

QWG8, GSI, 5 October 2011

Observation of h_b(1P) $\rightarrow \eta_{b}(1S) \gamma$

Roman Mizuk ITEP, Moscow

for the BELLE Collaboration

Introduction

Belle recently observed $h_b(1P)$ and $h_b(2P)$ in $\Upsilon(5S) \rightarrow h_b(mP)\pi^+\pi^-$:

N[h_b(1P)] = $(50.4 \pm 7.8 + 4.5)_{-1.9} \times 10^3$, ~6 σ significance N[h_b(2P)] = $(84.4 \pm 6.8 + 23)_{-10} \times 10^3$, ~12 σ significance

arXiv:1103.3411 arXiv:1105.4583

Godfrey & Rosner, PRD66 014012 (2002)

Large $h_b(mP)$ samples give opportunity to study $\eta_b(nS)$ states.

Introduction to $\eta_b(1S)$

 $\eta_b(1S)$ – small radius system, precision calculation of mass

Experimental status of η_b

$$\begin{split} \mathsf{M}[\eta_b(1S)] &= 9390.9 \pm 2.8 \; \text{MeV} \; \; (\text{BaBar} + \text{CLEO}) \\ \mathsf{M}[\Upsilon(1S)] &- \mathsf{M}[\eta_b(1S)] = 69.3 \pm 2.8 \; \text{MeV} \end{split}$$

pNRQCD: 41±14 MeV Lattice: 60±8 MeV

Kniehl et al., PRL92,242001(2004) Meinel, PRD82,114502(2010)

Width of $\eta_b(1S)$: no information

Method Decay chain $\Upsilon(5S) \rightarrow Z_b^+ \pi^- \leftarrow$ reconstruct $\stackrel{{} \hookrightarrow}{\mapsto} h_b \text{ (nP) } \pi^+ \checkmark \\ \stackrel{{} \swarrow}{\mapsto} \eta_b \text{(mS) } \gamma$ Use missing mass to identify signals MC simulation $\Delta M_{miss}(\pi^+\pi^-\gamma) \equiv$ $M_{miss}(\pi^+\pi^-\gamma) - M_{miss}(\pi^+\pi^-) + M[h_b]$ **Μ(**η_b - rectangular bg bands - no correlation Approach: 9 fit $M_{miss}(\pi^+\pi^-)$ spectra 9.9 9.85 9.95 9.8 10 $M_{miss}(\pi^+\pi^-), \text{ GeV/c}^2$ in $\Delta M_{miss}(\pi^+\pi^-\gamma)$ bins M(h_b)

Method Decay chain $\Upsilon(5S) \rightarrow Z_{b}^{+} \pi^{-}$ reconstruct \mapsto h_b (nP) π^+ Use missing mass $\mapsto \eta_{\rm b}({\rm mS})$ to identify signals MC simulation h_b(1P) yield / 10MeV/c⁴ 5000 70000 7000 7000 7000 7000 7000 7000 $\Delta M_{miss}(\pi^+\pi^-\gamma) \equiv$ η_b(1S) $M_{miss}(\pi^+\pi^-\gamma) - M_{miss}(\pi^+\pi^-) + M[h_b]$ - rectangular bg bands - no correlation Approach: 0 9 9.2 fit $M_{miss}(\pi^+\pi^-)$ spectra 9.4 9.6 $\Delta M_{miss}(\pi^{+}\pi^{-}\gamma), \text{ GeV/c}^{2}$ in $\Delta M_{miss}(\pi^+\pi^-\gamma)$ bins

 \Rightarrow h_b(1P) yield vs. $\Delta M_{miss}(\pi^+\pi^-\gamma) \Rightarrow$ signal of $\eta_b(1S)$

 $R_2 < 0.3$ Hadronic event selection; continuum suppression using event shape; π^0 veto.

Require intermediate Z_b : 10.59 < MM(π) < 10.67 GeV

bg. suppression ×5.2

$M_{miss}(\pi^+\pi^-)$ spectrum

Calibration

Use decays
$$B^+ \rightarrow \chi_{c1} K^+ \rightarrow (J/\psi \gamma) K^+$$

 $\cos\theta_{\text{Hel}}(\chi_{c1}) > -0.2 \Rightarrow \text{match } \gamma \text{ energy of signal & callibration channels}$

Calibration (2)

Resolution: double-sided CrystalBall function with asymmetric core

Fit to $\Delta MM(\pi^+\pi^-\gamma)$ distribution

non-relativistic BW \otimes resolution + exponential func.

Systematics

	$N[\eta_b(1S)], 10^3$	$M[\eta_b(1S)], \mathrm{MeV}/c^2$	$\Gamma[\eta_b(1S)], \text{ MeV}$
Range in $MM(\pi^+\pi^-)$ fits	$^{+0.0}_{-0.6}$	$^{+0.0}_{-0.2}$	$^{+0.0}_{-0.1}$
Poly order in $MM(\pi^+\pi^-)$ fits	$^{+0.0}_{-0.6}$	$^{+0.1}_{-0.1}$	$^{+0.0}_{-0.4}$
$\Delta MM(\pi^+\pi^-\gamma)$ binning	$+0.2 \\ -0.1$	$^{+0.3}_{-0.8}$	$^{+1.0}_{-0.8}$
Range in $\Delta MM(\pi^+\pi^-\gamma)$ fits	$+0.9 \\ -0.2$	$^{+0.1}_{-0.1}$	$+1.4 \\ -0.3$
$\Delta MM(\pi^+\pi^-\gamma)$ bg parameterization	+5.5 -1.4	$^{+0.5}_{-0.2}$	+10.9 -2.2
Resolution function	$+0.2 \\ -0.1$	$^{+0.5}_{-0.5}$	$^{+1.4}_{-1.4}$
Selection requirements	_	$^{+0.4}_{-1.9}$	$+3.0 \\ -2.0$
$h_b(1P)$ mass	_	$^{+1.1}_{-1.1}$	_
Total	+5.6 -1.7	$+1.4 \\ -2.4$	$+11.5 \\ -3.4$

Variations of background parameterization: P2, P3, exp{P1}, exp{P2}, exp{P3}, exp{P4}, sum of two exponential func.

 \rightarrow dominant syst. error on yield and width, mass is stable

15

Discussion

$$\begin{split} \Gamma[\eta_b(1S)] & (12.4^{+5.5+11.5}_{-4.6-3.4}) \text{ MeV} & \text{potential models} : \Gamma = 5-20 \text{ MeV} \\ \mathcal{B}[h_b(1P) \to \eta_b(1S)\gamma] = (49.8 \pm 6.8^{+10.9}_{-5.2})\% & \text{Godfrey \& Rosner} : \text{BF} = 41\% \end{split}$$

Conclusions

Update of M [h_b(1P)] :

 $(9899.0 \pm 0.4 \pm 1.0) \,\mathrm{MeV}/c^2$

PRELIMINARY

 $\Delta M_{\rm HF} [h_{\rm b}(1P)] = (0.8 \pm 1.1) {\rm MeV/c^2}$

First observation of $h_b(1P) \rightarrow \eta_b(1S) \gamma$

 $M[\eta_b(1S)] \quad (9401.0 \pm 1.9^{+1.4}_{-2.4}) \,\mathrm{MeV}/c^2 \qquad \Delta M_{\mathrm{HF}} \left[\eta_b(1S)\right] = 59.3 \pm 1.9 \,{}^{+2.4}_{-1.4} \,\mathrm{MeV}/c^2$ $\Gamma[\eta_b(1S)] \qquad (12.4^{+5.5+11.5}_{-4.6-3.4}) \,\,\mathrm{MeV}$ $\mathcal{D}[I_{-1.4}(1D) = (100) \,\mathrm{eV} = (100) \,\mathrm{eV} = (100) \,\mathrm{eV}$

 $\mathcal{B}[h_b(1P) \to \eta_b(1S)\gamma] = (49.8 \pm 6.8^{+10.9}_{-5.2})\%$

single most precise measurement of $\eta_b(1S)$ mass significantly different from current world average first measurement of $\eta_b(1S)$ width BF, mass, width in agreement with theoretical expectations

Radiative decays of h_b(2P) are coming