Importance of meson-meson and of diquark-antidiquark creation operators for a $\bar{b}\bar{b}ud$ tetraquark

"Experimental and theoretical status of and perspectives for XYZ states"

Marc Wagner

Goethe-Universität Frankfurt, Institut für Theoretische Physik mwagner@itp.uni-frankfurt.de https://itp.uni-frankfurt.de/~mwagner/

in collaboration with Pedro Bicudo, Antje Peters, Sebastian Velten

April 15, 2021

Basic idea: lattice QCD + BO

- Study heavy-heavy-light-light tetraquarks $\overline{b}\overline{b}qq$ in two steps.
 - (1) Compute potentials of two static quarks \overline{bb} in the presence of two lighter quarks qq ($q \in \{u, d, s, c\}$) using lattice QCD.
 - (2) Check, whether these potentials are sufficiently attractive to host bound states or resonances (\rightarrow tetraquarks) by using techniques from quantum mechanics and scattering theory.
 - $((1) + (2) \rightarrow$ Born-Oppenheimer approximation).

Previous work on $\overline{b}\overline{b}qq$ **tetraquarks**

- Lattice QCD static potentials and Born-Oppenheimer approximation.
 [W. Detmold, K. Orginos, M. J. Savage, Phys. Rev. D 76, 114503 (2007) [arXiv:hep-lat/0703009]]
 [M.W., PoS LATTICE2010, 162 (2010) [arXiv:1008.1538]]
 [G. Bali, M. Hetzenegger, PoS LATTICE2010, 142 (2010) [arXiv:1011.0571]]
 [P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]
 [Z. S. Brown, K. Orginos, Phys. Rev. D 86, 114506 (2012) [arXiv:1210.1953]]
 [P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, M.W., Phys. Rev. D 92, 014507 (2015) [arXiv:1505.00613]]
 [P. Bicudo, K. Cichy, A. Peters, M.W., Phys. Rev. D 93, 034501 (2016) [arXiv:1510.03441]]
 [P. Bicudo, J. Scheunert, M.W., Phys. Rev. D 95, 034502 (2017) [arXiv:1612.02758]]
 [P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, M.W., Phys. Rev. D 96, 054510 (2017) [arXiv:1704.02383]]
 - P. Bicudo, A. Peters, S. Velten, M.W., arXiv:2101.00723]
- Full lattice QCD (b quarks with Non Relativistic QCD) [list not complete]: [A. Francis, R. J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. Lett. 118, 142001 (2017) [arXiv:1607.05214 [hep-lat]]]
 - [P. Junnarkar, N. Mathur, M. Padmanath, Phys. Rev. D 99, 034507 (2019) [arXiv:1810.12285 [hep-lat]]]
 - [L. Leskovec, S. Meinel, M. Pflaumer, M.W., Phys. Rev. D 100, 014503 (2019) [arXiv:1904.04197] [hep-lat]]]
- Other approches: quark models, effective field theories, QCD sum rules ... [list not complete]: [M. Karliner, J. L. Rosner, Phys. Rev. Lett. **119**, 202001 (2017) [arXiv:1707.07666]]
 - [E. J. Eichten, C. Quigg, Phys. Rev. Lett. 119, 202002 (2017) [arXiv:1707.09575]]
 - [Z. G. Wang, Acta Phys. Polon. B 49, 1781 (2018) [arXiv:1708.04545]]
 - [W. Park, S. Noh, S. H. Lee, Acta Phys. Polon. B 50, 1151-1157 (2019) [arXiv:1809.05257]]
 - [B. Wang, Z. W. Liu, X. Liu, Phys. Rev. D **99**, 036007 (2019) [arXiv:1812.04457]]
 - [M. Z. Liu, T. W. Wu, M. Pavon Valderrama, J. J. Xie, L. S. Geng, Phys. Rev. D 99, 094018 (2019) [arXiv:1902.03044]]

Outline

- $\overline{b}\overline{b}qq$ / BB potentials.
- Stable $\overline{b}\overline{b}qq$ tetraquarks.
- Structure of a $\overline{b}\overline{b}qq$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$ (meson-meson versus diquark-antidiquark structure).

$\overline{b}\overline{b}qq$ / BB potentials (1)

- At large $\overline{b}\overline{b}$ separation r, the four quarks will form two static-light mesons $\overline{b}q$ and $\overline{b}q$.
- Spins of static antiquarks $\overline{b}\overline{b}$ are irrelevant (they do not appear in the Hamiltonian).
- Compute and study the dependence of $\bar{b}\bar{b}$ potentials in the presence of qq on
 - the "light" quark flavors $q \in \{u, d, s, c\}$ (isospin, flavor),
 - the "light" quark spin (the static quark spin is irrelevant),
 - the type of the meson B, B^* and/or B_0^* , B_1^* (parity).

 \rightarrow Many different channels: attractive as well as repulsive, different asymptotic values ...

$\overline{b}\overline{b}qq$ / BB potentials (2)

• To determine potentials, compute temporal correlation functions of operators

$$\mathcal{O}_{BB,\Gamma} = 2N_{BB}(\mathcal{C}\Gamma)_{AB}(\mathcal{C}\tilde{\Gamma})_{CD}\left(\bar{Q}^a_C(-\mathbf{r}/2)\psi^{(f)a}_A(-\mathbf{r}/2)\right)\left(\bar{Q}^b_D(+\mathbf{r}/2)\psi^{(f')b}_B(+\mathbf{r}/2)\right).$$

• The most attractive potential of a $B^{(*)}B^*$ meson pair has $(I, |j_z|, P, P_x) = (0, 0, +, -)$:

$$\begin{aligned} &- C = \gamma_0 \gamma_2 \text{ (charge conjugation matrix).} \\ &- \psi^{(f)} \psi^{(f')} = ud - du, \ \Gamma \in \{(1 + \gamma_0)\gamma_5, (1 - \gamma_0)\gamma_5\}. \\ &- \bar{Q}\bar{Q} = \bar{b}\bar{b}, \ \tilde{\Gamma} \in \{(1 + \gamma_0)\gamma_5, (1 + \gamma_0)\gamma_j\} \text{ (irrelevant).} \end{aligned}$$

• Parameterize lattice results by

$$V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r) = -\frac{\alpha}{r} \exp\left(-\left(\frac{r}{d}\right)^p\right) + V_0$$

(1-gluon exchange at small r; color screening at large r). [P. Bicudo, K. Cichy, A. Peters, M.W., Phys. Rev. D **93**, 034501 (2016) [arXiv:1510.03441]]

Stable $\overline{b}\overline{b}qq$ tetraquarks

• Solve the Schrödinger equation for the relative coordinate of the heavy quarks $\bar{b}\bar{b}$ using the previously computed $\bar{b}\bar{b}qq / BB$ potentials,

$$\left(\frac{1}{m_b}\left(-\frac{d^2}{dr^2} + \frac{L(L+1)}{r^2}\right) + V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r) - 2m_{\rm sl}\right)R(r) = ER(r).$$

- Possibly existing bound states, i.e. E < 0, indicate stable $\overline{b}\overline{b}qq$ tetraquarks.
- There is a bound state for orbital angular momentum L = 0 of $\overline{b}\overline{b}$:
 - Binding energy -E = 38(18) MeV with respect to the BB^* threshold.
 - Quantum numbers: $I(J^P) = 0(1^+)$.
- No further bound states.
 - [P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]

Structure of the $\overline{b}\overline{b}qq$ tetraquark (1)

- Two types of operators, which probe the same sector: [P. Bicudo, A. Peters, S. Velten, M.W., arXiv:2101.00723]
 - Meson-meson operator (BB):

$$\mathcal{O}_{BB,\Gamma} = 2N_{BB}(\mathcal{C}\Gamma)_{AB}(\mathcal{C}\tilde{\Gamma})_{CD} \Big(\bar{Q}^a_C(-\mathbf{r}/2)\psi^{(f)a}_A(-\mathbf{r}/2) \Big) \Big(\bar{Q}^b_D(+\mathbf{r}/2)\psi^{(f')b}_B(+\mathbf{r}/2) \Big)$$

with $\Gamma \in \{(1+\gamma_0)\gamma_5, \gamma_5\} (\to (j_z, \mathcal{P}, \mathcal{P}_x) = (0, -, +)).$

- **Diquark-antidiquark operator** (*Dd*):

$$\mathcal{O}_{Dd,\Gamma} = -N_{Dd} \epsilon^{abc} \left(\psi_A^{(f)b}(\mathbf{z}) (\mathcal{C}\Gamma)_{AB} \psi_B^{(f')c}(\mathbf{z}) \right)$$
$$\epsilon^{ade} \left(\bar{Q}_C^f(-\mathbf{r}/2) U^{fd}(-\mathbf{r}/2; \mathbf{z}) (\mathcal{C}\tilde{\Gamma})_{CD} \bar{Q}_D^g(+\mathbf{r}/2) U^{ge}(+\mathbf{r}/2; \mathbf{z}) \right)$$

with $\Gamma \in \{(1 + \gamma_0)\gamma_5, \gamma_5\} \ (\rightarrow (j_z, \mathcal{P}, \mathcal{P}_x) = (0, -, +)).$

- $\psi^{(f)}\psi^{(f')} = ud du \; (\to I = 0).$
- $\tilde{\Gamma} = (1 + \gamma_0)\gamma_3$ (essentially irrelevant).
- Compute the 4×4 correlation matrix

 $C_{jk}(t) = \langle \Omega | \mathcal{O}_{j}^{\dagger}(t) \mathcal{O}_{k}(0) | \Omega \rangle.$

Structure of the $\overline{b}\overline{b}qq$ tetraquark (2)

• Effective energies corresponding to diagonal elements of the correlation matrix,

$$V_j^{\text{eff}}(r,t) = -\frac{1}{a} \log \left(\frac{C_{jj}(t)}{C_{jj}(t-a)} \right) \quad (\text{no sum over } j).$$

- For large bb separations (right plot r ≈ 0.79 fm), BB effective energies reach plateaus at smaller t separations than Dd effective energies.
 → BB dominates at large r, Dd not important (energetically disfavored due to flux tube).
- For small $\overline{b}\overline{b}$ separations (left plot $r \approx 0.16$ fm), BB and Dd effective energies similar. \rightarrow More detailed investigation at small r necessary.

Structure of the $\overline{b}\overline{b}qq$ tetraquark (3)

• Differences of effective energies corresponding to diagonal elements of the correlation matrix at small temporal separation t = 2a as functions of the $\overline{b}\overline{b}$ separation r,

$$V_j^{\text{eff}}(r, t = 2a) - V_k^{\text{eff}}(r, t = 2a).$$

- *BB* versus *Dd* (left): *Dd* dominates for $r \leq 3.15 a \approx 0.25$ fm, while *BB* dominates for $r \gtrsim 3.15 a \approx 0.25$ fm.
- *BB* operators (center): $\Gamma = (1 + \gamma_0)\gamma_5$ leads to larger ground state overlap than $\Gamma = \gamma_5$. (Expected. Via a Fierz transformation one can show that $\Gamma = (1 + \gamma_0)\gamma_5$ generates exclusively ground state mesons, while γ_5 also generates parity excitations.)
- Dd operators (right): $\Gamma = (1 + \gamma_0)\gamma_5$ leads to larger ground state overlap than $\Gamma = \gamma_5$. (Interesting. In the literature mostly γ_5 is discussed.)

Structure of the $\overline{b}\overline{b}qq$ tetraquark (4)

• Optimize trial states

$$|\Phi_{b,d}\rangle = b |\Phi_{BB,(1+\gamma_0)\gamma_5}\rangle + d |\Phi_{Dd,(1+\gamma_0)\gamma_5}\rangle$$

 $\left(|\Phi_j \rangle = \mathcal{O}_j |\Omega \rangle \right)$ by minimizing effective energies

$$V_{b,d}^{\text{eff}}(r,t) = -\frac{1}{a} \log \left(\frac{C_{[b,d][b,d]}(t)}{C_{[b,d][b,d]}(t-a)} \right) \quad , \quad C_{[b,d][b,d]}(t) = \begin{pmatrix} b \\ d \end{pmatrix}_{j}^{\dagger} C_{jk}(t) \begin{pmatrix} b \\ d \end{pmatrix}_{k}.$$

with respect to $b, d \in \mathbb{C}$.

• Since norm and phase of b and d are irrelevant, consider relative weights of BB and Dd,

$$w_{BB} = \frac{|b|^2}{|b|^2 + |d|^2}$$
, $w_{Dd} = \frac{|d|^2}{|b|^2 + |d|^2} = 1 - w_{BB}$.

• For fixed $\overline{b}\overline{b}$ separation r, w_{BB} and r=2a=0.16 fm r=5a=0.40 fm r=8a=0.63 fm 1.0 1.0 1.0 w_{Dd} depend only weakly on t. 0.8 0.8 0.8 $\rightarrow w_{BB}$ and w_{Dd} estimate the 0.6 0.6 0.6 WRR WRR ↓ W_{Dd} - WDd WDd percentage of BB and of Dd. 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 2 ٦ з 2 3 5 4 4 t/a t/a t/a Marc Wagner, "Importance of meson-meson and of diqua

Structure of the $\overline{b}\overline{b}qq$ tetraquark (5)

- w_{BB} and w_{Dd} as functions of the $\overline{b}\overline{b}$ separation r (for two ensembles, $a \approx 0.079$ fm and $a \approx 0.063$ fm).
- $r \lesssim 0.2 \,\mathrm{fm}$: Clear diquark-antidiquark dominance.
- $0.2 \text{ fm} \lesssim r \lesssim 0.3 \text{ fm}$: Diquark-antidiquark dominance turns into meson-meson dominance.
- $0.5 \text{ fm} \lesssim r$: Essentially a meson-meson system.

Marc Wagn

ril 15, 2021

Structure of the $\overline{b}\overline{b}qq$ tetraquark (6)

• Generalized eigenvalue problem (GEVP)

$$C_{jk}(t)v_k^{(n)}(t) = \lambda^{(n)}(t)C_{jk}(t_0)v_k^{(n)}(t) , \quad n = 0, \dots, N-1$$

for $t_0/a \ge 1$ and $t/a > t_0/a$ with corresponding effective energies

$$V^{\text{eff},(n)}(r,t) = -\frac{1}{a} \log\left(\frac{\lambda^{(n)}(t)}{\lambda^{(n)}(t-a)}\right).$$

• Eigenvector components $v_j^{(n)}(t)$ (which we always normalize according to $\sum_j |v_j^{(n)}(t)|^2 = 1$) contain information about the relative importance of the operators. For large t and t_0 ,

$$|n\rangle \approx \sum_{j} v_{j}^{(n)}(t) |\Phi_{j}\rangle,$$

where \approx denotes an approximate expansion of the energy eigenstate $|n\rangle$ in terms of the trial states $|\Phi_j\rangle$.

Structure of the $\overline{b}\overline{b}qq$ tetraquark (7)

• One can show: For $t_0 = t - a$, optimizing trial states by minimizing effective energies (as on previous slides) is equivalent to solving a GEVP, i.e.

$$(w_{BB}, w_{Dd}) = (|v_{BB,(1+\gamma_0)\gamma_5}^{(0)}|^2, |v_{Dd,(1+\gamma_0)\gamma_5}^{(0)}|^2)$$

(might offer another perspective on GEVP eigenvector components). \rightarrow Results for w_{BB} and w_{Dd} can also be interpreted as GEVP results. [P. Bicudo, A. Peters, S. Velten, M.W., arXiv:2101.00723]

- In the literature typically small values for t_0 are used, e.g. $t_0/a = 1$ (instead of $t_0 = t a$ as used to obtain w_{BB} and w_{Dd} on previous slides).
- Similar results also for $t_0/a = 1$, when using a 2×2 correlation matrix (left plot).
- Consistent results, when using a 4×4 correlation matrix (right plot).

Structure of the $\overline{b}\overline{b}qq$ tetraquark (8)

• Define the r dependent BB and Dd percentages,

$$p_{BB}(r) = w_{BB} \quad , \quad p_{Dd}(r) = w_{Dd}$$

and use the probability density of the $\bar{b}\bar{b}$ separation

 $p_r(r) = 4\pi |R(r)|^2$

obtained from the BO wave function R(r)/r, to estimate the total BB and Dd percentages of the \overline{bbud} tetraquark with quantum numbers $I(J^P) = 0(1^+)$:

$$\% BB = \int dr \, p_r(r) p_{BB}(r) \quad , \quad \% Dd = \int dr \, p_r(r) p_{Dd}(r) = 1 - \% BB.$$

- We find % BB = 0.58, % Dd = 0.42.
- Using $|v_{BB,(1+\gamma_0)\gamma_5}^{(0)}|^2$, $|v_{Dd,(1+\gamma_0)\gamma_5}^{(0)}|^2$ instead of w_{BB} , w_{Dd} we find % BB = 0.60, % Dd = 0.40.
- Results are in agreement with a GEVP result we obtained in a full lattice QCD computation, where the b
 quarks are treated within NRQCD.
 [L. Leskovec, S. Meinel, M. Pflaumer and M.W., Phys. Rev. D 100, 014503 (2019) [arXiv:1904.04197]]
 [M. Pflaumer, private communications]

Summary

- The hadronically stable $\bar{b}\bar{b}ud$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$ is neither exclusively a meson-meson system nor a diquark-antidquark pair.
- $r \lesssim 0.2 \,\mathrm{fm}$: Clear diquark-antidiquark dominance.
- $r \gtrsim 0.3$ fm: Clear meson-meson dominance.
- Total *BB* and *Dd* percentages: $\%BB \approx 0.60$, $\%Dd \approx 0.40$.

Marc Wagn

ril 15, 2021