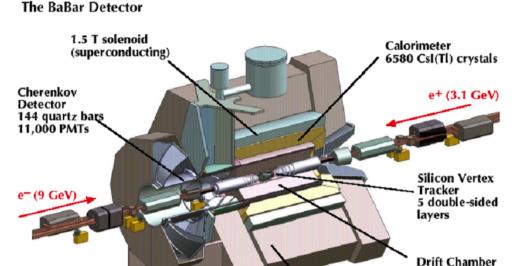
Properties of $\eta_b(1S)$ and $h_b(1P)$ at BABAR

Claudia Patrignani Università e INFN Genova for the BABAR Collaboration


QWG2011:

8th International Workshop on Heavy Quarkonium 2011

4-7 October 2011 – GSI – Darmstadt (Germany)

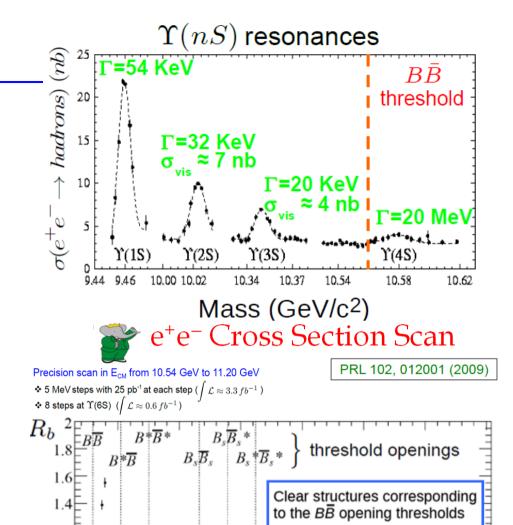
- Inclusive searches for the $h_b(1P)$ in
 - $\checkmark \Upsilon(3S) \rightarrow \pi^+\pi^- X$
 - $\checkmark \Upsilon(3S) \rightarrow \pi^0 X$
- search for $\eta_b(nS)$ in radiative $\Upsilon(3S)$ and $\Upsilon(2S)$ transitions using converted photons

BaBar experiment

Y(2S)	Y(3S)	Y(4S)	Y(5S)
14 fb ⁻¹	30 fb ⁻¹	433 fb ⁻¹	3.2 fb ⁻¹ (scan)

Most data taken at the $\Upsilon(4S)$

dedicated running at the narrow Y resonances


40 layers

Instrumented Flux Return

18-19 layers

- $-100 \text{ M} \Upsilon(2\text{S})$
- $-122 \text{ M } \Upsilon(3\text{S})$

and a scan above the $\Upsilon(4S)$

10.9

11

11.1

 $\sqrt{S}[GeV]$

10.8

C. Patrignani - Genova

0.6

 $\Upsilon(4S)$

10.7

10.6

Expected h_b(1P) properties

- Expected mass: $m_{h_b(1P)} = (m_{\chi_{b0}(1P)} + 3m_{\chi_{b1}(1P)} + 5m_{\chi_{b2}(1P)}) / 9 \approx 9900 \text{ MeV/c}^2$
- Predicted production mechanisms
 - $\mathcal{B}(\Upsilon(3S) \to \pi^+\pi^- h_b(1P)) \sim 10^{-3} 10^{-2}$

Kuang et al., PRD 37,1210(1988)

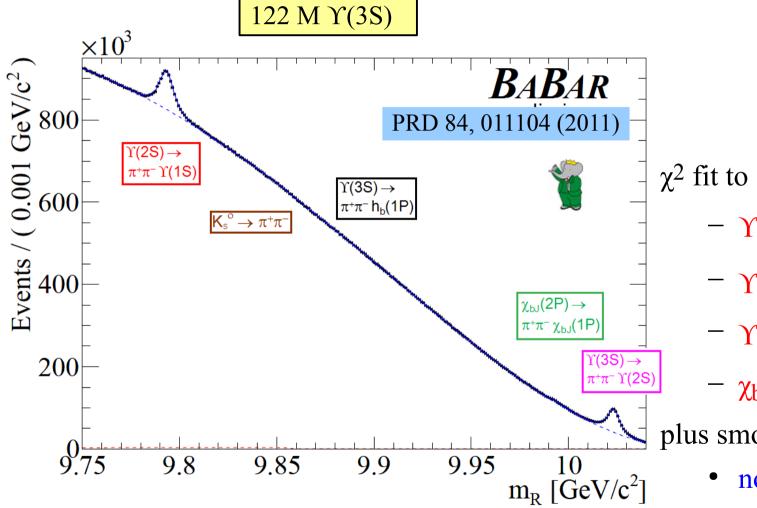
 $-\mathcal{B}(\Upsilon(3S) \to \pi^0 h_b(1P)) \sim 10^{-3}$

Voloshin, Sov, J. Nucl. Phys 43,1011(1986)

- $R(\pi^0 h_b(1P)/\pi^+\pi^- h_b(1P)) = 0.05 20$
- Expected decay modes

Godfrey and Rosner, PRD 66, 014012 (2002)

- $h_b(1P)$ → ggg (57%), $\gamma \eta_b(1S)$ (41%), γgg (2%)
- Previous experimental limits
 - $\mathcal{B}(\Upsilon(3S) \to \pi^+\pi^- h_b(1P)) < 1.8 \times 10^{-3}$
 - $-\mathcal{B}(\Upsilon(3S) \to \pi^0 h_b(1P)) < 2.8 \times 10^{-3}$


CLEO, PRD 43,1448(1991) PRD 49, 40 (1994)

6 M Y(3S)

Search for $h_b(1P)$ in $\Upsilon(3S) \rightarrow \pi^+\pi^-(X)$

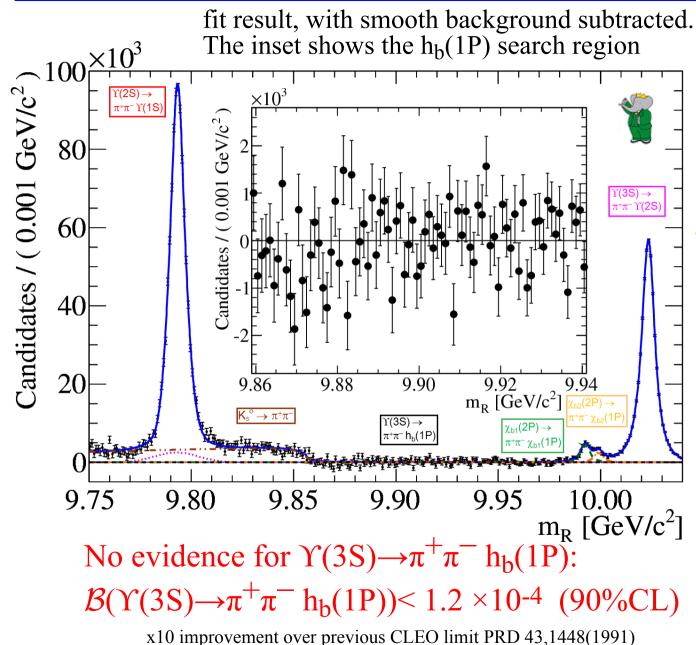
mass recoiling against the $\pi^+\pi^-$: $m_R^2 = (m_{\gamma(3S)} - E_{\pi\pi})^2 - P_{\pi\pi}^2$

$$m_R^2 = (m_{\gamma(3S)} - E_{\pi\pi})^2 - P_{\pi\pi}^2$$

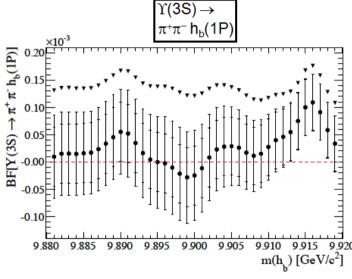
 χ^2 fit to signal components

$$-\Upsilon(3S)\rightarrow\pi^+\pi^- h_b(1P)$$

$$-\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(2S)$$


$$-\Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S)$$

$$-\chi_b(2P)\rightarrow\pi^+\pi^-\chi_b(1P)$$


plus smooth background

- non-peaking combinatorial
- $K^0 \rightarrow \pi\pi$

Results

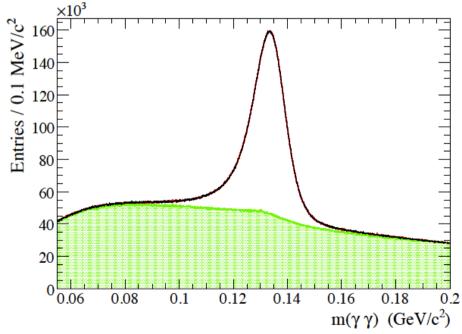
PRD 84, 011104 (2011)

central value and 90% CL UL as a function of h_b mass

disfavours some theory predictions e.g.

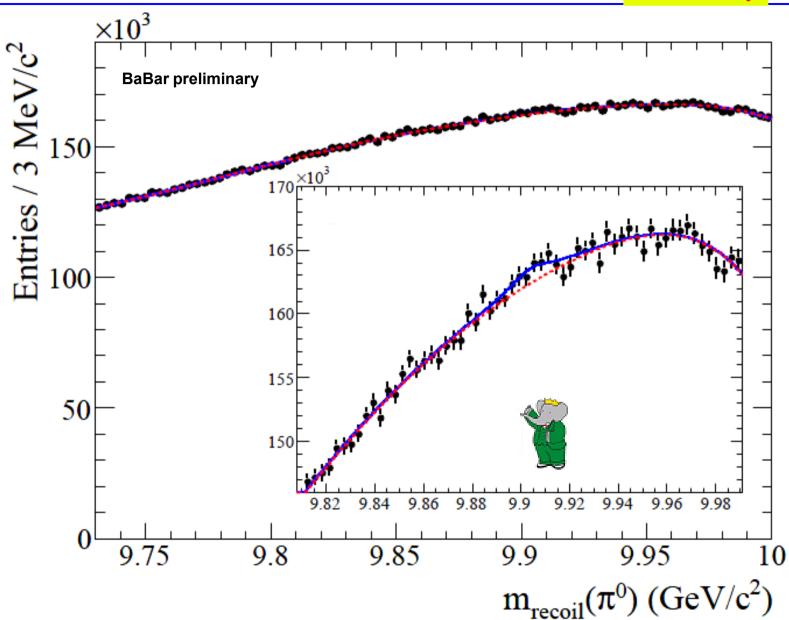
Kuang et al., PRD 37,1210 (1988) Tuan, Mod. Ph.L. A7,3527 (1992)

Preliminary


Select events with a π^0 and a photon

Require E_{γ} to be compatible with $h_b \rightarrow \gamma \eta_b(1S)$ (dominant decay mode)

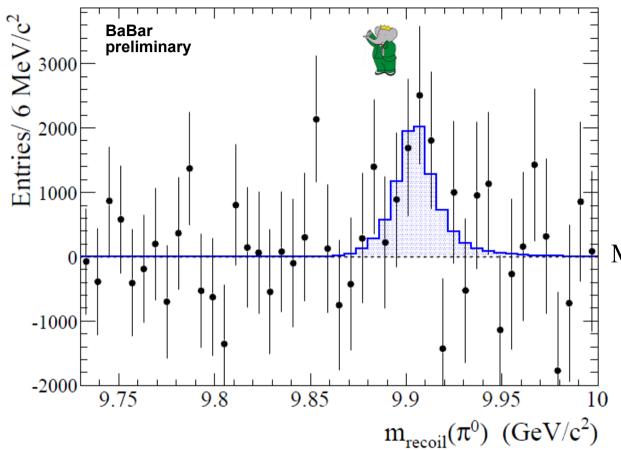
arXiv:1102.4565


In each bin of $m_{\text{recoil}} = \sqrt{(m_{\Upsilon(3S)} - E_{\pi^0}^*)^2 - P_{\pi^0}^*^2}$

• perform a fit to the $\gamma\gamma$ inv. mass distribution to determine the number of π^0 in that bin

to obtain the distribution of the number of events recoiling against a π^0 as a function of m_{recoil}

Preliminary



arXiv:1102.4565

Evidence for $\Upsilon(3S) \rightarrow \pi^0 h_b(1P)$

Preliminary

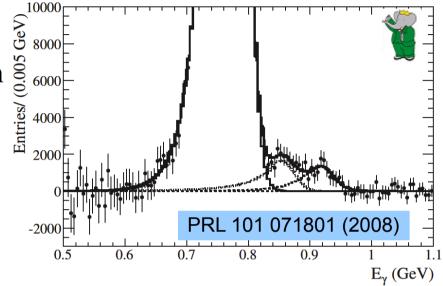
arXiv:1102.4565

9145±2804 signal events

 $M(h_b)= (9902\pm4(stat)\pm1(syst)) MeV/c^2$ consistent with predictions

Statistical significance

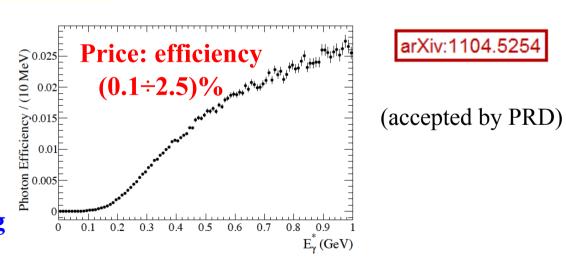
(from $\sqrt{\Delta \chi^2}$): 3.2 σ


including systematic error: 3.0 σ

$$\mathcal{B}(\Upsilon(3S) \to \pi^0 h_b(1P)) \times \mathcal{B}(h_b(1P) \to \gamma \eta_b(1S)) = (3.7 \pm 1.1 \pm 0.7) \times 10^{-4}$$

evaluated at the expected mass value $M(h_b)=9900 \text{ MeV/c}^2$

Bottomonium radiative transitions with converted photons


- In the $\Upsilon(nS) \rightarrow \gamma \eta_b(1S)$ transition the photon energy is close to the energy of $\chi_{bJ}(2P)$ transition photons and ISR photon from $e^+e^- \rightarrow \gamma_{ISR} \Upsilon(1S)$
- $\Gamma(\eta_b(1\mathrm{S}))$ =5-15 MeV using estimates of $\Gamma_{\gamma\gamma}(\eta_b(1\mathrm{S}))$ =(0.2-0.7) keV and $\frac{\Gamma_{\gamma\gamma}(\eta_b)}{\Gamma_{\alpha\alpha}(\eta_b)} = \frac{9}{2} Q_b^4 \frac{\alpha_{em}^2}{\alpha^2} \left(1 7.8 \frac{\alpha_s}{\pi}\right) \begin{array}{l} \text{Kwong,Mackenzie,} \\ \text{Rosenfeld, Rosner,} \\ \text{PRD 37, 3210 (1988)} \end{array}$

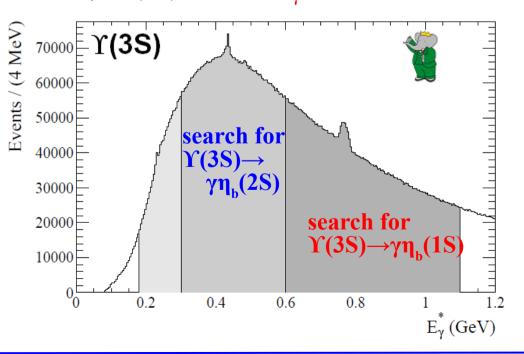
Use converted photons ($\gamma \rightarrow e^+e^-$) to improve resolution (e.g.: $25 \rightarrow 5$ MeV)

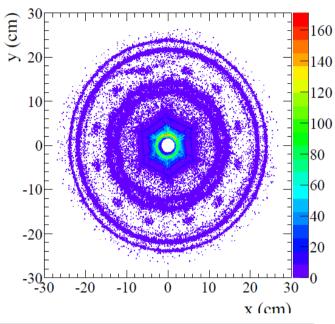
The spectrum of radiative transitions from $\Upsilon(3S)$ is very rich, many overlapping lines

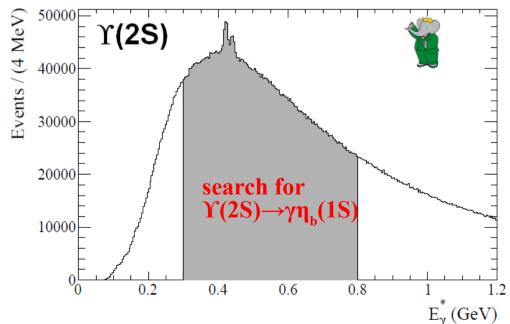
Deconvolving the individual contributions has been the main difficulty in earlier measurements

Improved measurement of many radiative transitions See P. Kim talk on Friday

Converted photon energy spectra

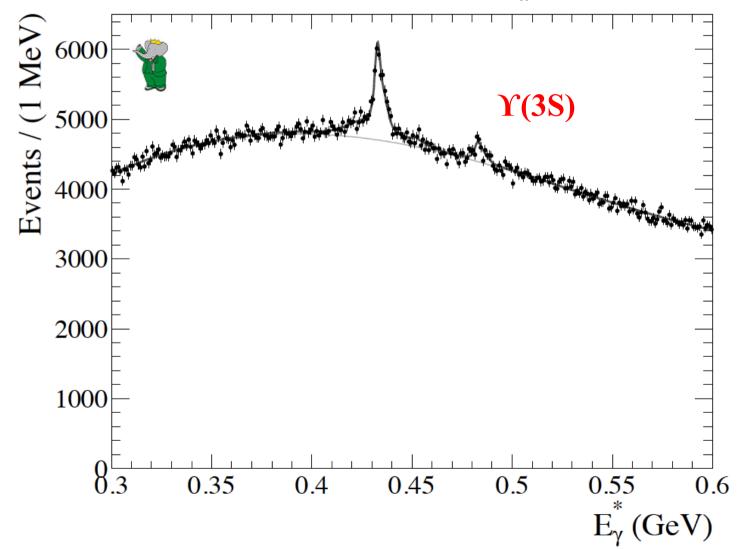

arXiv:1104.5254 (accepted by PRD)


Converted photons are reconstructed from pair of tracks, selected with χ^2 fitter, m_y , ρ_y


Additional cuts: $|\cos\theta_{thrust}|$, N_{tracks} , π^0 veto

Fit E*, spectrum in four regions of interest

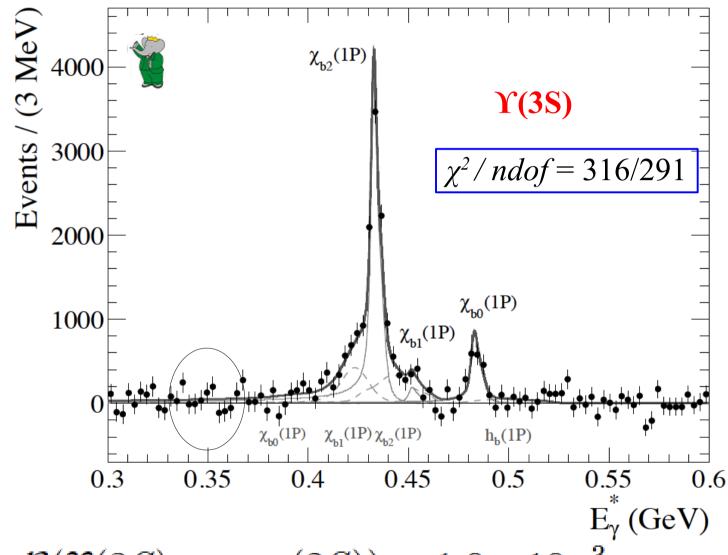
- Υ(3S): 180< E*_γ <300 MeV
 Υ(3S): 300< E*_γ <600 MeV
- 3) $\Upsilon(3S)$: $600 < E^*_{\gamma} < 1100 \text{ MeV}$
- 4) $\Upsilon(2S)$: 300< $E*_{\gamma}$ <800 MeV



arXiv:1104.5254 (accepted by PRD)

Complex spectrum

3 signal transitions for $\Upsilon(3S) \rightarrow \gamma \chi_{hJ}(1P)$


3 overlapping Doppler-broadened transitions for $\chi_{bJ}(1P) \rightarrow \gamma \Upsilon(1S)$, shape depends on the path to $\chi_{bJ}(1P)$

binned χ^2 fit to sum of smooth component plus signal components

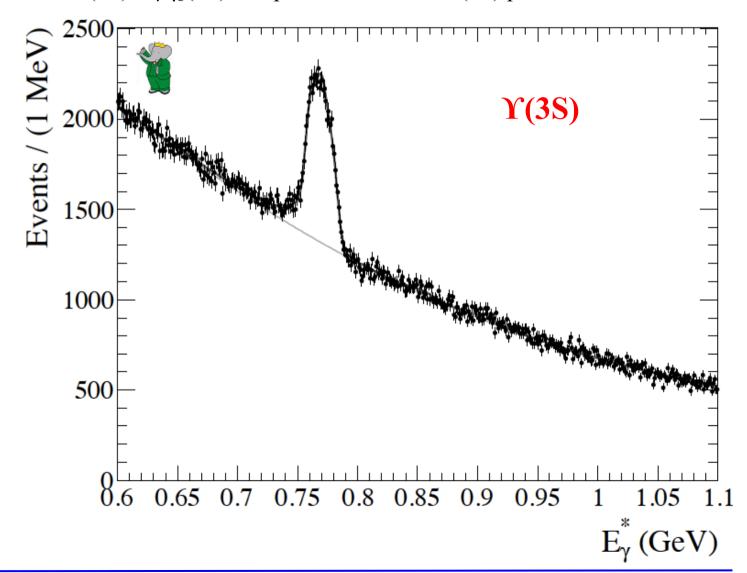
arXiv:1104.5254 (accepted by PRD)

subtracting the smooth background

try to add an $\eta_b(2S)$ signal component

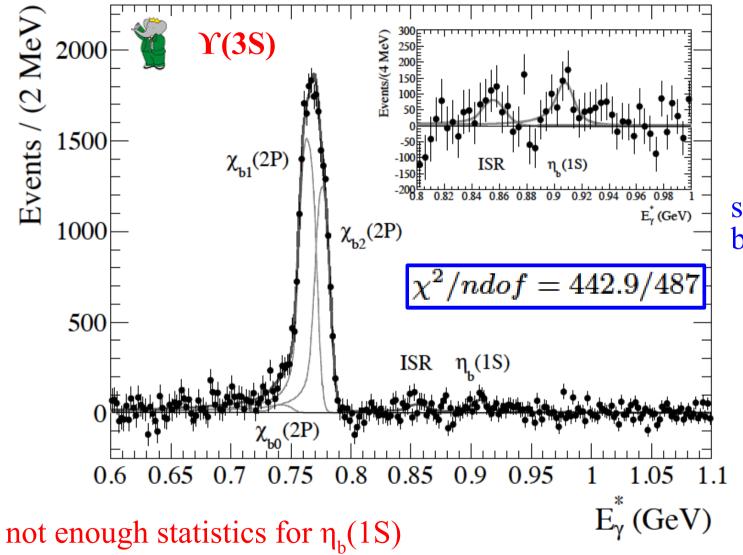
$$\mathcal{B}(\Upsilon(3S) \to \gamma \eta_b(2S)) < 1.9 \times 10^{-3}$$
 (90% CL)

consistent with CLEO (a factor 2 less stringent)


PRL 94, 032001 (2005).

$\Upsilon(3S) - 600 < E*_{\gamma} < 1100 \text{ MeV}$

arXiv:1104.5254 (accepted by PRD)


Expect

3 signal overlapping transitions for $\chi_{bJ}(2P) \rightarrow \gamma \Upsilon(1S)$ $\Upsilon(3S) \rightarrow \gamma \eta_b(1S)$ and photon from ISR $\Upsilon(1S)$ production

binned χ^2 fit to sum of smooth component plus signal components

$\Upsilon(3S) - 600 < E^* < 1100 \text{ MeV}$

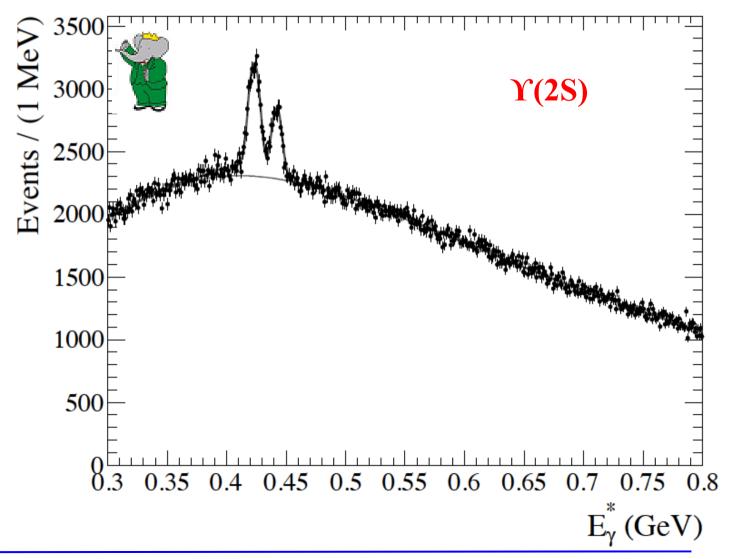
arXiv:1104.5254

(accepted by PRD)

subtracting the smooth background component

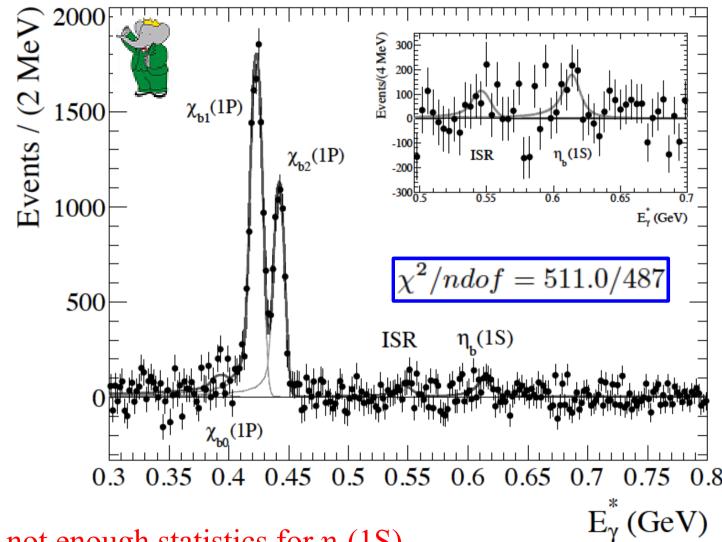
$$\mathcal{B}(\Upsilon(3S) o \gamma \eta_b(1S) < 8.5 imes 10^{-4} \ (90\% \, \mathrm{CL})$$
 consistent with our previous result

(for $\eta_b(1S)$ mass floating)


PRL 101 071801 (2008)

arXiv:1104.5254

(accepted by PRD)


Expect

3 signal transitions for $\chi_{bJ}(1P) \rightarrow \gamma \Upsilon(1S)$ $\Upsilon(2S) \rightarrow \gamma \eta_b(1S)$ and photon from ISR $\Upsilon(1S)$ production

binned χ^2 fit to sum of smooth component plus signal components

$\Upsilon(2S) - 300 < E^* < 800 \text{ MeV}$

arXiv:1104.5254

(accepted by PRD)

subtracting the smooth background component

not enough statistics for $\eta_b(1S)$

$$\mathcal{B}(\Upsilon(2S) \to \gamma \eta_b(1S)) < 0.21\%$$
 (90% CL)

(for $\eta_b(1S)$ mass floating) consistent with our previous result

PRL 103 161801 (2009)

Conclusions

- no evidence for $\Upsilon(3S) \rightarrow \pi^+\pi^- h_b(1P)$
- evidence for $\Upsilon(3S) \rightarrow \pi^0 h_b(1P)$
 - mass compatible with expectation
 - branching ratio values marginally discriminating between different calculations
- Not enough statistics to observe $\eta_b(nS)$ in the converted photon spectrum, but with the larger statistics at super B-factories it could be a valid strategy
 - by-product: very precise measurements of a number of hadronic and radiative decays

see Peter Kim's talk on Friday