

Triangle singularities and new ideas about the X(3872)

Feng-Kun Guo

Institute of Theoretical Physics, CAS

Experimental and theoretical status of and perspectives for XYZ states

In memory of Mikhail Voloshin

12-15 April 2021

Triangle singularities (TSs):

M. Bayar, F. Aceti, FKG, E. Oset, PRD 94 (2016) 074039; FKG, X.-H. Liu, S. Sakai, PPNP 112 (2020) 103757

Measuring the X(3872) binding energy using TS:

FKG, PRL122 (2019) 202002; S. Sakai, H.-J. Jing, FKG, PRD 102 (2020) 114041

X atom:

Z.-H. Zhang, FKG, arXiv:2012.08281

S-matrix singularities

- Dynamics: poles, corresponding to hadron resonances, genuine physical states such as the ordinary and exotic mesons, baryons; location fixed by the dynamics
- Kinematics: (normally) branch points of the S-matrix, due to on-shell intermediate particles, results of unitarity; location fixed by the involved kinematic variables:

masses, energies

- normal two-body threshold cusp
- triangle singularity

R ...

traps/tools in hadron spectroscopy

Known since long: Landau singularity

L.D.Landau (1959); J.D.Bjorken (1959); J.Mathews (1959); N.Nakanishi (1959)

Derivation of the TS equation

Bayar, Aceti, FKG, Oset, PRD94(2016)074039

TS: Leading Landau singularity for a triangle diagram

Consider the scalar three-point loop integral

$$I = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{\left[(P-q)^2 - m_1^2 + i\epsilon\right] \left(q^2 - m_2^2 + i\epsilon\right) \left[(p_{23} - q)^2 - m_3^2 + i\epsilon\right]}$$

Rewriting a propagator into two poles:

$$\frac{1}{q^2 - m_2^2 + i\epsilon} = \frac{1}{(q^0 - \omega_2 + i\epsilon)(q^0 + \omega_2 - i\epsilon)} \quad \text{with} \quad \omega_2 = \sqrt{m_2^2 + \vec{q}^2}$$

focus on the positive-energy poles

$$I \simeq \frac{i}{8m_1m_2m_3} \int \frac{dq^0 d^3 \vec{q}}{(2\pi)^4} \frac{1}{(P^0 - q^0 - \omega_1 + i\epsilon) (q^0 - \omega_2 + i\epsilon) (p_{23}^0 - q^0 - \omega_3 + i\epsilon)}$$

Derivation of the TS equation

Contour integral over
$$q^0 \Rightarrow$$

cut-1 cut-2

$$I \propto \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{1}{[P^0 - \omega_1(q) - \omega_2(q) + i\epsilon][p_{23}^0 - \omega_2(q) - \omega_3(\vec{p}_{23} - \vec{q}) + i\epsilon]} \\ \propto \int_0^\infty dq \; \frac{q^2}{P^0 - \omega_1(q) - \omega_2(q) + i\epsilon} f(q)$$

The second cut:

$$f(q) = \int_{-1}^{1} dz \, \frac{1}{p_{23}^{0} - \omega_2(q) - \sqrt{m_3^2 + q^2 + p_{23}^2 - 2p_{23}qz} + i\,\epsilon}$$

Relation between singularities of integrand and integral

- singularity of integrand does not necessarily give a singularity of integral: integral contour may be deformed to avoid the singularity
- Two cases that a singularity cannot be avoided:
 - endpoint singularity
 - pinch singularity

Derivation of the TS equation

Singularities of the **integrand of** I in the rest frame of initial particle ($P^0 = M$):

• 1st cut:
$$M - \omega_1(l) - \omega_2(l) + i \epsilon = 0 \Rightarrow$$

$$q_{\text{on}\pm} \equiv \pm \left(\frac{1}{2M}\sqrt{\lambda(M^2, m_1^2, m_2^2)} + i \epsilon\right)$$

• 2nd cut: $A(q, \pm 1) = 0 \Rightarrow$ endpoint singularities of f(q)

$$z = +1: \quad q_{a+} = \gamma \left(\beta E_2^* + p_2^*\right) + i \epsilon, \quad q_{a-} = \gamma \left(\beta E_2^* - p_2^*\right) - i \epsilon,$$

$$z = -1: \quad q_{b+} = \gamma \left(-\beta E_2^* + p_2^*\right) + i \epsilon, \quad q_{b-} = -\gamma \left(\beta E_2^* + p_2^*\right) - i \epsilon$$

$$\beta = |\vec{p}_{23}|/E_{23}, \quad \gamma = 1/\sqrt{1 - \beta^2} = E_{23}/m_{23}$$

 $E_2^*(p_2^*)$: energy (momentum) of particle-2 in the cmf of the (2,3) system

Derivation of the TS equation

 $\begin{aligned} q_{\text{on}+}, & q_{a+} = \gamma \left(\beta E_2^* + p_2^*\right) + i \epsilon, & q_{a-} = \gamma \left(\beta E_2^* - p_2^*\right) - i \epsilon, \\ q_{\text{on}-} < 0, & q_{b-} = -q_{a+} < 0 \text{ (for } \epsilon = 0), & q_{b+} = -q_{a-}, \end{aligned}$

Triangle singularity (TS)

on-shell momentum of m_2 at the left and right cuts in the A rest frame $\beta = |\vec{p}_{23}|/E_{23}, \gamma = 1/\sqrt{1-\beta^2}$ Bayar, Aceti, FKG, Oset, PRD94(2016)074039

- $p_2 > 0$, $p_3 = \gamma \left(\beta E_3^* + p_2^*\right) > 0 \Rightarrow m_2$ and m_3 move in the same direction
- velocities in the A rest frame: $v_3 > \beta > v_2$

$$v_2 = \beta \frac{E_2^* - p_2^* / \beta}{E_2^* - \beta p_2^*} < \beta, \qquad v_3 = \beta \frac{E_3^* + p_2^* / \beta}{E_3^* + \beta p_2^*} > \beta$$

Conditions (Coleman–Norton theorem): Coleman, Norton (1965); Bronzan (1964)
 Image: all three intermediate particles can go on shell simultaneously
 Image: p
 ² || p
 ³, particle-3 can catch up with particle-2 (as a classical process)
 needs very special kinematics ⇒ process dependent! (contrary to pole position)

Triangle singularity (TS)

Features of TS

- logarithmic branch point, can produce a peak, mimicking a resonance
- normally close to a two-body threshold
- very sensitive to kinematic variables
- Given masses of intermediate particles and the external m_B , TS can produce peaks in both m_A and m_C distributions.
- For fixed $m_{2,3}$, m_A and m_B , TS in the physical region only happens when:

$$m_1^2 \in \left[\frac{m_A^2 m_3 + m_B^2 m_2}{m_2 + m_3} - m_2 m_3, (m_A - m_2)^2\right] \xrightarrow{m_A} \xrightarrow{m_B} m_B$$

• TS in the physical region only happens when

$$m_A^2 \in \left[(m_1 + m_2)^2, (m_1 + m_2)^2 + \frac{m_2}{m_3} [(m_1 - m_3)^2 - m_B^2] \right]$$
$$m_C^2 \in \left[(m_2 + m_3)^2, (m_2 + m_3)^2 + \frac{m_2}{m_1} [(m_1 - m_3)^2 - m_B^2] \right]$$

 m_{C}

Features of TS

Phase motion of triangle diagram in the presence of a TS

The argand plot is counterclockwise, resembling that of a resonance

Reactions with TS

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Structures	Processes	Loops	I/F	Refs.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>ρ</i> (1480) [78,79]	$\pi^- p \to \phi \pi^0 n$	K*KK	Ι	[80,81]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\eta(1405/1475)$ [82–86]	$\eta(1405/1475) ightarrow \pi f_0$	$K^*\bar{K}K$	I	[87–91] ^{a,b}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1(1420)$ [92]	$f_1(1285) \to \pi a_0/\pi f_0$	$K^*\bar{K}K$	Ι	[89,93-95] ^b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$a_1(1420)$ [96,97]	$a_1(1260) \rightarrow f_0 \pi \rightarrow 3\pi$	$K^*\bar{K}K$	Ι	[97-99]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.4 GeV [100]	$J/\psi ightarrow \phi \pi^0 \eta / \phi \pi^0 \pi^0$	$K^*\bar{K}K$	I	[101] ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.42 GeV	$B^- \to D^{*0} \pi^- f_0(a_0), \tau \to \nu_\tau \pi^- f_0(a_0)$	$K^*\bar{K}K$	Ι	[102,103]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•••••	$D_{c}^{+} \rightarrow \pi^{+}\pi^{0}f_{0}(a_{0}), \bar{B}_{c}^{0} \rightarrow I/\psi\pi^{0}f_{0}(a_{0})$	$K^*\bar{K}K$	I	[104,105]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_2(1810)$ [10]	$f_2(1640) \rightarrow \pi \pi \rho$	$K^*\bar{K}^*K$	I	[106]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.65 GeV	$\tau \rightarrow \nu_{\tau} \pi^{-} f_1(1285)$	$K^*\bar{K}^*K$	Ι	[107]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1515 MeV	$I/\psi \rightarrow K^+ K^- f_0(a_0)$	$\phi \bar{K} K$	Ι	[108]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.85 CeV 3.0 CeV		K*0D(*)0K+	I	[109 110]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 78 CeV	$B^+ \rightarrow \pi^0 \pi^+ B^0$	$\bar{K}^{*0}B^+\bar{K}$	F	[111]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$B_c \rightarrow h h B_s$	R B R		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	[4.01, 4.02] GeV	$[D^{*\circ}D^{*\circ}] \to \gamma X$		I	[112]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4015 MeV	$e^+e^- ightarrow \gamma X$	$D^{*0}D^{*0}D^{0}$	I	[113,114]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4015_MeV	$B \to KX\pi, pp/p\bar{p} \to X\pi + anything$	$D^{*0}D^{*0}D^{0}_{-}$	I	[115,116]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Upsilon(11020)$ [117,118]	$e^+e^- ightarrow Z_b\pi$	$B_1(5721)BB^*$	I	[119,120]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.73 GeV	$X \to \pi^0 \pi^+ \pi^-$	$D^{*0}D^0D^0$	F	[121]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[4.22, 4.24] GeV	$e^+e^- ightarrow \gamma J/\psi \phi /\pi^0 J/\psi \eta$	$D_{s0(s1)}^* \overline{D}_s^{(*)} D_s^{(*)}$	F	[122]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[4.08, 4.09] GeV	$e^+e^- ightarrow \pi^0 J/\psi \eta$	$D_{s0(s1)}^* \bar{D}_s^{(*)} D_s^{(*)}$	F	[122]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Z_{c}(3900)$ [31,32]	$e^+e^- ightarrow I/\psi \pi^+\pi^-$	$D_1 \overline{D} D^*$	F	[119,123–127] ^c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		571	$D_{0}^{*}(2400)\overline{D}^{*}D$	F	[128,129]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Z_{c}(4020, 4030)$ [33,130]	$e^+e^- ightarrow \pi^+\pi^-h_c(\psi')$	$D_{1(2)}\bar{D}^{(*)}D^{(*)}$	F	[125]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	X(4700) [131,132]	$B^+ \rightarrow K^+ I / \psi \phi$	$K_1(1650)\psi'\phi$	F	[133]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Z_{c}(4430)$ [30,134]	$\bar{B}^0 \to K^- \pi^+ I/\psi$	$\bar{K}^{*0}\psi(4260)\pi^+$	F	[135]
$A_0^0 \rightarrow p \pi^{-1} / \psi$ $N^* \psi (3770) \pi^-$ F [135] $X(4050)^{\pm}$ [138] $\overline{B}^0 \rightarrow K^- \pi^+ \chi_{c1}$ $\overline{K}^* \psi (3770) \pi^+$ F [139] $X(4250)^{\pm}$ [138] $\overline{B}^0 \rightarrow K^- \pi^+ \chi_{c1}$ $\overline{K}_2^* \psi (3770) \pi^+$ F [139] $Z_b(10610)$ [34] $e^+e^- \rightarrow \Upsilon(1S) \pi^+ \pi^ B_j^* \overline{B}^* B$ F [128] Structures Processes Loops I/F Refs. 2.1 GeV [141] $\gamma p^+ \rightarrow N^*(2030) \rightarrow K^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [142] 2.1 GeV $\pi^- p^+ \rightarrow K^0 \Lambda(1405)$, $pp \rightarrow pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [142] 2.1 GeV $\pi^- p^+ \rightarrow K^0 \Lambda(1405)$, $pp \rightarrow pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [142] 2.1 GeV $\pi^- p^+ \rightarrow K^0 \Lambda(1405)$, $pp \rightarrow pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [142] 2.1 GeV $\pi^- p^+ \rightarrow K^0 \Lambda(1405)$, $pp \rightarrow pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [143] 1.88 GeV $\Lambda_c^+ \to \pi^+ \pi^0 \pi \Sigma$ $\overline{K}^* N \overline{K}$ I [144] 2.1 GeV I $N(1700) \to \pi \Delta$ $\rho N \pi$ I [144] $N(1700)$ [10] $N(1700) \to \pi \Lambda$ $\overline{\Sigma}^* K \Lambda$ I [144]	$Z_{c}(4200)$ [136,137]	$\bar{B}^0 \rightarrow K^- \pi^+ \psi(2S)$	$\bar{K}_{3}^{*}\psi(3770)\pi^{+}$	F	[135]
$X(4050)^{\pm}$ [138] $\overline{B}^{0} \to K^{-}\pi^{+}\chi_{c1}$ $\overline{K}^{*0}X\pi^{+}$ F [139] $X(4250)^{\pm}$ [138] $\overline{B}^{0} \to K^{-}\pi^{+}\chi_{c1}$ $\overline{K}^{2}\psi(3770)\pi^{+}$ F [139] $Z_{b}(10610)$ [34] $e^{+}e^{-} \to \Upsilon(1S)\pi^{+}\pi^{-}$ $B_{J}^{*}\overline{B}^{*}B$ F [128] Structures Processes Loops I/F Refs. 2.1 GeV [141] $\gamma p^{+} \to N^{*}(2030) \to K^{+}\Lambda(1405)$ $K^{*}\Sigma\pi$ I [142] 2.1 GeV $\pi^{-}p^{+} \to K^{0}\Lambda(1405)$, $pp \to pK^{+}\Lambda(1405)$ $K^{*}\Sigma\pi$ I [142] 2.1 GeV $\pi^{-}p^{+} \to K^{0}\Lambda(1405)$, $pp \to pK^{+}\Lambda(1405)$ $K^{*}\Sigma\pi$ I [143] 1.88 GeV $\Lambda_{c}^{+} \to \pi^{+}\pi^{0}\pi\Sigma$ $\overline{K}^{*N}\overline{K}$ I [144] 1.88 GeV $\Lambda_{c}^{+} \to \pi^{+}\pi^{0}\pi\Sigma$ $\overline{K}^{*N}\overline{K}$ I [144] N(1700) [10] N(1700) $\to \pi\Delta$ $\rho N\pi$ I [144] N(1875) [10] N(1875) $\to \pi N(1535)$ $\Sigma^{*}K\Lambda$ I [144] 2.2 GeV [152] $\Lambda_{c}^{+} \to \pi^{0}\phi p$ $\Sigma^{*}K\Lambda$ I [144] 2.2 GeV [152] $\Lambda_{c}^{+} \to \pi^{0}\phi p$ $\Sigma^{*}K\Lambda$ F [153] <td></td> <td>$\Lambda_b^0 \to p \pi^- I/\psi$</td> <td>$N^{2}\psi(3770)\pi^{-}$</td> <td>F</td> <td>[135]</td>		$\Lambda_b^0 \to p \pi^- I/\psi$	$N^{2}\psi(3770)\pi^{-}$	F	[135]
$X(4250)^{\pm}$ [138] $\overline{B}^0 \to K^- \pi^+ \chi_{c1}$ $\overline{K}_2^* \psi(3770)\pi^+$ F [139] $Z_b(10610)$ [34] $e^+e^- \to \Upsilon(1S)\pi^+\pi^ B_j^* \overline{B}^* B$ F [128] Structures Processes Loops I/F Refs. 2.1 GeV [141] $\gamma p^+ \to N^*(2030) \to K^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [142] 2.1 GeV $\pi^- p^+ \to K^0 \Lambda(1405)$, $pp \to pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [143] 1.88 GeV $\Lambda_c^+ \to \pi^+ \pi^0 \pi \Sigma$ $\overline{K}^* N \overline{K}$ I [144] 1.88 GeV $\Lambda_c^+ \to \pi^+ \pi^0 \pi \Sigma$ $\overline{K}^* N \overline{K}$ I [144] N(1700) [10] N(1700) $\to \pi \Delta$ $\rho N \pi$ I [144] N(1700) [10] N(1875) $\to \pi N(1535)$ $\Sigma^* K \Lambda$ I [144] $\Lambda(1700)$ [148–150] $\gamma p \to \Delta(1700) \to \pi N(1535)$ $\Sigma^* K \Lambda$ I [147] 2.2 GeV [152] $\Lambda_c^+ \to \pi^0 \phi p$ $\Sigma^* K^* \Lambda$ F [153] I.6 GeV [154,155] $\Lambda_c^+ \to \pi^+ K^- p$ $a_0 \Lambda \eta, \Sigma^* \eta \Lambda$ F [156] $P_c(4450)$ [35] $\Lambda_0^+ \to K^- J/\psi p$ $\Lambda(1800) \chi_{c1} p$ F [156] $P_c(4450)$ [35] $\Lambda_0^+ \to K^- J/\psi p$ $N(1900) \chi_$	$X(4050)^{\pm}$ [138]	$\bar{B}^0 \rightarrow K^- \pi^+ \chi_{c1}$	$\bar{K}^{*0}X\pi^+$	F	[139]
$Z_b(10610)$ [34] $e^+e^- \to \Upsilon(1S)\pi^+\pi^ B_j^2 \bar{B}^* B$ F [128] Structures Processes Loops I/F Refs. 2.1 GeV [141] $\gamma p^+ \to N^*(2030) \to K^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [142] 2.1 GeV $\pi^-p^+ \to K^0 \Lambda(1405)$, $pp \to pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [143] 2.1 GeV $\pi^-p^+ \to K^0 \Lambda(1405)$, $pp \to pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [143] 2.1 GeV $\pi^-p^+ \to K^0 \Lambda(1405)$, $pp \to pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [143] 2.1 GeV $\pi^-p^+ \to K^0 \Lambda(1405)$, $pp \to pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [143] 2.1 GeV $\Lambda_c^+ \to \pi^+ \pi^0 \pi \Sigma$ $\bar{K}^* N \bar{K}$ I [144] 1.88 GeV $\Lambda_c^+ \to \pi^+ \pi^0 \pi \Sigma$ $\bar{K}^* N \bar{K}$ I [144] N(1700) [10] $N(1700) \to \pi \Delta$ $\rho N \pi$ I [144] N(1875) [10] $N(1875) \to \pi N(1535)$ $\Sigma^* K \Lambda$ I [144] $\Lambda(1700)$ [148–150] $\gamma p \to \Delta(1700) \to \pi N(1535) \to p \pi^0 \eta$ $\Delta \eta p$ I [151] 2.2 GeV [152] $\Lambda_c^+ \to \pi^+ K^- p$ $a_0 \Lambda \eta, \Sigma^* \eta \Lambda$ F [156]	$X(4250)^{\pm}$ [138]	$\bar{B}^0 \rightarrow K^- \pi^+ \chi_{c1}$	$\bar{K}_{2}^{*}\psi(3770)\pi^{+}$	F	[139]
Structures Processes Loops I/F Refs. 2.1 GeV [141] $\gamma p^+ \rightarrow N^*(2030) \rightarrow K^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [142] 2.1 GeV $\pi^- p^+ \rightarrow K^0 \Lambda(1405), pp \rightarrow pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [143] 2.1 GeV $\pi^- p^+ \rightarrow K^0 \Lambda(1405), pp \rightarrow pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [143] 2.1 GeV $\pi^- p^+ \rightarrow K^0 \Lambda(1405), pp \rightarrow pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [143] 2.1 GeV $\pi^- p^+ \rightarrow K^0 \Lambda \Sigma$ $\bar{K}^* N \bar{K}$ I [144] 2.1 GeV $\Lambda_c^+ \rightarrow \pi^+ \pi^0 \pi \Sigma$ $\bar{K}^* N \bar{K}$ I [144] 1.88 GeV $\Lambda_c^+ \rightarrow \pi^+ \pi^0 \pi \Sigma$ $\bar{K}^* N \bar{K}$ I [144] N(1700) [10] $N(1700) \rightarrow \pi \Delta$ $\rho N \pi$ I [144] N(1875) [10] $N(1875) \rightarrow \pi N(1535)$ $\Sigma^* K \Lambda$ I [147] $\Delta(1700)$ $148-150$ $\gamma p \rightarrow \Delta(1700) \rightarrow \pi N(1535) \rightarrow p \pi^0 \eta$ $\Delta \eta p$ I [151] 2.2 GeV [152] $\Lambda_c^+ \rightarrow \pi^+ K^- p$ $a_0 \Lambda \eta, \Sigma^* \eta \Lambda$ F [156] 1.6 GeV [154,155] $\Lambda_c^+ \rightarrow \pi^+ K^- p$	$Z_{b}(10610)$ [34]	$e^+e^- \rightarrow \Upsilon(1S)\pi^+\pi^-$	$B_{i}^{*}\overline{B}^{*}B$	F	[128]
2.1 GeV [141] $\gamma p^+ \to N^*(2030) \to K^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [142] 2.1 GeV $\pi^- p^+ \to N^* \Lambda(1405)$, $pp \to pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [143] 2.1 GeV $\pi^- p^+ \to K^0 \Lambda(1405)$, $pp \to pK^+ \Lambda(1405)$ $K^* \Sigma \pi$ I [143] 1.88 GeV $\Lambda_c^+ \to \pi^+ \pi^0 \pi \Sigma$ $\bar{K}^* N \bar{K}$ I [144, 145]^a N(1700) [10] N(1700) $\to \pi \Delta$ $\rho N \pi$ I [146] N(1875) [10] N(1875) $\to \pi N(1535)$ $\Sigma^* K \Lambda$ I [147] $\Lambda(1700) [148-150]$ $\gamma p \to \Delta(1700) \to \pi N(1535) \to p \pi^0 \eta$ $\Delta \eta p$ I [151] 2.2 GeV [152] $\Lambda_c^+ \to \pi^+ K^- p$ $a_0 \Lambda \eta, \Sigma^* \eta \Lambda$ F [153] 1.66 GeV [154,155] $\Lambda_c^+ \to \pi^+ K^- p$ $a_0 \Lambda \eta, \Sigma^* \eta \Lambda$ F [156] $P_c(4450) [35]$ $\Lambda_b^0 \to K^- J/\psi p$ $\Lambda(1890) \chi_{c1} p$ F [159] Peaks relevant for P_c $\Lambda_b^0 \to K^- I/\psi p$ $\bar{P}_c \Lambda_c^{(*)} \bar{P}^{(*)}$ F [36, 158]	Structures	Processes	Loops	I/F	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 CeV [141]	$2n^{+} \rightarrow N^{*}(2030) \rightarrow K^{+} \Lambda(1405)$	Γ- Κ* Σπ	-,- I	[142]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1 GeV	$\pi^- n^+ \rightarrow K^0 \Lambda(1405)$ $nn \rightarrow nK^+ \Lambda(1405)$	$K^* \Sigma \pi$	I	[143]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.88 CeV	$\Lambda^+ \rightarrow \pi^+ \pi^0 \pi \Sigma$	$\bar{K}^* N \bar{K}$	I	[144 145] ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1700) [10]	$N_c \rightarrow \pi \Lambda \pi \Sigma$ $N(1700) \rightarrow \pi \Lambda$	$\rho N \pi$	I	[146]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1875) [10]	$N(1875) \rightarrow \pi N(1535)$	$\Sigma^* K \Lambda$	Ī	[147]
$\begin{array}{cccc} 2.2 & \text{GeV} [152] & \Lambda_c^+ \to \pi^0 \phi p & \Sigma^* K^* \Lambda & \text{F} & [153] \\ 1.66 & \text{GeV} [154,155] & \Lambda_c^+ \to \pi^+ K^- p & a_0 \Lambda \eta, \Sigma^* \eta \Lambda & \text{F} & [156] \\ P_c(4450) [35] & \Lambda_b^0 \to K^- J/\psi p & \Lambda(1890)\chi_{c1}p & \text{F} & [157-160]^b \\ \end{array}$ Peaks relevant for $P_c & \Lambda_b^0 \to K^- J/\psi p & \bar{D}_{c1} \Lambda_c^{(*)} \bar{D}^{(*)} & \text{F} & [36,158] \\ \end{array}$	$\Lambda(1700)$ [148–150]	$\gamma n \rightarrow \Lambda(1700) \rightarrow \pi N(1535) \rightarrow n \pi^0 n$	Δnn	ī	[151]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2 GeV [152]	$\Lambda^+ \to \pi^0 \phi n$	$\Sigma^* K^* \Lambda$	F	[153]
$P_{c}(4450) [35] \qquad \Lambda_{b}^{c} \rightarrow K^{-}J/\psi p \qquad \qquad \Lambda(1890)\chi_{c1}p \qquad F \qquad [157-160]^{b} \\ N(1900)\chi_{c1}p \qquad F \qquad [159] \\ Peaks relevant for P_{c} \qquad \Lambda_{b}^{0} \rightarrow K^{-}I/\psi p \qquad \qquad \bar{D}_{c1}\Lambda_{c}^{(*)}\bar{D}^{(*)} \qquad F \qquad [36,158] \\ \end{array}$	1.66 GeV [154.155]	$\Lambda^c_+ \to \pi^+ K^- p$	$a_0 \Lambda n, \Sigma^* n \Lambda$	F	[156]
Peaks relevant for P_r $\Lambda_b^0 \rightarrow K^- I/\psi p$ $\bar{D}_{el} \Lambda_c^{(*)} \bar{D}^{(*)}$ F [36,158]	$P_{c}(4450)$ [35]	$\Lambda^0_{\rm h} \to K^- I/\psi p$	$\Lambda(1890)\chi_{c1}p$	F	[157–160] ^b
Peaks relevant for P_c $\Lambda_b^0 \to K^- I/\psi p$ $\bar{D}_{cl} \Lambda_c^{(*)} \tilde{D}^{(*)}$ F [36,158]		-b $-b$ $-b$ $-b$	$N(1900)\chi_{c1}p$	F	[159]
	Peaks relevant for Pr	$\Lambda_b^0 \to K^- I/\psi p$	$\bar{D}_{sl} \Lambda_{c}^{(*)} \bar{D}^{(*)}$	F	[36,158]

Reviewed in FKG, X.-H. Liu, S. Sakai, PPNP 112 (2020) 103757

Example: $Z_c(3900)$

Scalar 3-point $D_1\overline{D}D^*$ loop

Sum of $D_1\overline{D}D^*$, $D_1\overline{D}^*D^*$, $D_2\overline{D}^*D^*$ loops

TSs for $Z_c(3900)$: Wang et al. (2013); Albaladejo et al. (2015); JPAC(2016); Gong et al. (2018) Despite the TSs, the $Z_c(3900)$ is still needed, see also the talk by I. Danilkin

Line shape

1.5

1.0

0.5

0.0

Peak fixed at the TS energy:

δ (keV)	$E_{X\gamma}^{\mathrm{TS}}$ (MeV)		
-180	4015.2 - i0.1		
-50	4015.7 - i0.2		
0	4016.0 - i0.4		

Cross section estimate: $p\bar{p} \rightarrow \gamma X(3872)$

S. Sakai, H.-J. Jing, FKG, PRD 102 (2020) 114041

• $\sigma(p\bar{p} \to \gamma X) \times \mathcal{B}(X \to J/\psi \pi^+\pi^-) = \mathcal{O}(10 \text{ pb})$

• $\mathcal{O}(2 \times 10^3)$ events taking into account $\mathcal{B}(J/\psi \to \ell^+ \ell^-) \simeq 12\%$ for an integrated luminosity of 2 fb⁻¹ at PANDA PANDA PANDA, EPJA55(2019)42

• Directly probe δ , uncertainty can be smaller than that of the $D^{(*0)}$ masses

Effects of energy resolution studied in P. G. Ortega, E. Ruiz Arriola, arXiv:2007.11608

Other works on TS effects for X(3872)

Talk by E. Braaten

$B \rightarrow K\pi X(3872)$

E. Braaten, L.-P. He, K. Ingles, Phys.Rev.D 100 (2019) 074028

- S. Sakai, E. Oset, FKG, Phys.Rev.D 101 (2020) 054030
- S. Nakamura, Phys.Rev.D 102 (2020) 074004

Production of X(3872) at hadron collider

E. Braaten, L.-P. He, K. Ingles, Phys.Rev.D 100 (2019) 094006

$e^+e^-\to\gamma X(3872)$

E. Braaten, L.-P. He, K. Ingles, Phys.Rev.D 101 (2020) 014021

$e^+e^- \to \gamma D^0 \overline{D}{}^{*0}$

E. Braaten, L.-P. He, K. Ingles, Phys.Rev.D 101 (2020) 096020

• X(3872): strong coupling to $D^0\overline{D}^{*0}$

Unavoidably extended, large radius, $r_X \simeq \frac{1}{\sqrt{2\mu_0 \delta}} \gtrsim 10 \text{ fm}$

- The same order as the Bohr radius of Coulomb bound state of D^-D^{*+} , D^+D^{*-} : hadronic atoms $r_B = \frac{1}{\alpha\mu_c} = 27.86 \text{ fm}$
- $\mu_0 = \frac{m_{D^0} m_{D^{*0}}}{\Sigma_0} \quad \mu_c = \frac{m_D m_{D^*}}{\Sigma_c} \quad \text{thresholds: } \Sigma_{0,c}$ • Coulomb binding energies: $E_n = \frac{\alpha^2 \mu_c}{2n^2} = \frac{25.81 \text{ keV}}{n^2}$
- Nor Nor Nor

- For production: the more extended, the more difficult to be produced. ($\sigma \propto \delta^{1/2}$)
- X atom: The ground state $D^{-}D^{*+} D^{+}D^{*-}$ atom with C = +; correction due to strong interaction

• Nonrelativistic effective field theory (NREFT) for coupled channels:

 \succ 1⁺⁺ $D^0 \overline{D}^{*0}$

- > $1^{++} D^+ D^{*-}$, the Green function contains both Coulomb bound states and continuum
- Around the threshold, LO in NREFT: constant contact terms for strong interaction

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{\phi = D^{\pm}, D^{0}, \bar{D}^{0}} \phi^{\dagger} \left(iD_{t} - m_{\phi} + \frac{\nabla^{2}}{2m_{\phi}} \right) \phi \\ &+ \sum_{\phi = D^{*\pm}, D^{*0}, \bar{D}^{*0}} \phi^{\dagger} \left(iD_{t} - m_{\phi} + i\frac{\Gamma_{\phi}}{2} + \frac{\nabla^{2}}{2m_{\phi}} \right) \phi \\ &- \frac{\mathcal{C}_{0}}{2} (D^{+} D^{*-} - D^{-} D^{*+})^{\dagger} (D^{+} D^{*-} - D^{-} D^{*+}) \\ &- \frac{\mathcal{C}_{0}}{2} \left[(D^{+} D^{*-} - D^{-} D^{*+})^{\dagger} (D^{0} \bar{D}^{*0} - \bar{D}^{0} D^{*0}) + \text{h.c.} \right] \\ &- \frac{\mathcal{C}_{0}}{2} (D^{0} \bar{D}^{*0} - \bar{D}^{0} D^{*0})^{\dagger} (D^{0} \bar{D}^{*0} - \bar{D}^{0} D^{*0}) + \cdots, \end{aligned}$$

- Approximation: Isospin-1 strong interaction neglected
 - No isovector state was found
 - Isospin breaking in the couplings is small: Hanhart et al., PRD85(2012)011501

$$\frac{g_{X\rho}}{g_{X\omega}} = 0.26^{+0.08}_{-0.05}$$

• The T-matrix for positive C parity channels: $T(E) = V[1 - G(E)V]^{-1}$

$$V = C_0 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad G(E) = \begin{pmatrix} J_0(E) & 0 \\ 0 & J_c(E) + J_{|\Psi\rangle}(E) \end{pmatrix}$$

$$J_{0}(E) = \frac{\mu_{0}}{2\pi} \left(-\frac{2\Lambda}{\pi} + \sqrt{-2\mu_{0}(E + \Delta + i\Gamma_{0}/2)} \right), \quad \text{(b)} \quad \Delta = \Sigma_{c} - \Sigma_{0}$$
$$J_{c}(E) = \frac{\mu_{c}}{2\pi} \left(-\frac{2\Lambda}{\pi} + \sqrt{-2\mu_{c}(E + i\Gamma_{c}/2)} \right), \quad \text{(c)}$$
$$J_{|\Psi\rangle}(E) = \sum_{n=1}^{\infty} \frac{\alpha^{3}\mu_{c}^{3}}{\pi n^{3}} \frac{1}{E + E_{n} + i\Gamma_{c}/2}, \quad \sum_{n=1}^{\Sigma^{\Psi_{n}}} \text{(c)}$$

• The T-matrix has infinity of poles: X(3872), hadronic atoms

$$T(E) = \frac{1}{C_0^{-1} - \left[J_0(E) + J_c(E) + J_{|\Psi\rangle}(E)\right]} \begin{pmatrix} 1 & 1\\ 1 & 1 \end{pmatrix}$$

Renormalization: $C_{0R}^{-1}=C_0^{-1}+\Lambda(\mu_0+\mu_c)/\pi^2$

• X atom binding energy and decay width (due to decays of D^{*-} and into $D^0 \overline{D}^{*0}$)

$$\operatorname{Re} E_{A1} = E_{1} - \frac{\alpha^{3} \mu_{c}^{2}}{\sqrt{2\mu_{c}\Delta}} \simeq 22.92 \text{ keV} \qquad \underbrace{M_{A1} = (3879.89 \pm 0.07) \text{ MeV}}_{A_{1}} = G_{1} - \frac{\alpha^{3} \mu_{c}^{2}}{\sqrt{2\mu_{c}\Delta}} = (89.2 \pm 1.8) \text{ keV}$$

$$\Gamma_{c} + 2 \operatorname{Im} E_{A1} = \Gamma_{c} + \frac{2\alpha^{3} \mu_{c}^{2}}{\sqrt{2\mu_{c}\Delta}} = (89.2 \pm 1.8) \text{ keV}$$

$$(83.4 \pm 1.8) \text{ KeV}$$

$$(83.4 \pm 1.8) \text{ KeV}$$

$$\int_{D^{4}} \int_{D^{4}} \int_{D^$$

- Productions of the X(3872) and the X atom
- Scale separation: factorization

Braaten, Kusunoki, PRD72(2005)014012

$$\mathcal{A}_{B^+ \to AK^+} = \mathcal{A}_{B^+ \to (DD^*)_+K^+}^{\text{s.d.}} g_{A1,\text{str}}$$
$$\mathcal{A}_{B^0 \to XK^0} = \mathcal{A}_{B^0 \to (DD^*)_+K^0}^{\text{s.d.}} g_X,$$

 Isospin symmetry: the short-distance parts are the same, productions of the X(3872) and the X atom are related

$$R_{\Gamma} \equiv \frac{\Gamma_{B^+ \to AK^+}}{\Gamma_{B^0 \to XK^0}} = \frac{|g_{A1,\text{str}}|^2}{|g_X|^2} \qquad R_{\sigma} \equiv \frac{d\sigma_{pp \to A+y}}{d\sigma_{pp \to X+y}} = \frac{|g_{A1,\text{str}}|^2}{|g_X|^2}$$

- Production rate for the X atom: $R_{\Gamma} \simeq R_{\sigma} \gtrsim 1 \times 10^{-3}$
- Null signal leads to a lower bound on the X(3872) binding energy

$$\delta \simeq \frac{0.25 \text{ eV}}{R_{\Gamma}^2} \simeq \frac{0.25 \text{ eV}}{R_{\sigma}^2}$$

• In memory of Misha Voloshin

Conclusion

Triangle singularity effects are sensitive to energies:

TS-induced peak for the initial-state (final-state) energy distribution may be checked by varying the invariant mass of final (initial) states

- The X(3872) has been discovered for 17 years, debates continue
- New ideas regarding X(3872):
 - Measuring the binding energy using TS, uncertainty not limited by that of D^{(*)0} masses, best at PANDA (high production rate and high energy resolution)
 - X atom can be used to set a lower limit on the X(3872) binding energy and to settle the debates regarding the production

Thank you for your attention! EFT, models

Experiments Lattice

Features of TS

While a resonance would persist independent of energy.

Cross section estimate (not precise prediction): S. Sakai, H.-J. Jing, FKG, arXiv:2008.10829

• Consider $e^+e^- \to \psi(4230) \to \pi^0 Z_c(4020)^0 \to \pi^0 \gamma X(3872)$,

• Consider $X(3872) \to J/\psi \pi^+ \pi^-$ with a X(3872) width of 100 keV take $\mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-) = 4.1\%$ BABAR, PRL124(2020)152001

The cross section can be higher at higher energies, e.g. above 4.4 GeV, but seems still difficult for STCF... 27

$B \rightarrow K\pi X(3872)$

 $Z_{c}(3900)$

Example: $D_1\overline{D}D^* + c.c.$ triangles relevant for an analysis of $Z_c(3900): e^+e^- \to J/\psi\pi\pi$

• Importance of TS pointed out, but a $Z_c(3900)$ is still needed for $e^+e^- \rightarrow J/\psi \pi \pi$

Q.Wang, Hanhart, Q.Zhao, PRL111(2013)132002; PLB725(2013)106; Q.-R. Gong, J.-L. Pang, Y.-F. Wang, H.-Q. Zheng, EPJC78(2018)276

- Analyses of $e^+e^- \rightarrow J/\psi\pi\pi$, $D\overline{D}^*\pi$ data in Albaladejo, FKG, Hidalgo-Duque, Nieves, PLB755(2016)337
 - ✓ triangle diagrams
 - ✓ T-matrix for $J/\psi\pi$ $D\overline{D}^*$ coupled channels
 - ✓ T-matrix may or may not have a pole, data tell

```
used D-wave D_1(2420)D^*\pi coupling
```


$Z_{c}(3900)$

The T-matrix from the best has a pole

The same parameters produce FV energy levels consistent with lattice results by Prelovsek et al. Albaladejo, Fernandez-Soler, Nieves, EPJC76(2016)573 $Z_c(3900)$

Pilloni et al. (JPAC), PLB772(2017)200

3.90

3.95

4.00

m(DD*) (GeV)

4.05

used S-wave $D_1(2420)D^*\pi$ coupling

3.3

3.4

3.5

3.6 3.7 3.8

m(J/ψ π) (GeV)

3.9

4.0

4.1

3.2

4.10

4.10

$Z_{c}(3900)$

32

Complications in resonance searching due to TS

- Difficulties for multi-hadron final states
 - ✓ Many resonances from the cross channel:

branching fractions often unknown, interference between overlapping resonances, ...

✓ Complicated 3-body FSI:

intermediate states can be different from external ones; threshold cusps; triangle singularities

Kinematical singularities (threshold cusp, TS) and resonances are NOT exclusive

Schmid theorem

34

Schmid, PR154(1967)1363; Debastiani, Sakai, Oset, EPJC79(2019)69; FKG, Liu, Sakai, arXiv:1912.07030

Channels with both tree-level and triangle diagrams: interference may give rich structure

