

Insights on the Z_b(10610) and Z_b(10650) from the dipion decays

Vadim Baru

Institut für Theoretische Physik II, Ruhr-Universität Bochum Germany

ITEP, Moscow, Russia

EMMI Workshop

Experimental and theoretical status of and perspectives for XYZ states

12-15 April 2021

based on

VB, E.Epelbaum, A.A.Filin, C.Hanhart, R.V. Mizuk, A.Nefediev, and S. Ropertz

Phys. Rev. D 103, 034016 (2021)

$Z_b(10610)$ and $Z_b(10650)$ from $\Upsilon(10860)$ decays at Belle

- $\Upsilon(10860) \to \pi\pi\Upsilon(nS), \quad n = 1, 2, 3$
- $\Upsilon(10860) \to \pi \pi h_b(mP), \quad m = 1, 2$

$$\Upsilon(10860) \to \pi B^{(*)} \bar{B}^*$$

– Invariant mass distributions in BB^* , B^*B^* and $h_b(mP)\pi$ channels

Bondar et al. PRL108, 122001(2012) Garmash et al.PRL116, 212001(2016) PRD91, 072003 (2015)

$Z_b(10610)$ and $Z_b(10650)$ from $\Upsilon(10860)$ decays at Belle

 $\Upsilon(10860) \to \pi\pi\Upsilon(nS), \quad n = 1, 2, 3$

 $\Upsilon(10860) \to \pi \pi h_b(mP), \quad m = 1, 2$

 $\Upsilon(10860) \to \pi B^{(*)} \bar{B}^*$

- Invariant mass distributions in BB^* , B^*B^* and $h_b(mP)\pi$ channels

- Dalitz plot for $\Upsilon(10860) \rightarrow \pi \pi \Upsilon(nS)$ and its projections to $\Upsilon(nS)\pi$ and $\pi\pi$

$Z_b(10610)$ and $Z_b(10650)$ from $\Upsilon(10860)$ decays at Belle

 $\Upsilon(10860) \to \pi\pi\Upsilon(nS), \quad n = 1, 2, 3$

 $\Upsilon(10860) \to \pi \pi h_b(mP), \quad m = 1, 2$

 $\Upsilon(10860) \to \pi B^{(*)} \bar{B}^*$

- Invariant mass distributions in BB^* , B^*B^* and $h_b(mP)\pi$ channels

- Dalitz plot for $\Upsilon(10860) \rightarrow \pi \pi \Upsilon(nS)$ and its projections to $\Upsilon(nS)\pi$ and $\pi\pi$

$Z_b(10610)$ and $Z_b(10650)$. Known Facts

- Location: very near S-wave thresholds of two hadrons $B\bar{B}^*$, $B^*\bar{B}^*$
- Dominant decays to these open-flavour channels
- $Z_{b}^{(\prime)}$ are clearly exotics: seen in charged modes $\pi^{\pm}h_{b}(mP), \pi^{\pm}\Upsilon(nS)$ \implies must be made of >4 quarks

•
$$\operatorname{Br}[\Upsilon(10860) \to \pi \pi h_b(mP)] \simeq \operatorname{Br}[\Upsilon(10860) \to \pi \pi \Upsilon(nS)]$$

Heavy quark spin flip No spin flip

Talk by Alexander Bondar on Monday

Natural explanation : (a) the decays go through Zb's and

(b) Zb's are molecules

$$|Z_b\rangle = -\frac{1}{\sqrt{2}} \left[(1^-_{b\bar{b}} \otimes \mathbf{0}^-_{q\bar{q}})_{S=1} + (0^-_{b\bar{b}} \otimes \mathbf{1}^-_{q\bar{q}})_{S=1} \right] |Z'_b\rangle = +\frac{1}{\sqrt{2}} \left[(1^-_{b\bar{b}} \otimes \mathbf{0}^-_{q\bar{q}})_{S=1} - (0^-_{b\bar{b}} \otimes \mathbf{1}^-_{q\bar{q}})_{S=1} \right]$$

Bondar, Garmash, Milstein, Mizuk, and Voloshin PRD 84, 054010 (2011)

 \implies $Z_b(10610)/Z_b(10650)$ are strong candidates for hadronic molecules

This Talk is about

• $Z_b(10610)$ and $Z_b(10650)$ from decays:

 $\Upsilon(10860) \to \pi Z_b^{(\prime)} \to \pi B^{(*)} \bar{B}^*$ $\Upsilon(10860) \to \pi Z_b^{(\prime)} \to \pi \pi h_b(mP)$

Wang, VB, Filin, Hanhart, Nefediev, and Wynen PRD 98, 074023 (2018)

- Simultaneous analysis of these line shapes in chiral EFT approach with coupled-channels
- Fixing LECs and extracting Z_b poles and residues
- Predictions for HQSS partners is not discussed here, see

VB, Epelbaum, Filin, Hanhart, Nefediev, and Wang PRD 99, 094013 (2019)

• Insights into the nature of the $Z_b(10610)$ and $Z_b(10650)$ from $\Upsilon(10860) \rightarrow \Upsilon(nS) \pi^+\pi^-$ (n=1,2,3)

VB, Epelbaum, Filin, Hanhart, Mizuk, Nefediev and Ropertz PRD103, 034016 (2021)

- Multichannel Dalitz plot analysis using the same EFT approach from above as input
- Focus is put on pipi/KK final-state interactions (FSI) and the consistency check

EFT for heavy-hadron molecules our work PRD 98, 074023 (2018)

Underlying idea: Forces are similar to NN potential Voloshin, Okun (1976 New insights: coupled-channel effects and consequences from HQSS

Goals: Analyse exp. line shapes including the energy range between $B\bar{B}^*$ and $B^*\bar{B}^*$ Tools: Coupled-channel potentials respecting HQSS and chiral symmetry

Elastic potential to a given order in Q/Λ_{h} :

typical soft scale Q $V_{LO}^{eff} = V_{LO}^{eff} + \frac{\pi, \eta}{\pi, \eta} + \frac{\eta}{\pi, \eta} + V_{LO}^{eff}$

Formalism for line shapes $\Upsilon(10860) \rightarrow \pi Z_b^{(')} \rightarrow \pi \alpha$

Production amplitudes for the events dominated by the Zb's poles:

$$T_{\alpha\beta} = V_{\alpha\beta}^{\text{eff}} - \sum_{\gamma} \int \frac{d^3q}{(2\pi)^3} V_{\alpha\gamma}^{\text{eff}} G_{\gamma} T_{\gamma\beta}$$

Input: experimental distributions for

$$\begin{split} \Upsilon(10860) &\to \pi Z_b^{(')} \to \pi \alpha \qquad \alpha = BB^*, \quad B^*B^*, \quad h_b(1P)\pi, \quad h_b(2P)\pi \\ \text{and branching fractions for} \quad \alpha = B\bar{B}^*, \ B^*\bar{B}^*, \quad h_b(1P)\pi, \ h_b(2P)\pi, \ \Upsilon(1S)\pi, \ \Upsilon(2S)\pi, \ \Upsilon(3S)\pi \\ \text{Belle: Bondar et al. (2012), Garmash et al. (2016)} \end{split}$$

Results: pionless theory at LO

our work: PRD 98, 074023 (2018)

Final remarks from $\Upsilon(10860) \rightarrow \pi Z_b^{(\prime)} \rightarrow \pi B^{(*)} B^* \rightarrow \pi \pi h_b(mP)$

	\mathbf{z}_{b}	DD	$(-2.3 \pm 0.3) = i(1.1 \pm 0.1)$	$(-1.2 \pm 0.2) + i(0.3 \pm 0.2)$
_	Z_b'	$B^*\bar{B}^*$	$(1.8\pm2.0)-i(13.6\pm3.1)$	$(1.5 \pm 0.2) - i(0.6 \pm 0.3)$

 1^{+}

• Production: contact and coupled-channel via B-meson loops, as formulated above

U is a *parameter-free input* from a simple but realistic pionless scheme

- Dispersive approach to account for the $\pi\pi$ -KK FSI
- Important consistency check with previous results!

Dispersion relations for $\pi\pi$ -KK FSI

S-wave projection:
$$M_0(s) = \frac{1}{2} \int_{-1}^{+1} dz \, M(s,t,u) \equiv M_0^L + M_0^R$$

Left-hand cut piece \downarrow Right-hand cut piece with FSI
 $\hat{M}_0(s) = \hat{M}_0^L(s) + \frac{\hat{\Omega}_0(s)}{\pi} \int_{4m_{\pi}^2}^{\infty} ds' \frac{\hat{\Omega}_0^{-1}(s')\hat{T}(s')\hat{\sigma}(s')\hat{M}_0^L(s')}{s'-s-i0}$

$$\pi\pi\text{-}\mathsf{K}\overline{\mathsf{K}} \text{ scattering amplitude:} \quad \hat{T}(s) = \begin{pmatrix} T_{\pi\pi\to\pi\pi} & T_{\pi\pi\to K\bar{K}} \\ T_{K\bar{K}\to\pi\pi} & T_{K\bar{K}\to K\bar{K}} \end{pmatrix} = \begin{pmatrix} \frac{\eta e^{2i\delta}-1}{2i\sigma_{\pi}} & ge^{i\psi} \\ ge^{i\psi} & \frac{\eta e^{2i(\psi-\delta)}-1}{2i\sigma_{K}} \end{pmatrix}$$

R. Garcia-Martin et al., PRD83, 074004 (2011), I. Caprini et al., EPJC72, 1860 (2012), P. Buettiker et al., EPJC33, 409 (2004), L.Y.Dai et al., PRD90, 036004 (2014).

Production via $\pi\pi$ mode:

 $\hat{M}_{0}^{L} = \left([M_{0}^{L}]_{\pi\pi}, 0 \right)^{T}$

Left-hand cut production amplitude

 $- Z_b(10610)/Z_b(10650)$ are poles in the coupled-channel amplitudes $M^L(t, u)$

Left-hand cut production amplitude

- $Z_b(10610)/Z_b(10650)$ are poles in the coupled-channel amplitudes $M^L(t, u)$

- Im $M_0^L(s)$: Leading contribution is from the $B^{(*)}\overline{B}^*$ cuts, these states can be on shell subleading one - from inelastic channels

Subtractions and matching to chiral contact amplitudes

$$\hat{M}_0(s) = \hat{M}_0^L(s) + \frac{\hat{\Omega}_0(s)}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{\hat{\Omega}_0^{-1}(s')\hat{T}(s')\hat{\sigma}(s')\hat{M}_0^L(s')}{s'-s-i0}$$

- Dispersive Integral is convergent but details of $\pi\pi$ at large s are known badly

 \implies 2 subtractions with real coefficients

- Im $M_0^L(s)$ is under control, since it is driven by the $B^{(*)}\overline{B}^*$ cuts from the finite region of s
- In contrast, 2 complex coefficients were used in a related study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ Molnar et al., PLB797, 134851 (2019)

Subtractions and matching to chiral contact amplitudes

$$\hat{M}_0(s) = \hat{M}_0^L(s) + \frac{\hat{\Omega}_0(s)}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{\hat{\Omega}_0^{-1}(s')\hat{T}(s')\hat{\sigma}(s')\hat{M}_0^L(s')}{s'-s-i0}$$

- Dispersive Integral is convergent but details of $\pi\pi$ at large s are known badly

 \implies 2 subtractions with real coefficients

- Im $M_0^L(s)$ is under control, since it is driven by the $B^{(*)}\overline{B}^*$ cuts from the finite region of s
- In contrast, 2 complex coefficients were used in a related study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ Molnar et al., PLB797, 134851 (2019)

Final results for M(s,t,u)

• All the parameters from a coupled-channel approach in $M^{L}(t,u)$ fixed from data to the decays $\Upsilon(10860) \rightarrow \pi Z_{b}^{(\prime)} \rightarrow \pi B^{(*)} \overline{B}^{*}$ and $\Upsilon(10860) \rightarrow \pi Z_{b}^{(\prime)} \rightarrow \pi \pi h_{b}(mP)$

• Parameters in the fits: overall normalization $\mathcal N$ and chiral LECs c1 and c2

Dalitz plot projections: Individual Contrib's. $\Upsilon(10860) \rightarrow \Upsilon(1S) \pi^+\pi^-$ 50 50 **(b)** $M^2(\pi^+\pi^-) > 0.2 \text{ GeV}^2/c^4$ **(a)** Events / (0.021 GeV²/c⁴) Events / (0.14 GeV²/c⁴) 40 40 30 30 20 20 10 10 0.0 102 0.5 1.5 104 106 108 110 112 114 116 1.0 2.0 $M^2(\pi^+\pi^-)$ [GeV²/c⁴] $M^2(\Upsilon(1S)\pi)_{max} [GeV^2/c^4]$

$$M^{L}(t, u) = U(t) + U(u) \quad \text{``Zb''}$$

Dalitz plot projections: Individual Contrib's. $\Upsilon(10860) \rightarrow \Upsilon(1S) \pi^{+}\pi^{-}$

Dalitz plot projections: Individual Contrib's. $\Upsilon(10860) \rightarrow \Upsilon(1S) \pi^+\pi^-$

Dalitz plot projections: Individual Contrib's. $\Upsilon(10860) \rightarrow \Upsilon(1S) \pi^+\pi^-$

Results for $M(\pi \Upsilon(nS))^2$ and $M(\pi \pi)^2$ projections

Results for $M(\pi \Upsilon(nS))^2$ and $M(\pi \pi)^2$ projections

- Peaks of the Z_b's, consistent with $B^{(*)}\overline{B}^*$ and $\pi\pi h_b(mP)$, are not exactly in accord with $\pi\Upsilon(nS)$

Summary

• A chiral EFT based analysis of $\Upsilon(10860) \to \pi Z_b^{(')} \to \pi B^{(*)} \overline{B}^* \to \pi \pi h_b(mP)$

 \implies poles and residues of the $Z_b(10610)$ and $Z_b(10650)$ are extracted

• An analysis of the Dalitz plots for $\Upsilon(10860) \to \pi Z_b^{(')} \to \pi \pi \Upsilon(nS)$

- The production amplitude w/o $\pi\pi$ FSI is taken from the EFT approach *parameter free*

— A dispersive approach to deal with crossed channels is employed: the $\pi\pi$ -KK FSI is calculated with the minimal number of parameters and Im parts being under control

 \implies A very reasonable description of the $\pi\pi$ and $\pi\Upsilon$ spectra serves as a good consistency check for the whole approach

Next steps: — A dispersive analysis including the OPEP

- A combined analysis of data in all channels within the same framework

Backup

Left-hand cut production amplitude

Left-hand cut production amplitude

- Im $M_0^L(s)$: Leading contribution is from the $B^{(*)}\overline{B}^*$ cuts, these states can be on shell subleading one - from inelastic channels