Heavy-Light Tetraquarks with Lattice QCD

Martin Pflaumer
pflaumer@itp.uni-frankfurt.de

Goethe-Universität Frankfurt am Main in collaboration with Luka Leskovec, Stefan Meinel, Marc Wagner

Experimental and theoretical status of and perspectives for XYZ states
April 15, 2021

Helmholtz International Center

DFG
Deutsche
Forschungsgemeinschaft

Motivation (1)

Experimental background

- Experimentally observed states $Z_{b}(10610)^{+}$and $Z_{b}(10650)^{+}$
- Mass suggests a bottomonium state $\bar{b} b$ but would be electrically neutral
\Rightarrow Quantum numbers can be described with four-quark structure

Motivation (1)

Experimental background

- Experimentally observed states $Z_{b}(10610)^{+}$and $Z_{b}(10650)^{+}$
- Mass suggests a bottomonium state $\bar{b} b$ but would be electrically neutral
\Rightarrow Quantum numbers can be described with four-quark structure

Theoretical study

- We study similar but less challenging systems
- Quark content: $\bar{Q} \bar{Q}^{\prime} q q^{\prime}$, here: $\bar{b} \bar{b} u d, \bar{b} \bar{b} u s, \bar{b} \bar{c} u d$
- In the limit $m_{Q} \rightarrow \infty$ stable tetraquark was shown
[J. Carlson, L. Heller and J. A. Tjon, Phys. Rev. D 37,744 (1988)]
[A. V. Manohar and M. B. Wise, Nucl. Phys. B 399, 17 (1993)]
[E. J. Eichten and C. Quigg, Phys. Rev. Lett. 119, no. 20, 202002 (2017)]
[M. Karliner and J. L. Rosner, Phys. Rev. Lett. 119, no.20, 202001 (2017)]

Motivation (2)

Born-Oppenheimer study of doubly-heavy tetraquarks:

- i.e. static heavy quarks (\bar{b}-quarks)
- Prediction of a bound tetraquark in $\bar{b} \bar{b} u d$ sector with $I\left(J^{P}\right)=0\left(1^{+}\right)$and $M_{\bar{b} \bar{b} u d}-\left(M_{B}+M_{B^{*}}\right) \approx-90 \mathrm{MeV}$
[Z. S. Brown and K. Orginos, Phys. Rev. D 86, 114506 (2012)]
[P. Bicudo et al. [ETMC], Phys. Rev. D 87, no. 11, 114511 (2013)]
[P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, M. Wagner, Phys. Rev. D 92, no. 1, 014507 (2015)]
[P. Bicudo, J. Scheunert and M. Wagner, Phys. Rev. D 95, no. 3, 034502 (2017)]

Motivation (2)

Born-Oppenheimer study of doubly-heavy tetraquarks:

- i.e. static heavy quarks (\bar{b}-quarks)
- Prediction of a bound tetraquark in $\bar{b} \bar{b} u d$ sector with $I\left(J^{P}\right)=0\left(1^{+}\right)$and
$M_{\bar{b} \bar{b} u d}-\left(M_{B}+M_{B^{*}}\right) \approx-90 \mathrm{MeV}$
[Z. S. Brown and K. Orginos, Phys. Rev. D 86, 114506 (2012)]
[P. Bicudo et al. [ETMC], Phys. Rev. D 87, no. 11, 114511 (2013)]
[P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, M. Wagner, Phys. Rev. D 92, no. 1, 014507 (2015)]
[P. Bicudo, J. Scheunert and M. Wagner, Phys. Rev. D 95, no. 3, 034502 (2017)]
- Evidence for a $\bar{b} \bar{b} u d$ resonance in the $I\left(J^{P}\right)=0\left(1^{-}\right)$channel with $M_{\bar{b} \bar{b} u d}-\left(M_{B}+M_{B}\right) \approx+20 \mathrm{MeV}, \Gamma \approx 100 \mathrm{MeV}$
[P. Bicudo, M. Cardoso, A. Peters, M.P. and M. Wagner, Phys. Rev. D 96, no. 5, 054510 (2017)]

Motivation (3)

Searching for doubly-heavy tetraquark bound states in full lattice QCD using Non-Relativistic QCD:

- i.e. \bar{b}-quarks are treated non-relativisticly.

Motivation (3)

Searching for doubly-heavy tetraquark bound states in full lattice QCD using Non-Relativistic QCD:

- i.e. \bar{b}-quarks are treated non-relativisticly.
- Previous studies by Francis et. al. and Junnarkar et. al. predict bound states in $\bar{b} \bar{b} u d$ and $\bar{b} \bar{b} u s$
- For $\bar{b} \bar{c} u d$, the predictions are not as clear \rightarrow Might be weakly bound or no binding
[A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. Lett. 118, no. 14, 142001 (2017)]
[P. Junnarkar, N. Mathur and M. Padmanath, Phys. Rev. D 99, no. 3, 034507 (2019)]
[A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. D 99, no. 5, 054505 (2019)]
[L. Leskovec, S. Meinel, M.P. and M. Wagner, Phys. Rev. D 100, no.1, 014503 (2019)]
[R. J. Hudspith, B. Colquhoun, A. Francis, R. Lewis and K. Maltman, Phys. Rev. D 102, 114506 (2020)]
[M.P., L. Leskovec, S. Meinel and M. Wagner, arXiv:2009.10538 [hep-lat]].

Motivation (3)

Searching for doubly-heavy tetraquark bound states in full lattice QCD using Non-Relativistic QCD:

- i.e. \bar{b}-quarks are treated non-relativisticly.
- Previous studies by Francis et. al. and Junnarkar et. al. predict bound states in $\bar{b} \bar{b} u d$ and $\bar{b} \bar{b} u s$
- For $\bar{b} \bar{c} u d$, the predictions are not as clear \rightarrow Might be weakly bound or no binding
- In our study: We apply a more extended operator basis
\rightarrow Enables a better treatment of threshold states.
\rightarrow More on next slides

[^0]
Interpolating Operators (1)

Investigated systems and quantum numbers

- $\bar{b} \bar{b} u d$ with $I\left(J^{P}\right)=0\left(1^{+}\right)$
\rightarrow Most promising as it is closest to $\bar{Q} \bar{Q} q q$ with $m_{Q} \rightarrow \infty$
- $\bar{b} \bar{b} u s$ with $I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$
\rightarrow Slightly less promising as d replaced by s
- $\bar{b} \bar{c} u d$ with $I\left(J^{P}\right)=0\left(1^{+}\right)$and $I\left(J^{P}\right)=0\left(0^{+}\right)$
\rightarrow Replacing \bar{b} with \bar{c} opens additional channel as anti-symmetric wave function for heavy quarks is now possible

Interpolating Operators (1)

Investigated systems and quantum numbers

- $\bar{b} \bar{b} u d$ with $I\left(J^{P}\right)=0\left(1^{+}\right)$
\rightarrow Most promising as it is closest to $\bar{Q} \bar{Q} q q$ with $m_{Q} \rightarrow \infty$
- $\bar{b} \bar{b} u s$ with $I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$
\rightarrow Slightly less promising as d replaced by s
- $\bar{b} \bar{c} u d$ with $I\left(J^{P}\right)=0\left(1^{+}\right)$and $I\left(J^{P}\right)=0\left(0^{+}\right)$
\rightarrow Replacing \bar{b} with \bar{c} opens additional channel as anti-symmetric wave function for heavy quarks is now possible

For all systems, we use two types of interpolating operators

- Local operators; basically used in all previous studies
- Nonlocal operators; unique compared to all other studies on heavy-light tetraquarks

Interpolating Operators (2)

- Local operators:

- Four quarks at the same space-time position
- Jointly projected to zero momentum
- Describe local tetraquark structure

Interpolating Operators (2)

- Local operators:
- Four quarks at the same space-time position
- Jointly projected to zero momentum
- Describe local tetraquark structure
- Nonlocal operators:
- Two mesons separated in space-time position
- Separately projected to zero momentum
- Describe mesonic scattering structure

Interpolating Operators (2)

- Local operators:
- Four quarks at the same space-time position
- Jointly projected to zero momentum
- Describe local tetraquark structure
- Nonlocal operators:
- Two mesons separated in space-time position
- Separately projected to zero momentum
- Describe mesonic scattering structure
- Expectation:
- Local operators: good overlap to ground state (stable four-quark)
- Nonlocal operators: sizable overlap to first excited state (2 meson state)
\Rightarrow Isolate ground state from higher excitations, especially first excited state

Interpolating Operators for $\bar{b} \bar{b} u d$ and $\bar{b} \bar{b} u s$

Interpolating Operators for $\bar{b} \bar{b} u d$

$$
I\left(J^{P}\right)=0\left(1^{+}\right)
$$

relevant thresholds	$B^{*} B, B^{*} B^{*}(\approx+45 \mathrm{Mev})$
local operators	$B^{*} B, B^{*} B^{*}$, diquark-antidiquark
nonlocal operators	$B^{*} B, B^{*} B^{*}$

Interpolating Operators for $\bar{b} \bar{b} u d$ and $\bar{b} \bar{b} u s$

Interpolating Operators for $\bar{b} \bar{b} u d$

$$
I\left(J^{P}\right)=0\left(1^{+}\right)
$$

relevant thresholds	$B^{*} B, B^{*} B^{*}(\approx+45 \mathrm{Mev})$
local operators	$B^{*} B, B^{*} B^{*}$, diquark-antidiquark
nonlocal operators	$B^{*} B, B^{*} B^{*}$

Interpolating Operators for $\bar{b} \bar{b} u s$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)
$$

relevant thresholds $B^{*} B_{s}, B B_{s}^{*}(\approx$ equal $), B^{*} B_{s}^{*}(\approx+45 \mathrm{Mev})$ local operators $\quad B^{*} B_{s}, B B_{s}^{*}, B^{*} B_{s}^{*}$, diquark-antidiquark
nonlocal operators $\quad B^{*} B_{s}, B B_{s}^{*}, B^{*} B_{s}^{*}$

Interpolating Operators for $\bar{b} \bar{c} u d$

Interpolating Operators for $\bar{b} \bar{c} u d$

$$
I\left(J^{P}\right)=0\left(1^{+}\right)
$$

relevant thresholds	$B^{*} D, B D^{*}(\approx+95 \mathrm{Mev}), B^{*} D^{*}(\approx+140 \mathrm{Mev})$
local operators	$B^{*} D, B D^{*}$, diquark-antidiquark
nonlocal operators	$B D^{*}, B^{*} D$
	$I\left(J^{P}\right)=0\left(0^{+}\right)$
relevant thresholds	$B D, B^{*} D^{*}(\approx+185 \mathrm{Mev})$
local operators	$B D$, diquark-antidiquark
nonlocal operators	$B D$

Energy Spectrum for the $\bar{Q} \bar{Q}^{\prime} q q^{\prime}$ system

- Due to point-to-all propagators, only non-symmetric correlation matrix available (no scattering operator at source)
- Apply multi-exponential matrix fitting: employable also for non-symmetric matrices

$$
C_{j k}(t) \approx \sum_{n=0}^{N-1} Z_{j}^{n} Z_{k}^{n} \mathrm{e}^{-E_{n} t}, \quad \begin{gathered}
E_{n}: n \text {-th energy eigenvalue } \\
Z_{j}^{n}=\langle\Omega| \mathcal{O}_{j}|n\rangle: \text { overlap factor }
\end{gathered}
$$

Schematic representation of Wick contractions for different correlation matrix elements

Fit Results for $\bar{b} \bar{b} u d$

Results for the lowest two $\bar{b} \bar{b} u d$ energy levels relative to the $B B^{*}$ threshold. Black box: local operator included. Red box: scattering operator included.

- Found evidence for bound state with $E_{\text {binding }}=-128 \mathrm{MeV}$
- First excited state corresponds to threshold

Preliminary Results for $\bar{b} \bar{b} u s$

- Found evidence for bound state with $E_{\text {binding }} \approx-80 \mathrm{MeV}$
- First excited state corresponds to threshold

Preliminary Results for $\bar{b} \bar{c} u d$

- No evidence for bound states in $\bar{b} \bar{c} u d$ systems
- Lowest energy level corresponds to threshold

Overlap Factors for $\bar{b} \bar{b} u d$

For fixed $j: Z_{j}^{n}$ indicates relative importance of energy eigenstates $|n\rangle$

$$
\mathcal{O}_{j}^{\dagger}|\Omega\rangle=\sum_{n=0}^{\infty}|n\rangle\langle n| \mathcal{O}_{j}^{\dagger}|\Omega\rangle=\sum_{n=0}^{\infty} Z_{j}^{n}|n\rangle
$$

The normalized overlap factors $\left|\tilde{Z}_{j}^{n}\right|^{2}=\frac{\left|Z_{j}^{n}\right|^{2}}{\max _{m}\left(\left|Z_{j}^{m}\right|^{2}\right)}$ as determined on ensemble C005.

Scattering Analysis and Chiral Extrapolation for $\bar{b} \bar{b} u d$

Scattering Analysis

- Relate finite volume energy spectrum E_{n} to infinite volume scattering amplitude
- Use Lüscher's formula to determine phase shift and infinite volume binding energy
- Confirmation that ground state is stable tetraquark.

Scattering Analysis and Chiral Extrapolation for $\bar{b} \bar{b} u d$

Scattering Analysis

- Relate finite volume energy spectrum E_{n} to infinite volume scattering amplitude
- Use Lüscher's formula to determine phase shift and infinite volume binding energy
- Confirmation that ground state is stable tetraquark.

Chiral Extrapolation

Fit of the pion-mass dependence of $E_{\text {binding. }}$. The vertical dashed line indicates the physical pion mass.

$$
\begin{aligned}
& E_{\text {binding }}\left(m_{\pi, \text { phys }}\right)=(-128 \pm 24 \pm 10) \mathrm{MeV} \\
& m_{\text {tetraquark }}\left(m_{\pi, \text { phys }}\right)=(10476 \pm 24 \pm 10) \mathrm{MeV}
\end{aligned}
$$

Comparison of Different Results for $\bar{b} \bar{b} u d$

Comparison of $\bar{b} \bar{b} u d$ tetraquark binding energies with $I\left(J^{P}\right)=0\left(1^{+}\right)$(black: this work; blue: lattice NRQCD; red: lattice QCD computations of static $\bar{b} \bar{b}$ potentials and solving the

Schrödinger equation; green: effective field theories and potential models).

Summary

- Study bound states in doubly heavy tetraquarks
- Consider local and nonlocal interpolating operators
- Apply a finite volume Lüscher analysis

Summary

- Study bound states in doubly heavy tetraquarks
- Consider local and nonlocal interpolating operators
- Apply a finite volume Lüscher analysis
- Predict a bound state in the $\bar{b} \bar{b} u d$ channel with in $I\left(J^{P}\right)=0\left(1^{+}\right)$ with $E_{\text {binding }}=(-128 \pm 24 \pm 10) \mathrm{MeV}$
- Evidence for bound state in $\bar{b} \bar{b} u s, I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$sector with $E_{\text {binding }} \approx-80 \mathrm{MeV}$
- No evidence for bound tetraquark in $\bar{b} \bar{c} u d$, both $0\left(1^{+}\right)$and $0\left(0^{+}\right)$

Summary

- Study bound states in doubly heavy tetraquarks
- Consider local and nonlocal interpolating operators
- Apply a finite volume Lüscher analysis
- Predict a bound state in the $\bar{b} \bar{b} u d$ channel with in $I\left(J^{P}\right)=0\left(1^{+}\right)$ with $E_{\text {binding }}=(-128 \pm 24 \pm 10) \mathrm{MeV}$
- Evidence for bound state in $\bar{b} \bar{b} u s, I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$sector with $E_{\text {binding }} \approx-80 \mathrm{MeV}$
- No evidence for bound tetraquark in $\bar{b} \bar{c} u d$, both $0\left(1^{+}\right)$and $0\left(0^{+}\right)$

Outlook

- Finalize evaluation of $\bar{b} \bar{b} u s$ outcomes
- More detailed analysis of threshold states in $\bar{b} \bar{c} u d \rightarrow$ candidates for resonances?

Summary

- Study bound states in doubly heavy tetraquarks
- Consider local and nonlocal interpolating operators
- Apply a finite volume Lüscher analysis
- Predict a bound state in the $\bar{b} \bar{b} u d$ channel with in $I\left(J^{P}\right)=0\left(1^{+}\right)$ with $E_{\text {binding }}=(-128 \pm 24 \pm 10) \mathrm{MeV}$
- Evidence for bound state in $\bar{b} \bar{b} u s, I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$sector with $E_{\text {binding }} \approx-80 \mathrm{MeV}$
- No evidence for bound tetraquark in $\bar{b} \bar{c} u d$, both $0\left(1^{+}\right)$and $0\left(0^{+}\right)$

Outlook

- Finalize evaluation of $\bar{b} \bar{b} u s$ outcomes
- More detailed analysis of threshold states in $\bar{b} \bar{c} u d \rightarrow$ candidates for resonances?

Thank You for Your Attention!

Lattice Setup

- Use gauge link configuration generated by RBC and UKQCD collaboration
[Y. Aoki et al. [RBC and UKQCD Collaborations], Phys. Rev. D 83, 074508 (2011)]
[T. Blum et al. [RBC and UKQCD Collaborations],Phys. Rev. D 93, no. 7, 074505 (2016)]
- $2+1$ flavours domain-wall fermions and Iwasaki gauge action
- Five different ensembles which differ in

$$
\begin{array}{ll}
\text { lattice spacing } & a \quad \approx 0.083 \mathrm{fm} \ldots 0.114 \mathrm{fm}, \\
\text { lattice size } & L \\
\text { pion mass } & m_{\pi} \approx 2.65 \mathrm{fm} \ldots 5.48 \mathrm{fm}, \\
\Rightarrow \text { explore dependence on } L, m_{\pi}
\end{array}
$$

- Smeared point-to-all propagators for the up and down quarks

Scattering Analysis

- Relate finite volume energy spectrum E_{n} to infinite volume scattering amplitude for 2 energy levels in T_{1}^{+} irrep
- Use Lüscher's formula and scattering momenta k_{n}^{2} to determine phase shift
- Apply effective-range-expansion (ERE)

Plot of the effective-range-expansion for C005.
Blue curve: $a k \cot (\delta(k))+|a k|$.
Vertical green line: Inelastic $B^{*} B^{*}$ threshold

Scattering Analysis

- Relate finite volume energy spectrum E_{n} to infinite volume scattering amplitude for 2 energy levels in T_{1}^{+} irrep
- Use Lüscher's formula and scattering momenta k_{n}^{2} to determine phase shift
- Apply effective-range-expansion (ERE)

Plot of the effective-range-expansion for C005. Blue curve: $a k \cot (\delta(k))+|a k|$. Vertical green line: Inelastic $B^{*} B^{*}$ threshold

- Search bound state pole of scattering amplitude below threshold at

$$
\cot \delta_{0}\left(k_{\mathrm{BS}}\right)=i, \quad \text { so: } \quad-\left|k_{\mathrm{BS}}\right|=\frac{1}{a_{0}}-\frac{1}{2} r_{0}\left|k_{\mathrm{BS}}\right|^{2}
$$

Scattering Analysis

- Relate finite volume energy spectrum E_{n} to infinite volume scattering amplitude for 2 energy levels in T_{1}^{+} irrep
- Use Lüscher's formula and scattering momenta k_{n}^{2} to determine phase shift
- Apply effective-range-expansion (ERE)

Plot of the effective-range-expansion for C005.
Blue curve: $a k \cot (\delta(k))+|a k|$.
Vertical green line: Inelastic $B^{*} B^{*}$ threshold

- Search bound state pole of scattering amplitude below threshold at

$$
\cot \delta_{0}\left(k_{\mathrm{BS}}\right)=i, \quad \text { so: } \quad-\left|k_{\mathrm{BS}}\right|=\frac{1}{a_{0}}-\frac{1}{2} r_{0}\left|k_{\mathrm{BS}}\right|^{2}
$$

- Results essentially identical to the finite-volume energy levels
- Confirmation that ground state is stable tetraquark.

GEP-results

Effective masses $a E_{\text {eff }, n}$ for $n=0,1$ as a function of t / a for a 3×3 correlation matrix $\underline{\underline{\underline{1}}}=$

[^0]: [A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. Lett. 118, no. 14, 142001 (2017)]
 [P. Junnarkar, N. Mathur and M. Padmanath, Phys. Rev. D 99, no. 3, 034507 (2019)]
 [A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. D 99, no. 5, 054505 (2019)]
 [L. Leskovec, S. Meinel, M.P. and M. Wagner, Phys. Rev. D 100, no.1, 014503 (2019)]
 [R. J. Hudspith, B. Colquhoun, A. Francis, R. Lewis and K. Maltman, Phys. Rev. D 102, 114506 (2020)]
 [M.P., L. Leskovec, S. Meinel and M. Wagner, arXiv:2009.10538 [hep-lat]].

