

Can We Resolve the Nature of χ_{c1}(3872) with PANDA?

EMMI Workshop - Experimental and theoretical status of and perspectives for XYZ states

Klaus Götzen and Frank Nerling for the PANDA Collaboration GSI Darmstadt Apr. 15, 2021

LHCb Measurement of $\chi_{c1}(3872)$

[Phys.Rev.D 102 (2020) 9, 092005] [https://arxiv.org/abs/2005.13419]

Study of the lineshape of the $\chi_{c1}(3872)$ state

CERN-EP-2020-086 LHCb-PAPER-2020-008 May 27, 2020

Abstract

A study of the lineshape of the $\chi_{c1}(3872)$ state is made using a data sample corresponding to an integrated luminosity of $3 \,\mathrm{fb}^{-1}$ collected in pp collisions at centre-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate $\chi_{c1}(3872)$ mesons from *b*-hadron decays are selected in the $J/\psi\pi^+\pi^-$ decay mode. Describing the lineshape with a Breit–Wigner function, the mass splitting between the $\chi_{c1}(3872)$ and $\psi(2S)$ states, Δm , and the width of the $\chi_{c1}(3872)$ state, $\Gamma_{\rm BW}$, are determined to be

$$\Delta m = 185.588 \pm 0.067 \pm 0.068 \,\text{MeV},$$

$$\Gamma_{\text{BW}} = 1.39 \pm 0.24 \pm 0.10 \,\text{MeV},$$

where the first uncertainty is statistical and the second systematic. Using a Flattéinspired lineshape, two poles for the $\chi_{c1}(3872)$ state in the complex energy plane are found. The dominant pole is compatible with a quasi-bound $D^0 \overline{D}^{*0}$ state but a quasi-virtual state is still allowed at the level of 2 standard deviations.

LHCb Findings

• Breit Wigner fit

 $m_{\chi_{c1}(3872)} = 3871.695 \pm 0.067 \pm 0.068 \pm 0.010 \,\mathrm{MeV}$

 $\Gamma_{BW} ~=~ 1.39 ~\pm 0.24 ~\pm 0.10 ~{\rm MeV}$

[previous Belle result: $\Gamma < 1.2 \text{ MeV} (CL90)$]

• Flatté model fit

Mode [MeV] M		lean [MeV]	$\rm FWHM~[MeV]$	
$3871.69^{+0.00}_{-0.04}$	$^{+0.05}_{-0.13}$ 3871	$1.66 \substack{+0.07 + 0.11 \\ -0.06 - 0.13}$	$0.22^{+0.06+0.25}_{-0.08-0.17}$	
g	$f_{ ho} imes 10^3$	$\Gamma_0 \; [\text{MeV}]$	m_0 [MeV]	
0.108 ± 0.003	1.8 ± 0.6	1.4 ± 0.4 3864.5 (fixed) (Flatté energy E _f = -7.2 MeV)		

LHCb Findings

• Breit Wigner fit

Resolve Nature of xc1(3872) with PANDA

$J/\psi\pi^+\pi^-$ Lineshapes

- Flatté Model by Hanhart et al. [PRD 76 (2007) 034007]
- Lineshape for various Flatté energies E_f (other parms. const)

LHCb Lineshapes (incl Resolution)

Quote LHCb:

7.3 Comparison between Breit–Wigner and Flatté lineshapes

Figure 4 shows the comparison between the Breit–Wigner and the Flatté lineshapes. While in both cases the signal peaks at the same mass, the Flatté model results in a significantly narrower lineshape. However, after folding with the resolution function and adding the background, the observable distributions are indistinguishable.

Overcome Detector Resolution with Formation

- Production with recoils dominated by detector resolution (~ MeV)
- Formation reaction \rightarrow produce $\chi_{c1}(3872)$ [J^{PC} = 1⁺⁺] w/o recoils

- Beam energy spread \rightarrow resolution
- Measure yield at different E_{cms}

LHCb Detector Resolution ≈ 2.6 MeV PANDA Beam Resolution ≈ 0.05 MeV

PANDA at FAIR

Facility for Antiproton and Ion Research (GSI, Darmstadt, Germany)

FAIR Construction Site

Good progress despite pandemic

FAIR Construction Site

Good progress despite pandemic

PANDA and HESR

HESR mode	d <i>p/p</i>	L _{max} [1/cm²⋅s]	dE _{cm} [keV]
High Luminosity (HL)	1 · 10 ⁻⁴	2.0 · 10 ³²	168
High Resolution (HR)	2 · 10⁻⁵	2.0 · 10 ³¹	34
Phase 1 Mode (P1)	5 · 10 ⁻⁵	2.0 · 10 ³¹	84
_			@ E _{cm} = 3872 Me

Resolve Nature of $\chi c1(3872)$ with PANDA

What can PANDA do?

Due to precise beam resolution

→ Breit-Wigner and Flatté-model are distinguishable

Resolve Nature of $\chi c1(3872)$ with PANDA

Strategy

Ingredients from our Simulation Study

Eur. Phys. J. A (2019) **55**: 42 DOI 10.1140/epja/i2019-12718-2

[https://arxiv.org/abs/1812.05132]

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article – Experimental Physics

Precision resonance energy scans with the PANDA experiment at FAIR

Sensitivity study for width and line shape measurements of the X(3872)

- Reaction: $\bar{p}p \rightarrow \chi_{c1}(3872) \rightarrow J/\psi (\rightarrow e^+e^-/\mu^+\mu^-) \rho^0 (\rightarrow \pi^+\pi^-)$
- Take parameters (σ , L, \mathcal{B} , ε_{reco} , ...) from study to estimate expected yields

 $\mathsf{N}_{\mathsf{exp}}(\mathsf{E}_{\mathsf{cms}}) = \sigma(\mathsf{E}_{\mathsf{cms}}) \cdot \mathsf{L} \cdot \mathsf{t} \cdot \prod \mathcal{B}_i \cdot \varepsilon_{\mathsf{reco}}$

Investigate separation power between Flatté & BW lineshapes

 $\begin{array}{ll} \mbox{Total beam time:} & T = 40 \times 2d & = 80 \ d \\ \mbox{Cross section assumption:} \ \sigma_{peak}(\bar{p}p \to \chi_{c1}) & = 50 \ nb \\ \mbox{Flatté energy:} \ E_f = [\ -8.7, \ -8.2, \ -7.7, \ -7.2, \ -6.7, \ -6.2, \ -5.7, \ -5.2 \] \ MeV \\ \mbox{BW Width:} & \Gamma & = [\ 100, \ 150, \ 200, \ 250, \ 300, \ \dots, \ 550 \] \ keV \end{array}$

We use the following approach:

- 1. Use key parameters from EPJ A 55 (2019) 42
- 2. Generate many (toy) spectra for Flatté (BW) model
- 3. Fit both BW and Flatté to each generated distribution and determine fit probabilities P_{BW} and P_{F}
- 4. Identification considered correct, if $P_F > P_{BW} (P_{BW} > P_F)$
- 5. Count fraction of incorrect assignments $\rightarrow P_{mis}$
- 6. P_{mis} measure for separation power
- 7. $P_{mis} = 50\%$ means: models indistinguishable

Scan Procedure Principle (Example)

Example: Breit-Wigner, $\Gamma = 300 \text{ keV}$ (P1 mode)

- 1. Compute true lineshape reflecting the expected yields
- 2. Generate poisson random number $N_{poisson}$ for each E_{cm} and fill into graph
- 3. Fit lineshapes to extract fit probabilities P_{BW} and P_{F}

Scan Time Optimization

Scan Time Optimisation

- Idea: Find better scan time distribution than constant time per energy
- Simple idea for optimisation approach:
 → Keep 40 equidistant energies in fixed energy range
 - \rightarrow Enhance the scan precision in center
- For that purpose:
 - Choose number n_{core} of central energy points
 - Take factor f_{core} more data at expense of tails to
 - Keep total beam time constant (T = 80d)
- Perform 2-dimensional grid search to identify optimum combination of (n_{core}, f_{core})

Scan Optimisation Example (P1)

P1 Mode: Generated with Flatté model (E_f = -7.2MeV)

Resolve Nature of χ c1(3872) with PANDA

Overall Optimisation

- Compute P_{mis} for 15 different scenarios with 91 (f,n)_{core} combi's each (HL, P1, HR) \otimes (E_f = [-6.2, -7.2, -8.2] MeV & Γ = [0.3, 0.5] MeV)
- Combine plots of 15 scenarious

RESULTS

Parameter Dependent Performance

• Performance across Flatté energy E_f range

For Mis-match of Flatté as BW we see

- for the three beam modes HL, HR, P1
- the mis-identification probability P_{mis}
- across range of input parameters E_f
- with **LHCb** best fit $E_f = -7.2 \text{ MeV}$
- and P_{mis} = 50% for "indistinguishable"

Parameter Dependent Performance

Performance across Flatté energy E_f / Breit-Wigner Γ range

Parameter Dependent Performance

Performance across Flatté energy E_f / Breit-Wigner Γ range

Performance - Alternative Representation

- How much better than "indistinguishable" is it?
- Idea: Consider so-called **odds** = correct identifications per wrong one

odds = $(1 - P_{mis}) / P_{mis}$

Resolve Nature of $\chi c1(3872)$ with PANDA

Performance - Alternative Representation

- How much better than "indistinguishable" is it?
- Idea: Consider so-called **odds** = correct identifications per wrong one

odds =
$$(1 - P_{mis}) / P_{mis}$$

Resolve Nature of $\chi c1(3872)$ with PANDA

Summary and Conclusion

- Simulation of line shape measurement of $\chi_{c1}(3872)$ at **PANDA** \Rightarrow Different models can be well distinguished
- Correct assignment of fit model over full range between ≥90% (P1) and ≥98% (HL) depending on beam mode
- At least ~10x higher odds to identify correct model than LHCb
- First attempt of scan optimization shows further potential

Summary and Conclusion

- Simulation of line shape measurement of $\chi_{c1}(3872)$ at **PANDA** \Rightarrow Different models can be well distinguished
- Correct assignment of fit model over full range between ≥90% (P1) and ≥98% (HL) depending on beam mode
- At least ~10x higher odds to identify correct model than LHCb
- First attempt of scan optimization shows further potential **Thank you very much for your attention!**