

QWG8, GSI, 5 October 2011

Observation of the h_b(1P), h_b(2P) and Z_b's at Belle

Roman Mizuk ITEP, Moscow

for the BELLE Collaboration

Contents

$$\Upsilon(5S) \rightarrow \begin{bmatrix} \mathbf{Z}_{b}(10610)^{+} \ \pi^{-} \\ \mathbf{Z}_{b}(10650)^{+} \ \pi^{-} \end{bmatrix} \rightarrow \begin{cases} \Upsilon(1S)\pi^{+} \ \pi^{-} \\ \Upsilon(2S)\pi^{+} \ \pi^{-} \\ \Upsilon(3S)\pi^{+} \ \pi^{-} \\ \mathbf{h}_{b}(1P)\pi^{+} \ \pi^{-} \\ \mathbf{h}_{b}(2P)\pi^{+} \ \pi^{-} \end{cases}$$
multiquark states

Observation of $h_b(1P)$ and $h_b(2P)$ Observation of Z_b^{\pm} $h_b(nP)\pi^+\pi^-$ final state $\Upsilon(nS)\pi^+\pi^-$ final state Angular analysis arXiv:1103.3419 submitted to PRL

update of arXiv:1105.4583

to be submitted to PRL

Integrated Luminosity at B-factories

Nature of Y(5S)

Anomalous production of $\Upsilon(nS) \pi^+\pi^-$

Simonov JETP Lett 87,147(2008) 1. Rescattering $\Upsilon(5S) \rightarrow BB\pi\pi \rightarrow \Upsilon(nS)\pi\pi$?

2. Similar effect in charmonium?

Y(4260) with anomalous $\Gamma(J/\psi \pi^+\pi^-)$ \Rightarrow assume $\exists Y_b$ close to $\Upsilon(5S)$ f to distinguish \Rightarrow energy scan

 \Rightarrow shapes of R_b and $\sigma(\Upsilon \pi \pi)$ different (2 σ)

Nature of $\Upsilon(5S)$ is puzzling and not yet understood

Observation of h_b(1P) & h_b(2P)

Trigger

Observation of $e^+e^- \rightarrow \pi^+\pi^- h_c$ above $D\overline{D}$ threshold by CLEO

Introduction to h_b(**nP**)

(bb): S=0 L=1 J^{PC}=1⁺⁻

 $\frac{\text{Expected mass}}{\approx (M\chi_{b0} + 3 M\chi_{b1} + 5 M\chi_{b2}) / 9}$

 $\Delta M_{\rm HF} \,{\Rightarrow}\,$ test of hyperfine interaction

For $h_c \Delta M_{HF} = -0.12 \pm 0.30$ MeV, expect smaller deviation for $h_b(nP)$

Introduction to h_b(**nP**)

(bb): S=0 L=1 J^{PC}=1⁺⁻

 $\frac{\text{Expected mass}}{\approx (M\chi_{b0} + 3 M\chi_{b1} + 5 M\chi_{b2}) / 9}$

 $\Delta M_{\rm HF} \Rightarrow$ test of hyperfine interaction

For $h_c \Delta M_{HF} = -0.12 \pm 0.30$ MeV, expect smaller deviation for $h_b(nP)$

Υ (5S) → h_b π⁺π⁻ reconstruction

9

Results

121.4 fb⁻¹

Hyperfine splitting

Process with spin-flip of heavy quark is not suppressed

⇒ Mechanism of Υ (5S) → $h_b(nP) \pi^+\pi^-$ decay is exotic

Observation of Z_b^{\pm} $h_b(nP) \pi^+\pi^-$ final state (n=1,2)

Resonant substructure of Υ (5S) $\rightarrow h_b(2P) \pi^+\pi^-$

Observation of Z_b^{\pm} $\Upsilon(nS) \pi^+\pi^-$ final state (n=1,2,3)

Υ (5S) → Υ (nS) π⁺π⁻ Dalitz plots

121.4 fb⁻¹

\Rightarrow Two resonances

 \Rightarrow Clear signs of interference \Rightarrow amplitude analysis is required

Fitting the Dalitz plots

Angular analysis favors JP=1+

 $\Upsilon(5S) \xrightarrow{S} Z_b \pi, Z_b \xrightarrow{S} \Upsilon(nS) \pi$ – no spin orientation change Spins of $\Upsilon(5S)$ and $\Upsilon(nS)$ can be ignored

Signal amplitude parameterization:

$$\begin{split} \mathbf{S(s1,s2)} &= \mathbf{A(Z_{b1})} + \mathbf{A(Z_{b2})} + \mathbf{A(f_{0}(980))} + \mathbf{A(f_{2}(1275))} + \mathbf{A_{NR}} \\ \mathbf{A_{NR}} &= \mathbf{C_{1}} + \mathbf{C_{2}} \cdot \mathbf{m^{2}}(\pi\pi) \end{split}$$

Parameterization of the non-resonant amplitude is discussed in

[1] M.B. Voloshin, Prog. Part. Nucl. Phys. 61:455, 2008.[2] M.B. Voloshin, Phys. Rev. D74:054022, 2006.

 $A(Z_{b1}) + A(Z_{b2}) + A(f_2(1275))$ – Breit-Wigner $A(f_0(980))$ – Flatte

Results: $\Upsilon(2S)\pi^+\pi^-$

Results: $\Upsilon(3S)\pi^+\pi^-$ 100 100 $(Events/5 MeV/c^2)$ 80 80 60 60 40 40 20 20 10.48 10.48 10.64 10.68 10.52 10.56 10.6 10.72 10.76 10.52 10.56 10.6 10.64 10.68 10.72 10.76 M(Υ(3S)π⁺), GeV M(Υ(3S)π⁻), GeV 120 50 (€ $(Events/4 MeV/c^2)$ 100 MeV/c^2) 40 80 30 60 (Events/5 20 40 10 20 0^{L...} 10.58 0 0.25 10.62 10.66 10.70 10.74 0.3 0.5 0.35 0.45 0.55 0.4 $M(Y(3S)\pi)_{max}$, $M(\pi^{+}\pi^{-})$, (GeV/c²) (GeV/c^2)

Masses and width are consistent Relative yield of $Z_b(10610)$ and $Z_b(10650) \sim 1$ Relative phases are swapped for Υ and h_b final states

Angular analyses

Angular analyses

Definition of angles

 $\theta_i = \angle(\pi_i, e^+), \varphi = \angle[\text{plane}(\pi_1, e^+), \text{plane}(\pi_1, \pi_2)]$

Example : $\Upsilon(5S) \rightarrow Z_b^{+}(10610) \pi^{-} \rightarrow [\Upsilon(2S)\pi^{+}] \pi^{-}$

Color coding: $J^{P} = (1^{+}) 1^{-} 2^{+} 2^{-}$ (0[±] is forbidden by parity conservation)

Best discrimination: $\cos\theta_2$ for 1⁻ (3.6 σ) and 2⁻ (2.7 σ); $\cos\theta_1$ for 2⁺ (4.3 σ)

Summary of angular analyses

All angular distributions are consistent with $J^P=1^+$ for $Z_b(10610)$ & $Z_b(10650)$.

All other J^P with $J \le 2$ are disfavored at typically 3σ level.

J^P	$Z_b(10610)$			$Z_b(10650)$		
	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$
1-	3.6σ	0.3σ	0.3σ	3.7σ	2.6σ	2.7σ
2+	4.3σ	3.5σ	4.3σ	4.4σ	2.7σ	2.1 σ
2^{-}	2.7σ	2.8σ		2.9σ	2.6σ	

Probabilities at which different J^P hypotheses are disfavored compared to 1^+

Preliminary:

procedure to deal with non-resonant contribution is approximate, no mutual cross-feed of Z_b 's

Summary

First observation of $h_b(1P)$ and $h_b(2P)$

arXiv:1103.3419 submitted to PRL

Hyperfine splitting consistent with zero, as expected Anomalous production rates

Observation of two charged bottomonium-like resonances in 5 final states

Υ(1S)π⁺, Υ(2S) π⁺, Υ(3S)π⁺, h_b(1P)π⁺, h_b(2P)π⁺

update of arXiv:1105.4583, to be submitted to PRL

7 (10610)	$M = 10607.2 \pm 2.0 \text{ MeV}$		
-b(10010)	$\Gamma = 18.4 \pm 2.4 \text{ MeV}$		

 $Z_b(10650)$ M = 10652.2 ± 1.5 MeV Γ = 11.5 ± 2.2 MeV

Masses are close to BB* and B*B* thresholds – molecule?

Angular analyses favour $J^P = 1^+$, decay pattern $\Rightarrow I^G = 1^+$

Back up

Heavy quark structure in Z_b arXiv:1105.4473

Wave func. at large distance – free $B(*)B^*$

$$\left| Z_{b} \right\rangle = \frac{1}{\sqrt{2}} \overline{\mathbf{O}_{bb}} \otimes \overline{\mathbf{I}_{Qq}} - \frac{1}{\sqrt{2}} \overline{\mathbf{I}_{bb}} \otimes \overline{\mathbf{O}_{Qq}} \\ \left| Z_{b}' \right\rangle = \frac{1}{\sqrt{2}} \overline{\mathbf{O}_{bb}} \otimes \overline{\mathbf{I}_{Qq}} + \frac{1}{\sqrt{2}} \overline{\mathbf{I}_{bb}} \otimes \overline{\mathbf{O}_{Qq}}$$

Explains

- Why $h_b \pi \pi$ is unsuppressed relative to $\Upsilon \pi \pi$
- Relative phase ~0 for Υ and ~180⁰ for h_b
- Production rates of $Z_b(10610)$ and $Z_b(10650)$ are similar
- Widths –"–

Predicts

• Existence of other similar states

Description of fit to MM($\pi^+\pi^-$ **)**

BG: Chebyshev polynomial, 6th or 7th order Signal: shape is fixed from $\mu^+\mu^-\pi^+\pi^-$ data "Residuals" – subtract polynomial from data points K_s contribution: subtract bin-by-bin

30