDG2010 [45]. The dotted line denotes the naive non-
relativistic Breit-Wigner simulation, the solid line is the simu-
lation including the &3, k3, factor, and the dashed line is the
contribution of the three individual y_;(1P) states, correspond-
ing to I'}f; in (15), calculated in this paper.

In cut region, the non-relativistic together with energy

factor is not enough to study the individual contribution.
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@ Conclusions and Summary

@ In the two photon transition process, the effect of
Interference and higher excited states (2P) are very tiny.

@ In the experimental cut region, the contribution of the
Interference and higher excited states Is sizeable.

@ The J/ ¢ tends to be in longitudinal polarization state.

@ The experimental MC simulation still gets potential to be
Improved in the cut region.

# Large deviation between our prediction and experimental
data will indicate the signal of meson-loop effect.
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@ In the experimental cut region, the contribution of the
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# Large deviation between our prediction and experimental
data will indicate the signal of meson-loop effect.

Thank You!
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