# Bottomonium resonances in the Born-Oppenheimer approximation using static potentials from lattice QCD 

${ }^{(2)}$ Lasse Mueller, ${ }^{(1)}$ Pedro Bicudo, ${ }^{(1)}$ Nuno Cardoso, ${ }^{(2)}$ Marc Wagner

April 15, 2021
"Experimental and theoretical status of and perspectives for XYZ states"

## Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born
Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential


## Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born
Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
$\rightarrow$ successfully applied to investigate resonances of $\bar{b} \bar{b} u d$-systems [ P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017), arXiv:1704.02383 [hep-latt]


## Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born
Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
$\rightarrow$ successfully applied to investigate resonances of $\bar{b} \bar{b} u d$-systems [ P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017), arXiv:1704.02383 [hep-lat]]
$\rightarrow$ We consider $\bar{b} b \bar{q} q$
- more complicated because of additional decay channels
- there are experimental results to compare with


## Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born
Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
$\rightarrow$ successfully applied to investigate resonances of $\bar{b} \bar{b} u d$-systems
[ P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017), arXiv:1704.02383 [hep-lat]]
$\rightarrow$ We consider $\bar{b} b \bar{q} q$
- more complicated because of additional decay channels
- there are experimental results to compare with
$\rightarrow$ We consider $\mathrm{I}=0$ which corresponds to the experimental observed states $\left(\eta_{b}(n S)\right.$ $\left.\Upsilon(n S), \Upsilon(10753)_{\text {Belle }}, \Upsilon(10860), \Upsilon(11020)\right)$


## Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born
Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
$\rightarrow$ successfully applied to investigate resonances of $\bar{b} \bar{b} u d$-systems
[ P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017), arXiv:1704.02383 [hep-lat]]
$\rightarrow$ We consider $\bar{b} b \bar{q} q$
- more complicated because of additional decay channels
- there are experimental results to compare with
$\rightarrow$ We consider $\mathrm{I}=0$ which corresponds to the experimental observed states $\left(\eta_{b}(n S)\right.$ $\left.\Upsilon(n S), \Upsilon(10753)_{\text {Belle }}, \Upsilon(10860), \Upsilon(11020)\right)$
$\rightarrow$ Similar efforts for $\mathrm{I}=1$ corresponding to the $Z_{b}$-states $\left(Z_{b}(10610), Z_{b}(10650)\right.$ by [S. Prelovsek, H. Bahtiyar, J. Petkovic, Phys. Lett. B 805 (2020) 135467, arXiv:1912.02656 [hep-lat]]


## Coupled channel Schroedinger equation

Consider two channels for now:

- Quarkonium channel $\bar{Q} Q$ with orbital angular momentum $L=0$
- Heavy-light meson-meson channel, $\bar{M} M$ with $M=\bar{Q} q$

Assumptions and symmetries

- Heavy quark spins are conserved quantities
- Only considering the lightest decay channel, two parity negative mesons which corresponds to $S_{q}^{P C}=1^{--}$

One can derive a $2 \times 2$ Schroedinger-equation

$$
\begin{align*}
&\left(-\frac{1}{2}\left(\begin{array}{cc}
1 / \mu_{Q} & 0 \\
0 & 1 / \mu_{M}
\end{array}\right)\right. \partial_{r}^{2}+\frac{1}{2 r^{2}}\left(\begin{array}{cc}
0 & 0 \\
0 & 2 / \mu_{M}
\end{array}\right) \\
&\left.+2 m_{M}-E\right)\left(\begin{array}{cc}
V_{\bar{Q} Q}(r) & V_{\text {mix }}(r) \\
V_{\text {mix }}(r) & V_{\bar{M} M, \|}(r) \\
\chi_{\bar{M} M}(r)
\end{array}\right)=-\binom{V_{\text {mix }}(r)}{V_{\bar{M} M, \|}(r)} k r j_{1}(k r) \tag{1}
\end{align*}
$$

to be solved numerically with boundary conditions

$$
\begin{equation*}
u(r)=0 \quad \text { and } \quad \chi_{\bar{M} M}=i t_{\bar{M} M} k r h_{L}^{(1)}(k r) \text { for } \quad r \rightarrow \infty . \tag{2}
\end{equation*}
$$

$V_{\bar{Q} Q}(r), V_{\text {mix }}, V_{\bar{M} M, \|}$ and $V_{\bar{M} M, \perp}$ can be related to lattice results for static potentials from QCD.

## Static potentials from lattice QCD

Lattice computation of string breaking with optimized operators:
[ G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling (SESAM), Phys. Rev. D 71, 114513 (2005), arXiv:hep-lat/0505012 [hep-lat]], [J. Bulava, B. Hörz, F. Knechtli, V. Koch, G. Moir, C. Morningstar, and M. Peardon, Phys. Lett. B 793,493 (2019), arXiv:1902.04006 [hep-lat]]
Treat heavy quarks as static quarks with frozen positions at $\mathbf{0}$ and $\mathbf{r}$.

$$
\begin{align*}
& C(t)=\left(\begin{array}{cc}
\left\langle\mathcal{O}_{Q \bar{Q}} \mid \mathcal{O}_{Q \bar{Q}}\right\rangle & \left\langle\mathcal{O}_{Q \bar{Q}} \mid \mathcal{O}_{M \bar{M}}\right\rangle \\
\left\langle\mathcal{O}_{M \bar{M}} \mid \mathcal{O}_{Q \bar{Q}}\right\rangle & \left\langle\mathcal{O}_{M \bar{M}} \mid \mathcal{O}_{M \bar{M}}\right\rangle
\end{array}\right)  \tag{3}\\
& \mathcal{O}_{Q \bar{Q}}=\left(\Gamma_{Q}\right)_{A B} \quad\left(\bar{Q}_{A}(\mathbf{0}) U(\mathbf{0} ; \mathbf{r}) Q_{B}(\mathbf{r})\right)  \tag{4}\\
& \mathcal{O}_{M \bar{M}}=\left(\Gamma_{Q}\right)_{A B}\left(\Gamma_{q}\right)_{C D}  \tag{5}\\
& \left(\bar{Q}_{A}(\mathbf{0}) u_{D}(\mathbf{0}) \bar{u}_{C}(\mathbf{r}) Q_{B}(\mathbf{r})+(u \rightarrow d)\right) \\
& \left\langle\mathcal{O}_{Q \bar{Q}} \mid \mathcal{O}_{Q \bar{Q}}\right\rangle_{U} \propto\left\langle\operatorname{tr}\left(V_{t}^{\dagger}(\mathbf{r}, \mathbf{0}) U_{\mathbf{r}}(t, 0) V_{0}(\mathbf{r}, \mathbf{0}) U_{0}^{\dagger}(t, 0)\right)\right\rangle_{U}  \tag{6}\\
& \left\langle\mathcal{O}_{Q \bar{Q}} \mid \mathcal{O}_{M \bar{M}}\right\rangle_{U} \propto\left\langle\operatorname{tr}\left(\Gamma_{Q} M_{(0, t) ;(\mathbf{r}, t)}^{-1} U_{r}(t, 0) V_{0}(\mathbf{r}, \mathbf{0}) U_{0}^{\dagger}(t, 0)\right)\right\rangle_{U}  \tag{7}\\
& C(t)=\left(\begin{array}{cc}
\square & \sqrt{n_{f}} \square \\
\sqrt{n_{f}} \square & \left.-n_{f} \square \square+\square\right\} \xi
\end{array}\right) \\
& \text { - gauge transporter } \\
& \text { m light quark propagators } \\
& n_{f} \text { number of degenerate flavours }
\end{align*}
$$

## Relating $\mathbf{V}(r)$ to static potentials from lattice QCD

From $C(t)$ the potentials can be extracted in the limit of large Euclidean time separations:

$$
\begin{equation*}
[C(t)]_{i j} \propto \sum_{k} a_{k}(r) \mathrm{e}^{-V_{k}(r) t} \quad \text { for } \quad t \rightarrow \infty \tag{8}
\end{equation*}
$$

One can derive a relation between these $V_{k}(r)$ and $V_{\bar{Q} Q}(r), V_{m i x}(r)$ and $V_{\bar{M} M}(r)$.

$$
\begin{aligned}
V_{\bar{Q} Q}(r) & =\cos ^{2}(\theta(r)) V_{0}^{\Sigma_{g}^{+}}(r)+\sin ^{2}(\theta(r)) V_{1}^{\Sigma_{g}^{+}}(r) \\
V_{\bar{M} M, \|}(r) & =\sin ^{2}(\theta(r)) V_{0}^{\Sigma_{g}^{+}}(r)+\cos ^{2}(\theta(r)) V_{1}^{\Sigma_{g}^{+}}(r) \\
V_{\text {mix }}(r) & =\cos (\theta(r)) \sin (\theta(r))\left(V_{0}^{\Sigma_{g}^{+}}(r)+V_{1}^{\Sigma_{g}^{+}}(r)\right) \\
V_{\bar{M} M, \perp}(r) & =V^{\Pi_{g}^{+}}(r)=0
\end{aligned}
$$


where $V_{0}^{\Sigma_{g}^{+}}(r)$ denotes the ground state potential and $V_{1}^{\Sigma_{g}^{+}}(r)$ its first excitation. We use existing results from
[ G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling (SESAM), Phys. Rev. D 71, 114513 (2005), arXiv:hep-lat/0505012 [hep-lat]]

## Scattering amplitude and scattering phase

Solved SE using two independent methods:

- Discretization of spacetime rewriting the SE as a system of linear equations $M(E) \mathbf{x}=\mathbf{b}$, solved by Matrix inversion
- 4th order Runge-Kutta algorithm

Propagating the errors of the lattice data by resampling and computing the 16th and 84th percentile.

$$
\begin{equation*}
\text { scattering phase: } \quad \mathrm{e}^{2 i \delta_{\bar{M} M}}=1+2 i t_{\bar{M} M} \tag{9}
\end{equation*}
$$




## Pole positions in the complex plane



- Analytic continuation of our scattering problem to the complex plane
- Poles found using a Newton-Raphson shooting algorithm.
- Pole positions are related to masses and decay width via

$$
m=\operatorname{Re}(E) \quad \text { and } \quad \Gamma=-2 \operatorname{Im}(E)
$$

## Quarkonium and meson-meson content



Investigation whether bound states and resonances are conventional $\bar{Q} Q$ quarkonia or there is a sizable $\bar{Q} Q \bar{q} q$ component.

$$
\begin{equation*}
\% \bar{Q} Q=\frac{Q}{Q+M} \quad, \quad \% \bar{M} M=\frac{M}{Q+M} \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
Q=\int_{0}^{R_{\max }} d r|u(r)|^{2} \quad, \quad M=\int_{0}^{R_{\max }} d r\left|\chi_{\bar{M} M}(r)\right|^{2} \tag{11}
\end{equation*}
$$

## Quarkonium and meson-meson content





bound states:

- independent of $R_{\max }$


## resonances:

- at the real part of the poleposition $\operatorname{Re}(E)$
- M linearly rising for large $R_{\max }$
- use $1.8 \mathrm{fm} \leq R_{\max } \leq 3.0 \mathrm{fm}$ as estimate


$$
Q=\int_{0}^{R_{\max }} d r|u(r)|^{2} \quad, \quad M=\int_{0}^{R_{\max }} d r\left|\chi_{\bar{M} M}(r)\right|^{2}
$$

## Extension to the three coupled channel case

We extend the Schroedinger-equation by an additional $\bar{B}_{s}^{(*)} B_{s}^{(*)}$-channel using the same string breaking potentials. We expect this to be reasonable as the light quark mass used in the lattice data is between the physical $u / d$ quark mass and the physical $s$ quark mass.

$$
\left.\begin{array}{l}
\left(-\frac{1}{2}\left(\begin{array}{ccc}
1 / \mu_{Q} & 0 & 0 \\
0 & 1 / \mu_{M} & 0 \\
0 & 0 & 1 / \mu_{M_{s}}
\end{array}\right) \partial_{r}^{2}+\frac{1}{2 r^{2}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 / \mu_{M} & 0 \\
0 & 0 & 2 / \mu_{M_{s}}
\end{array}\right)+\right. \\
+\left(\begin{array}{c}
V_{\bar{Q} Q}(r) \\
V_{\text {mix }}(r) \\
V_{\text {mix }}(r) \\
0
\end{array} V_{\text {mix }}(r) / \sqrt{2}\right. \\
V_{\text {mix }}(r) / \sqrt{2}  \tag{12}\\
0
\end{array}\right)+\left(\begin{array}{cc}
E_{\text {threshold }} & 0 \\
0 & 2 m_{M} \\
0 & 0 \\
0 \\
u(r) \\
\\
\times\binom{ V_{\bar{M} M}(r)}{\chi_{\bar{M} M_{s}}(r)}=-\left(\begin{array}{c}
V_{\text {mix }}(r) \\
0 \\
0
\end{array}\right)\left(\alpha k m_{1}(k r)+\alpha_{M_{s}} k_{s} r_{1}\left(k_{s} r\right) / \sqrt{2}\right) .
\end{array}\right.
$$

- $V_{\text {mix }}(r)$ needs an additional factor of $1 / \sqrt{2}$
- all meson-meson interactions are expected to vanish
- $E_{\text {threshold }}$ is the meson-meson threshold of the lattice data
- there are two types of incoming waves (right hand side of the equation)


## Scattering matrix in the three coupled channel case

$$
\begin{align*}
& \left(-\frac{1}{2}\left(\begin{array}{ccc}
1 / \mu_{Q} & 0 & 0 \\
0 & 1 / \mu_{M} & 0 \\
0 & 0 & 1 / \mu_{M_{s}}
\end{array}\right) \partial_{r}^{2}+\frac{1}{2 r^{2}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 / \mu_{M} & 0 \\
0 & 0 & 2 / \mu_{M_{s}}
\end{array}\right)+\right. \\
& \left.+\left(\begin{array}{ccc}
V_{\bar{Q} Q}(r) & V_{\text {mix }}(r) & V_{\text {mix }}(r) / \sqrt{2} \\
V_{\text {mix }}(r) & 0 & 0 \\
V_{\text {mix }}(r) / \sqrt{2} & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
E_{\text {threshold }} & 0 & 0 \\
0 & 2 m_{M} & 0 \\
0 & 0 & 2 m_{M_{s}}
\end{array}\right)-E\right) \times \\
& \times\left(\begin{array}{c}
u(r) \\
\chi_{\bar{M} M}(r) \\
\chi_{\bar{M}_{s} M_{s}}(r)
\end{array}\right)=-\left(\begin{array}{c}
V_{\text {mix }}(r) \\
0 \\
0
\end{array}\right)\left(\alpha k j_{1}(k r)+\alpha_{s} k_{s} r j_{1}\left(k_{s} r\right) / \sqrt{2}\right) . \tag{13}
\end{align*}
$$

Incident $\bar{B}^{(*)} B^{(*)}$ wave (i.e. $\left(\alpha, \alpha_{s}\right)=(1,0)$ ): $\quad$ Incident $\bar{B}_{s}^{(*)} B_{s}^{(*)}$ wave (i.e. $\left(\alpha, \alpha_{s}\right)=(0,1)$ ):

$$
\begin{array}{r}
\chi_{\bar{M} M}(r)=i t_{\bar{M} M ; \bar{M} M^{k r h_{1}^{(1)}}(k r),}, \\
\chi_{\bar{M}_{s} M_{s}}(r)=i t_{\bar{M} M ; \bar{M}_{s} M_{s}} k_{s} r h_{1}^{(1)}\left(k_{s} r\right)  \tag{15}\\
\text { for } r \rightarrow \infty .
\end{array}
$$

$$
\begin{array}{r}
\chi_{\bar{M} M}(r)=i t_{\bar{M}_{s} M_{s}: \bar{M} M^{k r h_{1}^{(1)}}(k r),} \\
\chi_{\bar{M}_{s} M_{s}}(r)=i t_{\bar{M}_{s} M_{s} ; \bar{M}_{s} M_{s}} k_{s} r r_{1}^{(1)}\left(k_{s} r\right) \\
\text { for } r \rightarrow \infty .
\end{array}
$$

This defines the $2 \times 2$ matrices $S$ and $T$,

$$
\mathrm{S}=1+2 i \mathrm{~T} \quad, \quad \mathrm{~T}=\left(\begin{array}{cc}
t_{\bar{M} M: \bar{M} M} & t_{\bar{M}_{S} M_{S}: \bar{M} M}  \tag{16}\\
t_{\bar{M} M: \bar{M}_{s} M_{S}} & t_{\bar{M}_{S} M_{s}: \bar{M}_{S} M_{S}}
\end{array}\right)
$$

## pole positions in the three coupled channel case


two channels

three channels

## Results

|  | from poles of $t_{\bar{M} M}$, two channels |  |  |  | from poles of T, three channels |  |  |  |  | from experiment |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ | $\% \bar{Q} Q[\%]$ | \% $\bar{M} M[\%]$ | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ | \% $\bar{Q} Q[\%]$ | \% $\bar{M} M[\%]$ | \% $\bar{M}_{s} M_{s}[\%]$ | name | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ |
| 1 |  |  |  |  |  |  |  |  |  | $\eta_{b}(1 S)$ | $9.399_{-2}^{+2}$ | $10_{-4}^{+5}$ |
| 1 | $9.562_{-17}^{+11}$ | 0 | $89_{-0}^{+1}$ | $11_{-1}^{+0}$ | $9.618_{-15}^{+10}$ | 0 | $84_{-1}^{+1}$ | $12_{-0}^{+0}$ | $5_{-0}^{+0}$ | $\Upsilon(1 S)$ | $9.460{ }_{-0}^{+0}$ | $\approx 0$ |
| 2 | $10.018_{-10}^{+8}$ | 0 | $90_{-0}^{+0}$ | $10_{-0}^{+0}$ | $10.114_{-11}^{+7}$ | 0 | $84_{-0}^{+0}$ | $12_{-0}^{+0}$ | $4_{-0}^{+0}$ | $\Upsilon(2 S)$ | $10.023_{-0}^{+0}$ | $\approx 0$ |
| 3 | $10.340_{-9}^{+7}$ | 0 | $88_{-0}^{+0}$ | $12_{-0}^{+0}$ | $10.442_{-9}^{+7}$ | 0 | $79_{-0}^{+0}$ | $17_{-0}^{+0}$ | $4_{-0}^{+0}$ | $\Upsilon(3 S)$ | $10.355_{-0}^{+0}$ | $\approx 0$ |
| 4 | $10.603_{-6}^{+5}$ | 0 | $70_{-2}^{+3}$ | $30_{-3}^{+2}$ | $10.629_{-1}^{+1}$ | $49.3{ }_{-3.9}^{+5.4}$ | $67_{-5}^{+0}+1$ | $29_{-0-1}^{+5+1}$ | $4_{-0-0}^{+0+0}$ | $\Upsilon(4 S)$ | $10.579_{-1}^{+1}$ | $21_{-3}^{+3}$ |
| 5 | $10.774_{-4}^{+4}$ | $98.5_{-5.9}^{+9.2}$ | $6_{-0-1}^{+1+2}$ | $94_{-1-2}^{+0+1}$ | $10.773_{-2}^{+1}$ | $15.9_{-4.4}^{+2.9}$ | $24_{-3}^{+3}{ }_{-1}^{+1}$ | $60_{-4-2}^{+4+1}$ | $16_{-2-1}^{+1+1}$ | $\Upsilon(10753)$ | $10.753_{-7}^{+7}$ | $36_{-14}^{+22}$ |
| 6 | $10.895_{-10}^{+7}$ | $22.2+4.9$ | $59_{-4-2}^{+4+2}$ | $41_{-4-2}^{+4+2}$ | $10.938_{-2}^{+2}$ | $61.88_{-8.0}^{+7.6}$ | $35_{-7}^{+11+4}$ | $40_{-6-3}^{+3+3}$ | $25_{-6-0}^{+5+0}$ | $\Upsilon(10860)$ | $10.885_{-2}^{+3}$ | $37_{-4}^{+4}$ |

Still large systematic errors $\mathcal{O}(50 \mathrm{MeV})$ mainly due to

- neglecting heavy-spins and the $B-B^{*}$ mass splitting
- lack of more suitable lattice data


## Results - $\mathrm{n}=1,2,3$

|  | from poles of $t_{\bar{M} M}$, two channels |  |  |  | from poles of T, three channels |  |  |  |  | from experiment |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ | \% $\bar{Q} Q[\%]$ | \% $\bar{M} M[\%]$ | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ | \% $\bar{Q} Q$ [\%] | \% $\bar{M} M[\%]$ | $\% \bar{M}_{s} M_{s}[\%]$ | name | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ |
| 1 |  |  |  |  |  |  |  |  |  | $\eta_{b}(1 S)$ | $9.399_{-2}^{+2}$ | $10_{-4}^{+5}$ |
| 1 | $9.562_{-17}^{+11}$ | 0 | $89_{-0}^{+1}$ | $11_{-1}^{+0}$ | $9.618_{-15}^{+10}$ | 0 | $84_{-1}^{+1}$ | $12_{-0}^{+0}$ | $5_{-0}^{+0}$ | $\Upsilon(1 S)$ | $9.460_{-0}^{+0}$ | $\approx 0$ |
| 2 | $10.018_{-10}^{+8}$ | 0 | $90_{-0}^{+0}$ | $10_{-0}^{+0}$ | $10.114_{-11}^{+7}$ | 0 | $84_{-0}^{+0}$ | $12_{-0}^{+0}$ | $4_{-0}^{+0}$ | $\Upsilon(2 S)$ | $10.023_{-0}^{+0}$ | $\approx 0$ |
| 3 | $10.340_{-9}^{+7}$ | 0 | $88_{-0}^{+0}$ | $12_{-0}^{+0}$ | $10.442_{-9}^{+7}$ | 0 | $79_{-0}^{+0}$ | $17_{-0}^{+0}$ | $4_{-0}^{+0}$ | $\Upsilon(3 S)$ | $10.355_{-0}^{+0}$ | $\approx 0$ |
| 4 | $10.603_{-6}^{+5}$ | 0 | $70_{-2}^{+3}$ | $30_{-3}^{+2}$ | $10.629_{-1}^{+1}$ | $49.33_{-3.9}^{+5.4}$ | $67_{-5}^{+0+1}$ | $29_{-0-1}^{+5+1}$ | $4_{-0-0}^{+0+0}$ | $\Upsilon(4 S)$ | $10.579_{-1}^{+1}$ | $21_{-3}^{+3}$ |
| 5 | $10.774_{-4}^{+4}$ | $98.5_{-5.9}^{+9.2}$ | $6_{-0-1}^{+1+2}$ | $94_{-1-2}^{+0+1}$ | $10.773_{-2}^{+1}$ | $15.9_{-4.4}^{+2.9}$ | $24_{-3}^{+3}+1$ | $60_{-4-2}^{+4+1}$ | $16_{-2-1}^{+1+1}$ | $\Upsilon(10753)$ | $10.753_{-7}^{+7}$ | $36_{-14}^{+22}$ |
| 6 | $10.895_{-10}^{+7}$ | $22.2{ }_{-4.9}^{+7.1}$ | $59_{-4-2}^{+4+2}$ | $41_{-4-2}^{+4+2}$ | $10.938_{-2}^{+2}$ | $61.88_{-8.0}^{+7.6}$ | $35_{-7}^{+11+4}$ | $40_{-6-3}^{+3+3}$ | $25_{-6-0}^{+5+0}$ | $\Upsilon(10860)$ | $10.885_{-2}^{+3}$ | $37_{-4}^{+4}$ |



- mostly $\bar{Q} Q$ - states with $\% \bar{Q} Q$ of around $80 \%$


## Results - $\mathrm{n}=4$

|  | from poles of $t_{\bar{M} M}$, two channels |  |  |  | from poles of T, three channels |  |  |  |  | from experiment |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ | \% $\bar{Q} Q[\%]$ | \% $\bar{M} M[\%]$ | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ | \% $\bar{Q} Q$ [\%] | \% $\bar{M} M$ [\%] | \% $\bar{M}_{s} M_{s}[\%]$ | name | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ |
| 1 |  |  |  |  |  |  |  |  |  | $\eta_{b}(1 S)$ | $9.399_{-2}^{+2}$ | $10_{-4}^{+5}$ |
| 1 | $9.562_{-17}^{+11}$ | 0 | $89_{-0}^{+1}$ | $11_{-1}^{+0}$ | $9.618_{-15}^{+10}$ | 0 | $84_{-1}^{+1}$ | $12_{-0}^{+0}$ | $5_{-0}^{+0}$ | $\Upsilon(1 S)$ | $9.460_{-0}^{+0}$ | $\approx 0$ |
| 2 | $10.018_{-10}^{+8}$ | 0 | $90_{-0}^{+0}$ | $10_{-0}^{+0}$ | $10.114_{-11}^{+7}$ | 0 | $84_{-0}^{+0}$ | $12_{-0}^{+0}$ | $4_{-0}^{+0}$ | $\Upsilon(2 S)$ | $10.023_{-0}^{+0}$ | $\approx 0$ |
| 3 | $10.340_{-9}^{+7}$ | 0 | $88_{-0}^{+0}$ | $12_{-0}^{+0}$ | $10.442_{-9}^{+7}$ | 0 | $79_{-0}^{+0}$ | $17_{-0}^{+0}$ | $4_{-0}^{+0}$ | $\Upsilon(3 S)$ | $10.355_{-0}^{+0}$ | $\approx 0$ |
| 4 | $10.603_{-6}^{+5}$ | 0 | $70_{-2}^{+3}$ | $30_{-3}^{+2}$ | $10.629_{-1}^{+1}$ | $49.3{ }_{-3.9}^{+5.4}$ | $67_{-5}^{+0}{ }_{-1}$ | $29^{+0-1}$ | $4_{-0-0}^{+0+0}$ | $\Upsilon(4 S)$ | $10.579_{-1}^{+1}$ | $21_{-3}^{+3}$ |
| 5 | $10.774_{-4}^{+4}$ | $98.5_{-5.9}^{+9.2}$ | $6_{-0-1}^{+1+2}$ | $94_{-1-2}^{+0+1}$ | $10.773_{-2}^{+1}$ | $15.9_{-4.4}^{+2.9}$ | $24_{-3}^{+3+1}$ | $60_{-4-2}^{+4+1}$ | $16_{-2-1}^{+1+1}$ | $\Upsilon(10753)$ | $10.753_{-7}^{+7}$ | $36_{-14}^{+22}$ |
| 6 | $10.895_{-10}^{+7}$ | $22.2_{-4.9}^{+7.1}$ | $59_{-4-2}^{+4+2}$ | $41_{-4-2}^{+4+2}$ | $10.938_{-2}^{+2}$ | $61.8_{-8.0}^{+7.6}$ | $35_{-7}^{+11+4}$ | $40_{-6-3}^{+3+3}$ | $25_{-6-0}^{+5+0}$ | r(10860) | $10.885_{-2}^{+3}$ | $37_{-4}^{+4}$ |

- bound state in the two-channel case, resonance for three channels

- $\% \bar{Q} Q$ remains similar at $\approx 70 \%$
- shows a sizeable meson-meson component of $\approx 30 \%$



## Results - $\mathrm{n}=5$

|  | from poles of $t_{\bar{M} M}$, two channels |  |  |  | from poles of T, three channels |  |  |  |  | from experiment |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ | \% $\bar{Q} Q[\%]$ | \% $\bar{M} M[\%]$ | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ | \% $\bar{Q} Q$ [\%] | \% $\bar{M} M$ [\%] | \% $\bar{M}_{s} M_{s}[\%]$ | name | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ |
| 1 |  |  |  |  |  |  |  |  |  | $\eta_{b}(1 S)$ | $9.399_{-2}^{+2}$ | $10_{-4}^{+5}$ |
| 1 | $9.562_{-17}^{+11}$ | 0 | $89_{-0}^{+1}$ | $11_{-1}^{+0}$ | $9.618_{-15}^{+10}$ | 0 | $84_{-1}^{+1}$ | $12_{-0}^{+0}$ | $5_{-0}^{+0}$ | $\Upsilon(1 S)$ | $9.460_{-0}^{+0}$ | $\approx 0$ |
| 2 | $10.018_{-10}^{+8}$ | 0 | $90_{-0}^{+0}$ | $10_{-0}^{+0}$ | $10.114_{-11}^{+7}$ | 0 | $84_{-0}^{+0}$ | $12_{-0}^{+0}$ | $4_{-0}^{+0}$ | $\Upsilon(2 S)$ | $10.023_{-0}^{+0}$ | $\approx 0$ |
| 3 | $10.340_{-9}^{+7}$ | 0 | $88_{-0}^{+0}$ | $12_{-0}^{+0}$ | $10.442_{-9}^{+7}$ | 0 | $79_{-0}^{+0}$ | $17_{-0}^{+0}$ | $4_{-0}^{+0}$ | $\Upsilon(3 S)$ | $10.355_{-0}^{+0}$ | $\approx 0$ |
| 4 | $10.603_{-6}^{+5}$ | 0 | $70_{-2}^{+3}$ | $30_{-3}^{+2}$ | $10.629_{-1}^{+1}$ | $49.33_{-3.9}^{+5.4}$ | $67_{-5}^{+0+1}$ | $29_{-0-1}^{+5+1}$ | $4_{-0-0}^{+0+0}$ | $\Upsilon(4 S)$ | $10.579_{-1}^{+1}$ | $21_{-3}^{+3}$ |
| 5 | $10.774_{-4}^{+4}$ | $98.5_{-5.9}^{+9.2}$ | $6_{-0-1}^{+1+2}$ | $94_{-1-2}^{+0+1}$ | $10.773_{-2}^{+1}$ | $15.9_{-4.4}^{+2.9}$ | $24_{-3}^{+3+1}$ | $60_{-4-2}^{+4+1}$ | $16_{-2-1}^{+1+1}$ | $\Upsilon(10753)$ | $10.753_{-7}^{+7}$ | $36_{-14}^{+22}$ |
| 6 | $10.895_{-10}^{+7}$ | $22.2{ }_{-4.9}^{+7.1}$ | $59_{-4-2}^{+4+2}$ | $41_{-4-2}^{+4+2}$ | $10.938_{-2}^{+2}$ | $61.8_{-8.0}^{+7.6}$ | $35_{-7}^{+11+4}$ | $40_{-6-3}^{+3+3}$ | $25_{-6-0}^{+5+0}$ | r(10860) | $10.885_{-2}^{+3}$ | $37_{-4}^{+4}$ |

- more realistic decay width in the three-channel-case
- quarkonium component increases
- Additional $\% M_{s} M_{s}$ of around $16 \%$
- does not exist in a pure quarkonium spectrum.

It is dynamically generated by coupling to a meson-meson coupling.



## Results - $\mathrm{n}=6$

|  | from poles of $t_{\bar{M} M}$, two channels |  |  |  | from poles of T, three channels |  |  |  |  | from experiment |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ | \% $\bar{Q} Q[\%]$ | \% $\bar{M} M$ [\%] | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ | \% $\bar{Q} Q[\%]$ | \% $\bar{M} M$ [\%] | \% $\bar{M}_{s} M_{s}[\%]$ | name | $m[\mathrm{GeV}]$ | $\Gamma[\mathrm{MeV}]$ |
| 1 |  |  |  |  |  |  |  |  |  | $\eta_{b}(1 S)$ | $9.399_{-2}^{+2}$ | $10_{-4}^{+5}$ |
| 1 | $9.562_{-17}^{+11}$ | 0 | $89_{-0}^{+1}$ | $11_{-1}^{+0}$ | $9.618_{-15}^{+10}$ | 0 | $84_{-1}^{+1}$ | $12_{-0}^{+0}$ | $5_{-0}^{+0}$ | $\Upsilon(1 S)$ | $9.460_{-0}^{+0}$ | $\approx 0$ |
| 2 | $10.018_{-10}^{+8}$ | 0 | $90_{-0}^{+0}$ | $10_{-0}^{+0}$ | $10.114_{-11}^{+7}$ | 0 | $84_{-0}^{+0}$ | $12_{-0}^{+0}$ | $4_{-0}^{+0}$ | $\Upsilon(2 S)$ | $10.023_{-0}^{+0}$ | $\approx 0$ |
| 3 | $10.340_{-9}^{+7}$ | 0 | $88_{-0}^{+0}$ | $12_{-0}^{+0}$ | $10.442_{-9}^{+7}$ | 0 | $79_{-0}^{+0}$ | $17_{-0}^{+0}$ | $4_{-0}^{+0}$ | $\Upsilon(3 S)$ | $10.355_{-0}^{+0}$ | $\approx 0$ |
| 4 | $10.603_{-6}^{+5}$ | 0 | $70_{-2}^{+3}$ | $30_{-3}^{+2}$ | $10.629_{-1}^{+1}$ | $49.3{ }^{+5.4}$ | $67_{-5}^{+0}{ }_{-1}$ | $29_{-0-1}^{+5+1}$ | $4_{-0-0}^{+0+0}$ | $\Upsilon(4 S)$ | $10.579_{-1}^{+1}$ | $21_{-3}^{+3}$ |
| 5 | $10.774_{-4}^{+4}$ | 98.5 ${ }_{-5.9}^{+9.2}$ | $6_{-0-1}^{+1+2}$ | $94_{-1-2}^{+0+1}$ | $10.773_{-2}^{+1}$ | $15.9_{-4.4}^{+2.9}$ | $24_{-3}^{+3}+1$ | $60_{-4-2}^{+4+1}$ | $16_{-2-1}^{+1+1}$ | $\Upsilon(10753)$ | $10.753_{-7}^{+7}$ | $36_{-14}^{+22}$ |
| 6 | $10.895_{-10}^{+7}$ | $22.2{ }_{-4.9}^{+7.1}$ | $59_{-4-2}^{+4+2}$ | $41_{-4-2}^{+4+2}$ | $10.938_{-2}^{+2}$ | $61.88_{-8.0}^{+7.6}$ | $35_{-7}^{+11+4}$ | $40_{-6-3}^{+3+3}$ | $25_{-6-0}^{+5+0}$ | $\Upsilon(10860)$ | $10.885_{-2}^{+3}$ | $37_{-4}^{+4}$ |

- increased meson-meson contribution with the inclusion of
 the $\bar{B}_{s}^{(*)} B_{s}^{(*)}$-channel
$\rightarrow$ not surprising since above $\bar{B}_{s}^{(*)} B_{s}^{(*)}$-threshold



## Conclusion and Outlook

We

- explored the nature of the $I=0$ bottomonium $S$ wave bound states and resonances
- $\Upsilon(1 S), \Upsilon(2 S), \Upsilon(3 S)$ have rather small meson-meson-components
- find that $\Upsilon(4 S)$ is quarkonium dominated with a sizable meson-meson component
- find a $S$ wave state close to the energy of $\Upsilon(10860)$ which is mostly a meson-meson-state
- find a pole near the energy of $\Upsilon(10753)_{\text {Belle }}$ which is dynamically generated by coupling to a meson-meson-channel and has a large meson-meson content

Outlook:

- Extend the study to $P$ wave, $D$ wave and $F$ wave
$\rightarrow$ Investigate possible D-wave nature of $\Upsilon(10860)$ and $\Upsilon(11020)$
- perform a dedicated lattice QCD computation of the static potentials
- include heavy spin effects and $B-B^{*}$ mass splitting

