Hybrid static potentials at small quark-antiquark separations

Carolin Riehl in collaboration with Marc Wagner

Experimental and theoretical status of and perspectives for XYZ states April 12-15, 2021

Non-quark model mesons

 $\bullet\,$ active field of research, both theoretically and experimentally $^{1\ 2\ 3\ 4\ 5\ 6}$

Heavy hybrid meson

Heavy quark and antiquark surrounded by an excited gluon field \rightarrow hybrid static potential

- ¹E. Braaten, C. Langmack and D. H. Smith, Phys. Rev. Lett. 112 (2014), 222001 [arXiv:1401.7351 [hep-ph]]
- ²C. A. Meyer and E. S. Swanson, Prog. Part. Nucl. Phys. 82 (2015), 21-58 [arXiv:1502.07276 [hep-ph]]
- ³E. S. Swanson, AIP Conf. Proc. 1735 (2016) no.1, 020013 [arXiv:1512.04853 [hep-ph]]
- ⁴S. L. Olsen, T. Skwarnicki and D. Zieminska, Rev. Mod. Phys. 90 (2018) no.1, 015003 [arXiv:1708.04012 [hep-ph]]
- ⁵N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, Phys. Rept. 873 (2020), 1-154 [arXiv:1907.07583 [hep-ex]]
 - 6

Hybrid static potentials

= gluonic static energy between quark and antiquark in a distance r

У	
	, Q
\sim	Z
Q	
\bigvee	\mathcal{P}_{x}

Quantum numbers $\Lambda_{\eta}^{\epsilon} \quad e.g. \ \Sigma_{g}^{+}, \ \Pi_{u}, \ \Sigma_{u}^{-}$ $\Lambda = \Sigma, \Pi, ..$ orbital angular momentum along quark

separation axis
$$L_z$$

 $\begin{aligned} \eta = u,g & \quad \text{combination of parity and charge} \\ & \quad \text{conjugation } P \circ C \end{aligned}$

$$= +, -$$
 spatial inversion P_x

• excited gluon field contributes to the quantum numbers of the meson

 ϵ

 \Rightarrow exotic quantum numbers J^{PC} possible

$$P = (-1)^{L+1+\Lambda}$$
$$C = \eta \epsilon (-1)^{L+S+\Lambda}$$

		J^{PC}	
Λ_η^ϵ	L	S=0	S = 1
	0	0^{++}	1^{+-}
Σ_u^-	1	1	$\{0, 1, 2\}^{-+}$
	2	2^{++}	$\{1, 2, 3\}^{+-}$
π-	1	1++	$\{0,1,2\}^{+-}$
¹¹ u	2	$2^{}$	$\{1, 2, 3\}^{-+}$
Π^+_u	1	1	$\{0, 1, 2\}^{-+}$
	2	2^{++}	$\{1, 2, 3\}^{+-}$

Hybrid static potentials

• Computation of spectra of $\bar{b}b$ and $\bar{c}c$ hybrid mesons in the Born-Oppenheimer approximation $^{7-8-9}$

- ⁷K. J. Juge, J. Kuti and C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998) [hep-lat/9709131]
- ⁸E. Braaten, C. Langmack and D. H. Smith, Phys. Rev. D 90, 014044 (2014) [arXiv:1402.0438 [hep-ph]]

⁹S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner, Phys. Rev. D 99, no. 3, 034502 (2019) [arXiv:1811.11046 [hep-lat]]

Heavy hybrid meson masses from hybrid static potentials

- Compute hybrid static potentials in lattice gauge theory
- Parametrization of discrete lattice data $\rightarrow V_{\Lambda_n^e}(r)$

¹⁰S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner, Phys. Rev. D 99, no. 3, 034502 (2019) [arXiv:1811.11046 [hep-lat]]

Heavy hybrid meson masses from hybrid static potentials

- Compute hybrid static potentials in lattice gauge theory
- Parametrization of discrete lattice data $ightarrow V_{\Lambda_{\eta}^{\epsilon}}(r)$

 Solution of Schrödinger equation for heavy quarks in hybrid static potential

$$\left(\frac{-1}{2\mu}\frac{d^2}{dr^2} + \frac{\langle \mathbf{L}_{q\bar{q}}^2 \rangle}{2\mu r^2} + V_m(r) - E_n^{(m)}\right)r\psi_n^{(m)}(\vec{r}) = 0$$

¹⁰S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner, Phys. Rev. D 99, no. 3, 034502 (2019) [arXiv:1811.11046 [hep-lat]]

Heavy hybrid meson masses from hybrid static potentials

- Compute hybrid static potentials in lattice gauge theory
- Parametrization of discrete lattice data $ightarrow V_{\Lambda_{\eta}^{\epsilon}}(r)$
- Solution of Schrödinger equation for heavy quarks in hybrid static potential
- ⇒ Heavy hybrid meson spectrum for $b\bar{b}$ hybrid mesons and $c\bar{c}$ hybrid mesons

¹⁰S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner, Phys. Rev. D 99, no. 3, 034502 (2019) [arXiv:1811.11046 [hep-lat]]

Hybrid static potentials

- Computation of spectra of $\bar{b}b$ and $\bar{c}c$ hybrid mesons in the Born-Oppenheimer approximation 11 12 13
- Matching coefficients for potential Non-Relativistic QCD ¹⁴

- ¹¹K. J. Juge, J. Kuti and C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998) [hep-lat/9709131]
- ¹²E. Braaten, C. Langmack and D. H. Smith, Phys. Rev. D 90, 014044 (2014) [arXiv:1402.0438 [hep-ph]]
- ¹³S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner, Phys. Rev. D 99, no. 3, 034502 (2019) [arXiv:1811.11046 [hep-lat]]
 - 14 M. Berwein, N. Brambilla, J. Tarrus Castella and A. Vairo, Phys. Rev. D 92, 114019 (2015) [arXiv:1510.04299 [hep-ph]]
 - ¹⁵K. J. Juge, J. Kuti, and C. Morningstar, Phys. Rev. Lett., 90, 161601 (2003), arXiv:hep-lat/0207004 [hep-lat].
 - ¹⁶G. S. Bali and A. Pineda, Phys. Rev., D69, 094001 (2004), arXiv:hep-ph/0310130 [hep-ph]

Hybrid static potentials

- Computation of spectra of $\bar{b}b$ and $\bar{c}c$ hybrid mesons in the Born-Oppenheimer approximation ¹¹ ¹² ¹³
- Matching coefficients for potential Non-Relativistic QCD ¹⁴
- $\rightarrow\,$ so far based on lattice data at $r\geq0.16\,{\rm fm}$ $_{10}$ $_{15}$ $_{16}$

\Rightarrow New SU(3) lattice results at r as small as 0.08 fm

¹¹K. J. Juge, J. Kuti and C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998) [hep-lat/9709131]

¹²E. Braaten, C. Langmack and D. H. Smith, Phys. Rev. D 90, 014044 (2014) [arXiv:1402.0438 [hep-ph]]

¹³S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner, Phys. Rev. D 99, no. 3, 034502 (2019) [arXiv:1811.11046 [hep-lat]]

¹⁴ M. Berwein, N. Brambilla, J. Tarrus Castella and A. Vairo, Phys. Rev. D 92, 114019 (2015) [arXiv:1510.04299 [hep-ph]]

¹⁵K. J. Juge, J. Kuti, and C. Morningstar, Phys. Rev. Lett., 90, 161601 (2003), arXiv:hep-lat/0207004 [hep-lat].

¹⁶G. S. Bali and A. Pineda, Phys. Rev., D69, 094001 (2004), arXiv:hep-ph/0310130 [hep-ph]

Simulations at small lattice spacings

β	6.00	6.284	6.451	6.594
a 17	$0.093\mathrm{fm}$	$0.060\mathrm{fm}$	$0.048{ m fm}$	$0.040{ m fm}$

- SU(3) gauge field configurations generated with a Monte Carlo heatbath algorithm and standard Wilson plaquette action
- isotropic lattices with volume $T\times L^3\approx (2.4\,{\rm fm})\times (1.2\,{\rm fm})^3$
- optimized hybrid static potential creation operators ¹⁸
- APE-smearing of spatial links
 - NAPE optimized for each lattice spacing
- Multilevel algorithm ¹⁹

¹⁷S. Necco and R. Sommer, Nucl. Phys. B 622 (2002) 328–346, arXiv:hep-lat/0108008.

¹⁸S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner, Phys. Rev. D 99, no. 3, 034502 (2019) [arXiv:1811.11046 [hep-lat]]

Hybrid static potentials at small r

¹⁹ M. Lüscher and P. Weisz, JHEP 09 (2001), 010 [arXiv:hep-lat/0108014 [hep-lat]

Lattice results

Lattice results for hybrid static potentials

- new SU(3) lattice data at separations as small as $r=0.08\,{\rm fm}$
- previous lattice data at separations $r \ge 0.16$ fm 20 21 22

²⁰K. J. Juge, J. Kuti and C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998) [hep-lat/9709131]

²¹G. S. Bali and A. Pineda, Phys. Rev., D69, 094001 (2004), arXiv:hep-ph/0310130 [hep-ph]

²²S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner, Phys. Rev. D 99, no. 3, 034502 (2019) [arXiv:1811.11046 [hep-lat]]

²³M. Berwein, N. Brambilla, J. Tarrus Castella and A. Vairo, Phys. Rev. D 92, 114019 (2015) [arXiv:1510.04299 [hep-ph]]

Lattice results

Lattice results for hybrid static potentials

- new SU(3) lattice data at separations as small as $r=0.08\,{\rm fm}$
- previous lattice data at separations $r \ge 0.16$ fm 20 21 22

²⁰K. J. Juge, J. Kuti and C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998) [hep-lat/9709131]

²¹G. S. Bali and A. Pineda, Phys. Rev., D69, 094001 (2004), arXiv:hep-ph/0310130 [hep-ph]

²²S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner, Phys. Rev. D 99, no. 3, 034502 (2019) [arXiv:1811.11046 [hep-lat]]

²³M. Berwein, N. Brambilla, J. Tarrus Castella and A. Vairo, Phys. Rev. D 92, 114019 (2015) [arXiv:1510.04299 [hep-ph]]

Hybrid static potentials at small r

Lattice results

Lattice results for hybrid static potentials

- new SU(3) lattice data at separations as small as $r = 0.08 \, \mathrm{fm}$
- previous lattice data at separations $r \geq 0.16 \, {\rm fm}^{~20~21~22}$

Difficulties when $a \rightarrow 0$

- Small lattice volume
- Topology freezing and increase of autocorrelations

²⁰ K. J. Juge, J. Kuti and C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998) [hep-lat/9709131]

²¹G. S. Bali and A. Pineda, Phys. Rev., D69, 094001 (2004), arXiv:hep-ph/0310130 [hep-ph]

²²S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner, Phys. Rev. D 99, no. 3, 034502 (2019) [arXiv:1811.11046 [hep-lat]]

Finite volume effects

Figure: Static potential data for Σ_g^+ and Π_u at small a and small V.

Figure: Potential difference $(V_{\Pi_u} - V_{\Sigma_g^+})$ as a function of L.

$$ightarrow \, (V_{\Pi_u} - V_{\Sigma_a^+})$$
 grows with decreasing L^3

Topological freezing

Topological freezing

Rare tunneling between topological sectors when approaching continuum (lattice spacing $a \rightarrow 0$)

Topological freezing

- expected when $a \to 0$
- Topological charge computed with simple clover-leaf discretization

- topological charge distribution is sampled correctly by the algorithm at all lattice spacings
- ightarrow no topological freezing

Carolin Riehl	Hybrid static potentials at small r	April 15, 2021	10/14

Glueball decay

Glueball decay of hybrid static potentials

Figure: Threshold energy for a decay into the lightest glueball 0^{++} and hybrid static potentials.

$\Lambda_{\eta}^{\epsilon}$	Π_u	Π_g	Δ_g	Δ_u	$\Sigma_g^{+\prime}$	Σ_u^+	Σ_u^-	Σ_g^-
$r_{\rm crit}/r_0$	0.2	0.5	0.5	1.1	0.4	0.9	0.1	0.25

23

²³S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner, Phys. Rev. D 99, no. 3, 034502 (2019) [arXiv:1811.11046 [hep-lat]]

Carolin Riehl

Glueball decay

Possible decay of hybrid static potentials at small separations

Figure: New SU(3) lattice data and threshold energy for a decay into the lightest glueball 0^{++} .

Decay
$$\Lambda_{\eta}^{\epsilon} \rightarrow \Sigma_{g}^{+} + \text{glueball}$$

Glueball operator with quantum numbers $L_{z\eta}^{\ \epsilon}$

$$\mathcal{O}_{L_{z_{\eta}}^{\epsilon}} = \frac{1}{2} \left(1 + \epsilon \mathcal{P}_{x} \right) \int \mathrm{d}^{3} r \ e^{i L_{z} \varphi} f(r, z) \ \mathcal{O}_{\mathsf{glueball}}(r, \varphi, z)$$

L_z	f	$\eta = (-1)^{L_z + f}$	ϵ	$L_{z\eta}^{\epsilon}$
0	1	-1	+1	Σ_u^+
0	2	+1	+1	Σ_g^+
1	1	+1	+1	Π_g^+
1	1	+1	-1	Π_g^-
1	2	-1	+1	Π_u^+
1	2	-1	-1	Π_u^-
:	-	-	:	:

Table: Possible quantum numbers $L_{z\eta}^{\epsilon}$ with glueball 0^{++} .

Decay
$$\Lambda_{\eta}^{\epsilon} \rightarrow \Sigma_{g}^{+} + \text{glueball}$$

Glueball operator with quantum numbers $L_{z\eta}^{\ \epsilon}$

$$\mathcal{O}_{L_{z_{\eta}}^{\epsilon}} = \frac{1}{2} \left(1 + \epsilon \mathcal{P}_{x} \right) \int \mathrm{d}^{3} r \ e^{i L_{z} \varphi} f(r, z) \ \mathcal{O}_{\mathsf{glueball}}(r, \varphi, z)$$

L_z	f	$\eta = (-1)^{\boldsymbol{L}_{\boldsymbol{z}} + \boldsymbol{f}}$	ϵ	$L_{z\eta}^{\epsilon}$
0	1	-1	+1	Σ_u^+
0	2	+1	+1	Σ_g^+
1	1	+1	+1	Π_g^+
1	1	+1	-1	Π_g^-
1	2	-1	+1	Π_u^+
1	2	-1	-1	Π_u^-
:	-		:	:

Not possible with 0^{++} -glueball $\Rightarrow L_z = 0 \text{ and } \epsilon = -$

$$\rightarrow \Sigma_g^-, \Sigma_u^-$$

reason:

•
$$\mathcal{O}_{0^{++}} \xrightarrow{\mathcal{P}_x} \mathcal{O}_{0^{++}}$$

Table: Possible quantum numbers $L_{z_n}^{\epsilon}$ with glueball 0^{++} .

Summary & Outlook

Summary

- SU(3) Lattice results for ordinary and hybrid static potentials Σ_g^+, Π_u and Σ_u^- at four small lattice spacings $a = 0.093 \,\text{fm} \dots 0.040 \,\text{fm}$
- Excluded systematic errors from topological freezing and finite volume effects
- Glueball decay at short separations
 - Decay of Σ_g^- and Σ_u^- into $0^{++}+\Sigma_g^+$ not allowed

Outlook

- Higher hybrid static potentials at small separations
- Computation of heavy hybrid meson spectrum based on new lattice results at small \boldsymbol{r}

Thank you!