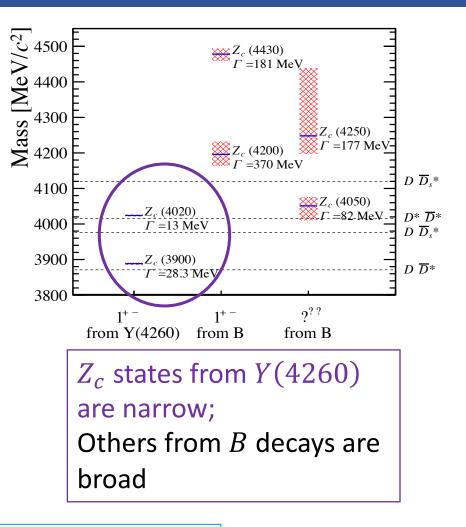


Z_{cs}^+ exotics in $B^+ o J/\psi \phi K^+$ decays at LHCb

Zehua Xu On behalf of the LHCb collaboration

Peking University

2021.04.14 @ GSI Darmstadt, Germany

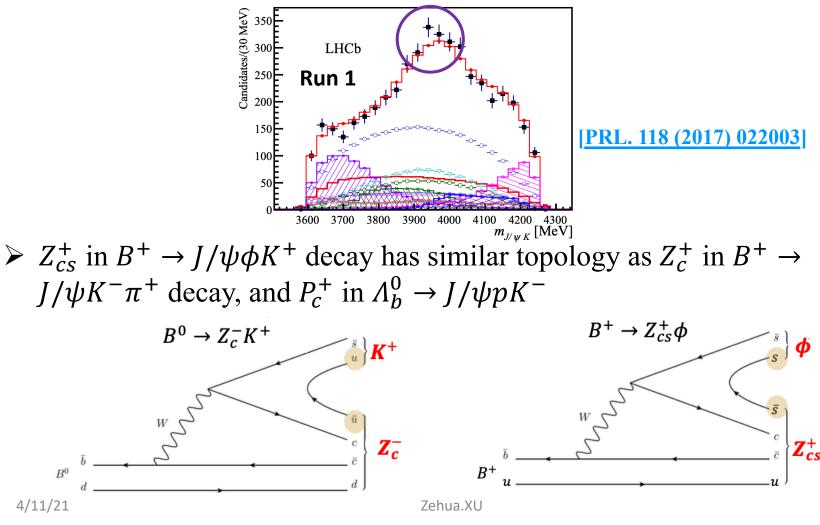

Experimental and theoretical status of and perspectives for XYZ states

Z_c and predictions of Z_{cs}

- Some Z_c states were observed from *B* decays or *Y*(4260)
- Several papers have predicted the existence of Z_{cs} states in early time:

[J. Korean Phys. Soc. 55 (2009) 424] [Phys. Rev. Lett. 110 (2013), no. 23 232001] [Phys. Rev. D 88 (2013), no. 9 096014] [Phys. Lett. B 798 (2019) 135022]

- The Z_{cs} states would be useful to distinguish different models:
 - > Less exchange particles expected in the Z_{cs} molecule picture

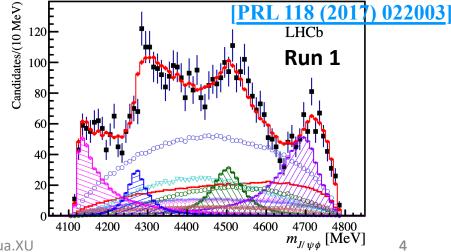


Finally, as pointed out in ref. [13], the meson-meson molecular model cannot be used to describe heavy-light tetraquarks with non-null strangeness content. The reason is that one-pion-exchange cannot take place between strange and nonstrange heavy mesons, like B and $B_{\rm s}$. Hidden-charm and bottom mesons with strangeness are also forbidden in the

[JHEP 04 (2020) 119]

Search for Z_{cs}^+ in $B^+ \rightarrow J/\psi \phi K^+$ decay

- First amplitude analysis for $B^+ \rightarrow J/\psi \phi K^+$ was studied at LHCb using Run 1 sample.
- > Hint of $J/\psi K^+$ structure in Run 1 analysis, but not significant

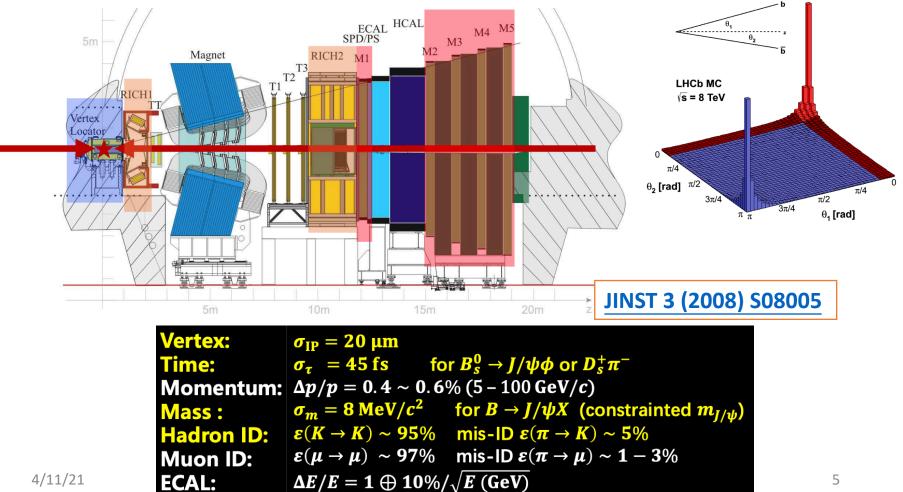

X states in $B^+ \rightarrow J/\psi \phi K^+$ decay

The width of X(4140) is $83 \pm 21^{+21}_{-14}$ MeV, larger than the value measured from other experiments.

[PRD 95 (2017) 012002]

Year	Experiment	$B ightarrow J\!/\psi\phi K$	X(4140) peak			
	luminosity	yield	Mass $[MeV]$	Width [MeV]	Sign.	Fraction $\%$
2008	CDF 2.7 fb ^{-1} [1]	58 ± 10	$4143.0 {\pm} 2.9 {\pm} 1.2$	$11.7^{+8.3}_{-5.0}{\pm}3.7$	3.8σ	
2009	Belle [22]	325 ± 21	4143.0 fixed	11.7 fixed	1.9σ	
2011	$CDF \ 6.0 \ fb^{-1} \ [29]$	115 ± 12	$4143.4 {}^{+2.9}_{-3.0}{\pm}0.6$	$15.3^{+10.4}_{-6.1}{\pm}2.5$	5.0σ	$14.9 \pm 3.9 \pm 2.4$
2011	LHCb 0.37 fb^{-1} [21]	346 ± 20	4143.4 fixed	15.3 fixed	1.4σ	< 7 @ 90%CL
2013	CMS 5.2 fb $^{-1}$ [25]	2480 ± 160	$4148.0 {\pm} 2.4 {\pm} 6.3$	$28 \ ^{+15}_{-11} \ \pm 19$	5.0σ	$10{\pm}3$ (stat.)
2013	D0 10.4 fb $^{-1}$ [26]	215 ± 37	$4159.0 {\pm} 4.3 {\pm} 6.6$	$19.9{\pm}12.6{}^{+1.0}_{-8.0}$	3.0σ	$21\pm8\pm4$
2014	BaBar [24]	189 ± 14	4143.4 fixed	15.3 fixed	1.6σ	< 13.3 @ 90%CL
2015	D0 10.4 fb $^{-1}$ [27]	$p\bar{p} \rightarrow J/\psi \phi$	$4152.5 {\pm} 1.7 {}^{+6.2}_{-5.4}$	$16.3 {\pm} 5.6 {\pm} 11.4$	4.7σ (5.7	(σ)
Average			$4147.1 {\pm} 2.4$	$15.7{\pm}6.3$		

Three other $J/\psi\phi$ structures, X(4274), X(4500) and X(4700) were observed in Run 1 analysis.

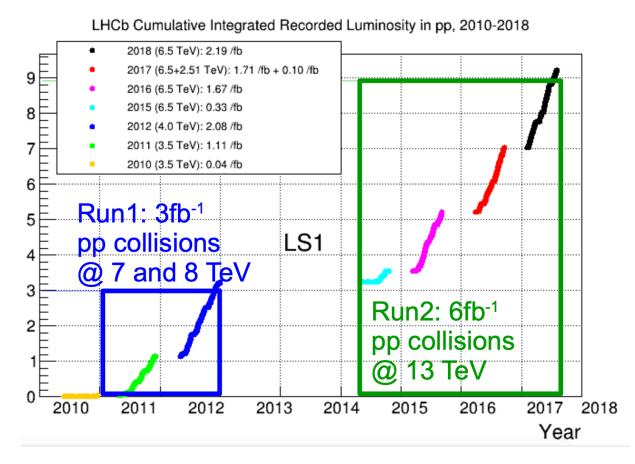


Zehua.XU

LHCb detector

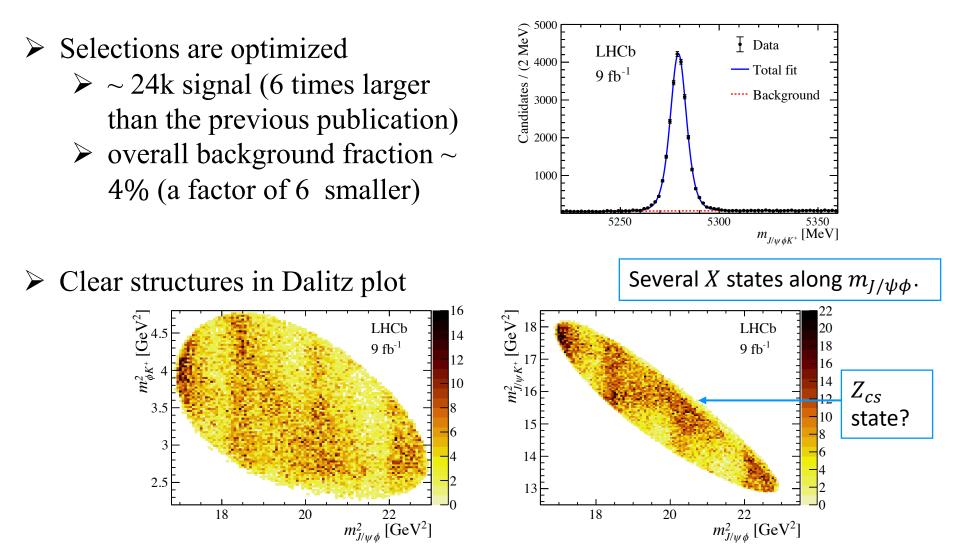
LHCb is a dedicated heavy flavor physics experiment at LHC

- ~20,000/s $b\overline{b}$ generated at LHCb point in Run 2
- A single-arm forward region spectrometer covering $2 < \eta < 5$



5

ECAL:


LHCb data taking

Large data sample used to study $B^+ \rightarrow J/\psi \phi K^+$ at LHCb

[Taken from LHCb public website]

Run 1 and Run 2 sample at LHCb

Clearly visible: 4 structures in $J/\psi\phi$ and an obvious structure in $J/\psi K$

4/11/21

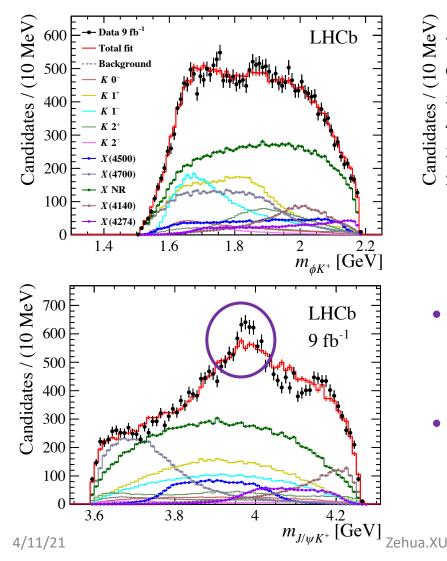
Zehua.XU

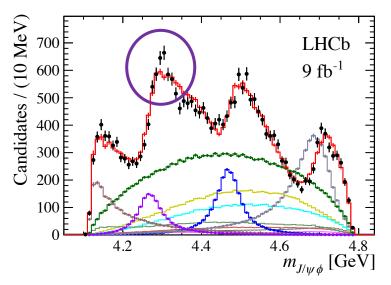
6-D amplitude fit approach

Signal and background components in PDF:

$$-\ln L(\overrightarrow{\omega}) = -\sum_{i} \ln \left[(1-\beta) \frac{\mathcal{P}_{\text{sig}}(m_{\phi K \ i}, \Omega_{i} | \overrightarrow{\omega}) + \beta \mathcal{P}_{\text{bkg}}(m_{\phi K \ i}, \Omega_{i}) \right]$$
$$= -\sum_{i} \ln \left[(1-\beta) \frac{\left| \mathcal{M}(m_{\phi K \ i}, \Omega_{i} | \overrightarrow{\omega}) \right|^{2} \Phi(m_{\phi K \ i}) \epsilon(m_{\phi K \ i}, \Omega_{i})}{I(\overrightarrow{\omega})} + \beta \frac{\mathcal{P}_{\text{bkg}}^{u}(m_{\phi K \ i}, \Omega_{i})}{I_{\text{bkg}}} \right]$$
$$= -\sum_{i} \ln \left[\left| \mathcal{M}(m_{\phi K \ i}, \Omega_{i} | \overrightarrow{\omega}) \right|^{2} + \frac{\beta I(\overrightarrow{\omega})}{(1-\beta)I_{\text{bkg}}} \frac{\mathcal{P}_{\text{bkg}}^{u}(m_{\phi K \ i}, \Omega_{i})}{\Phi(m_{\phi K \ i}) \epsilon(m_{\phi K \ i}, \Omega_{i})} \right] + N \ln I(\overrightarrow{\omega}) \cdot$$

➤ Each decay chain is described by 6 observables:

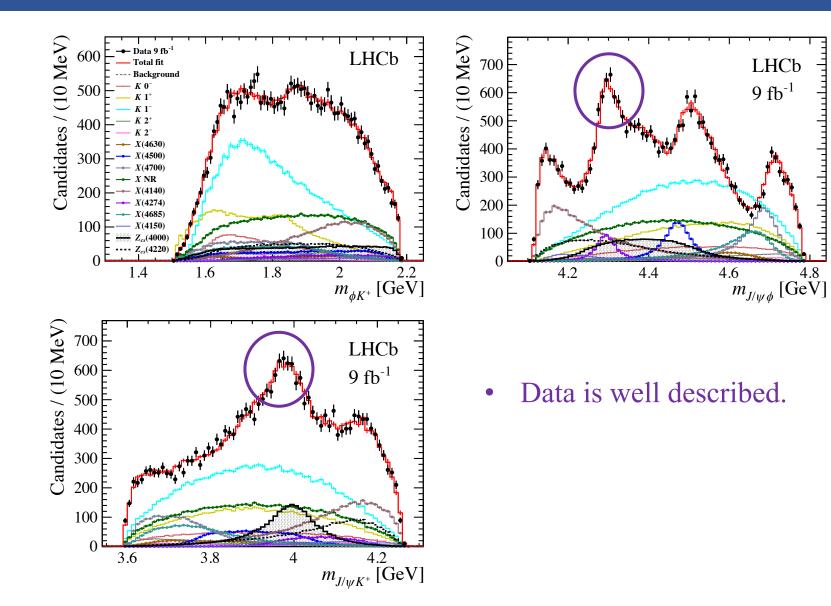

$$\Phi \equiv (m_{\phi K}, \theta_{K^*}, \theta_{J/\psi}, \dot{\theta}_{\phi}, \Delta \varphi_{K^*, J/\psi}, \Delta \varphi_{K^*, \phi})$$


Where θ denotes the helicity angle, and $\Delta \varphi$ is the angle between two decay chains.

Resonance lineshape: Breit-Wigner (default), simplified K-matrix or Flatté functions for systematic uncertainties.

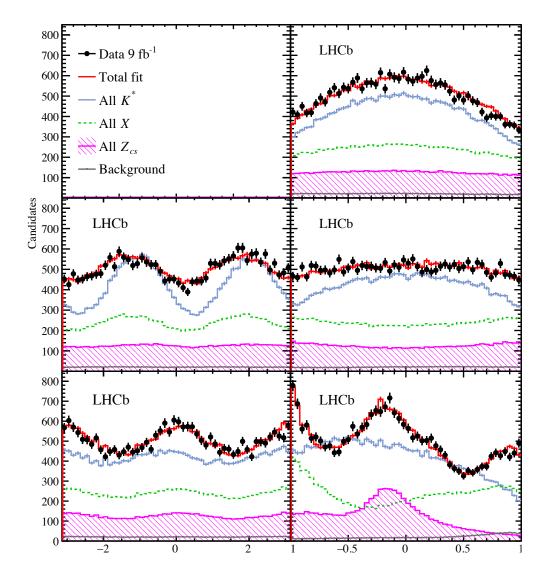
Run 1 model cannot fit well

The fit model of Run 1 analysis tested first: [PRL 118 (2017) 022003]



- Some deficiencies in describing the $m_{J/\psi\phi}$ and $m_{J/\psi K}$ are obvious.
- The fit model needs to be improved.

Test new exotics


- > Data cannot be described well by improving the K^* model
- > New exotic states (X and Z_{cs}^+) of different J^P were tested:
 - 1⁺ Z_{cs} and 1⁺ X, giving the largest improvements, were first included.
 - Several states giving large fit improvements were also included in the default model: a second Z_{cs} and X states
- > The default model includes $9K^* + 7X + 1X(NR) + 2Z_{cs}$

Default fit

Angular distributions

• Angular distributions in the ϕK decay chain are also well described.

	Contribution	Significance $[\times\sigma]$	$M_0[{ m MeV}]$	$\Gamma_0 [{ m MeV}]$	FF [%]	 Fit fraction
=	$X(2^{-})$					
	X(4150)	4.8 (8.7)	$4146\pm18\pm33$	$135\pm28{}^{+59}_{-30}$	$2.0\pm0.5{}^{+0.8}_{-1.0}$	
_	$X(1^{-})$					
	X(4630)	5.5(5.7)	$4626 \pm 16 {}^{+ 18}_{- 110}$	$174 \pm 27 {}^{+ 134}_{- 73}$	$2.6\pm0.5{}^{+2.9}_{-1.5}$	
	All $X(0^+)$				$20\pm5{}^{+14}_{-7}$	
	X(4500)	20(20)	$4474\pm3\pm3$	$77\pm6{}^{+10}_{-8}$	$5.6\pm0.7^{+2.4}_{-0.6}$	
	X(4700)	17 (18)	$4694 \pm 4 {}^{+ 16}_{- 3}$	$87\pm8{}^{+16}_{-6}$	$8.9 \pm 1.2 {}^{+4.9}_{-1.4}$	
_	$\mathrm{NR}_{J/\psi\phi}$	4.8(5.7)			$28\pm8{}^{+19}_{-11}$	
	All $X(1^+)$				$26\pm3^{+8}_{-10}$	
	X(4140)	13(16)	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162\pm21{}^{+24}_{-49}$	$17\pm3{}^{+19}_{-6}$	
	X(4274)	18 (18)	$4294 \pm 4 {}^{+ 3}_{- 6}$	$53\pm5\pm5$	$2.8\pm0.5{}^{+0.8}_{-0.4}$	
	X(4685)	15(15)	$4684 \pm 7 {}^{+ 13}_{- 16}$	$126 \pm 15 ^{+37}_{-41}$	$7.2 \pm 1.0 {}^{+4.0}_{-2.0}$	
_	All $Z_{cs}(1^+)$				$25\pm5^{+11}_{-12}$	
	$Z_{cs}(4000)$	15 (16)	$4003 \pm 6 {}^{+}_{-} {}^{4}_{14}$	$131\pm15\pm26$	$9.4\pm2.1\pm3.4$	
	$Z_{cs}(4220)$	5.9(8.4)	$4216\pm24{}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10\pm4{}^{+10}_{-7}$	

≻ Two $Z_{cs}^+ \rightarrow J/\psi K^+$ states were observed, both significance > 5σ

- > New X(4630) and X(4685) were observed, both significance > 5σ
- > Previous results using Run 1 sample were confirmed with large significance

J^P analysis

- "prefer" J^P gives best log-likelihood (ln \mathcal{L})
- The ln*L* difference between the "prefer" one and alternative hypotheses used to estimate significance:

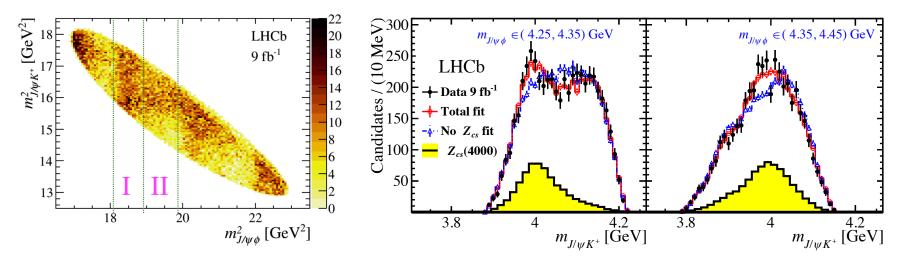
J ^P	0+	0-	1+	1-	2+	2-
X(4630)	6.7σ	5.3σ	5.8σ	prefer	5.9σ	3.0 σ
X(4500)	prefer	18σ	18σ	18σ	18σ	18σ
X(4700)	prefer	18σ	18σ	18σ	14σ	17σ
X(4140)	14σ	15σ	prefer	14σ	13σ	14σ
X(4274)	18σ	18σ	prefer	18σ	18σ	18σ
X(4685)	16σ	16 σ	prefer	15σ	16σ	15σ
$Z_{cs}(4000)$	-	17σ	prefer	17σ	15σ	16σ
$Z_{cs}(4220)$	-	8.6σ	prefer	2.4σ	4.9σ	5.7σ

- > J^P assignments to the previous 4X states are confirmed to be correct, with improved significance
- $\geq Z_{cs}(4000)$ and $X(4685) J^P$ are determined to be $1^+ > 15\sigma$.
- \succ J^P of the other two new X states not well determined (difference <5 σ).
- > $Z_{cs}(4220)$ 1⁺ and 1⁻ cannot be distinguished.

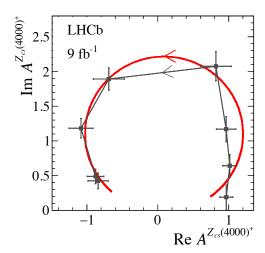
Following systematic sources are considered :

C		Z(4000)		X(4685)			
Source	M_0	Γ_0	\mathbf{FF}	M_0	Γ_0	\mathbf{FF}	
Fixed $M_0\&\Gamma_0$	-0.22	-3.60	-0.83	-0.14	2.72	0.25	
$\chi^2_{\rm IP}$ smearing	0.21	1.01	0.09	-0.53	1.11	0.12	
Right sideband	0.01	0.58	0.11	-0.13	1.07	-0.13	
Left sideband	-0.30	-1.16	-0.24	-0.09	-2.21	0.09	
$\beta = 0.043$	-0.06	-0.00	0.01	0.01	-0.70	-0.09	
$\beta = 0.037$	-0.02	0.26	0.02	-0.33	0.21	0.03	
L0 Trigger	0.45	0.58	0.19	-0.58	1.12	0.11	
PID efficiency	-1.06	-1.82	-0.69	-0.82	-4.42	-0.26	
MC size	2.39	9.93	1.54	3.02	7.00	0.65	
ϕ window	-4.71	-23.91	-2.75	8.60	-26.60	-1.17	
Non ϕ subtraction	-2.87	-18.39	-1.79	12.40	-39.80	-1.80	
Poly NR	-4.24	-16.36	-2.56	4.26	-22.07	-1.28	
$X \operatorname{NR}(1^+)$	1.49	-21.25	-2.53	-15.72	35.54	3.84	
$X \operatorname{NR}(2^+)$	2.16	3.09	1.26	1.88	-6.87	-0.03	
BW $d=1.5$	-0.29	-5.27	-0.58	0.29	1.55	2.14	
BW $d=4.5$	0.08	1.81	0.04	0.06	-3.53	-1.06	
L	2.75	-3.19	-1.18	2.45	-24.33	-1.48	
X(4140) Flatté	0.52	-2.80	-0.45	-3.77	15.14	1.37	
Extended model	-2.35	-6.66	-1.16	-3.61	-6.53	-0.94	
Additional X	-0.68	2.07	0.30	0.74	-3.11	-0.18	
$1^- Z$	-14.00	-21.09	-3.46	-9.41	-5.60	-1.52	
K^* BW	0.08	-0.66	-0.32	-0.06	-8.09	-0.82	
K-Matrix	-3.75	-20.80	-2.85	4.10	-11.95	-0.06	
$Z_{cs}(4000)$ Flatté	0.18		2.83	-0.85	2.79	0.18	
Background model	0.10	-0.32	-0.12	-1.04	-1.72	-0.15	
Total	(-14.26,	(-26.26,	(-3.43,	(-16.05,	(-40.85,	(-1.96,	
10001	+3.85)	+26.26)	+3.41)	+12.82)	+36.72)	+3.92)	

Details in Backup

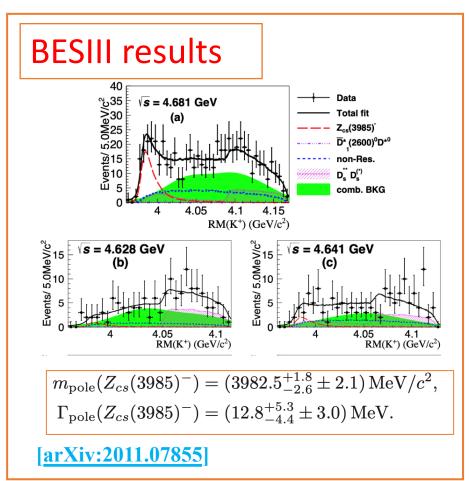

[arXiv:2103.01803]

Take the maximum deviation among the model variations, then add other sources in quadrature.


> Different J^P assignments of $Z_{cs}(4220)^+$ gives largest systematic uncertainty on $Z_{cs}(4000)^+$.

Z_{cs} results

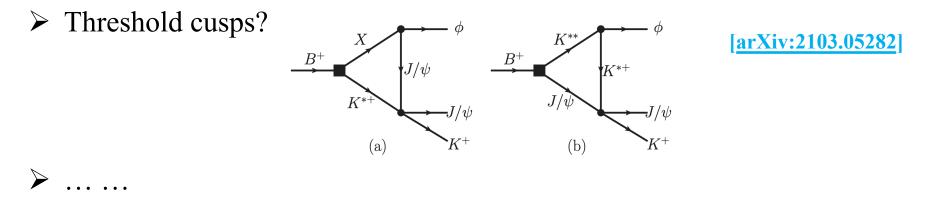
> The fit projection onto $m(J/\psi K^+)$ in two slices of $m(J/\psi \phi)$


Argand plot supports resonance character of $Z_{cs}(4000)^+$, obtained from lineshape-independent fitting.

4/11/21

Comparison with BESIII

- ► BESIII experiment recently reported 5.3σ observation of a very narrow Z_{cs}^- in $D_s D^* + D D_s^*$ mass distributions
- > Tests are applied:
 - Fix $Z_{cs}(4000)^+$ to BESIII's result, log-likelihood is much worse.
 - Adding $Z_{cs}(3985)^-$ on the default model almost doesn't improve the fit likelihood
- ➢ No evidence that Z_{cs}(4000)⁺ state is the same as the Z_{cs}(3985)[−] seen by BESIII.



Theory interpretations to $Z_{cs}^+(4000)$

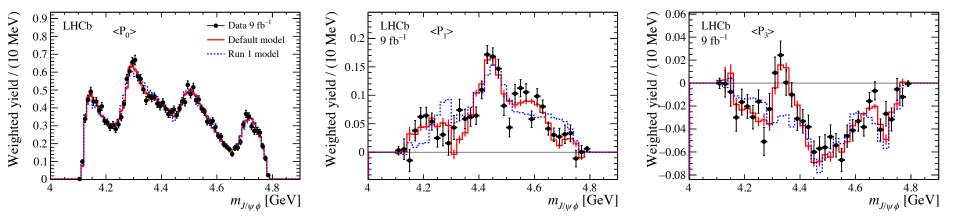
Compact tetraquark model?

 1^{++} 1^{+-} $# #s \text{ or } \bar{s}$ I_3 $X_{s\bar{s}}@4076$ X(4140)X(4140) + X(3872) $Z_{cs}(4003)$ Z_{cs}(3982) = 4009 $Z_{c}(3900)$ X(3872)Hadronic molecule? >[arXiv:2011.08725] [arXiv:2103.08586]

> $Z_{cs}(3985)$ and $Z_{cs}(4000)$ are same state in coupled-channels model? [arXiv:2103.07871]

[arXiv:2103.08331]

X results

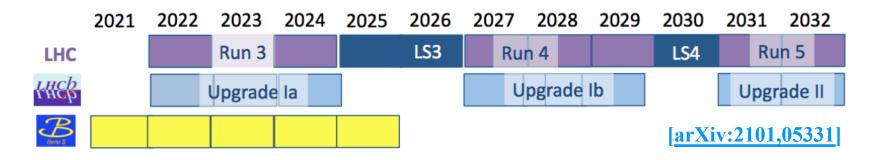

The measured mass of X(4140) is $4118 \pm 11^{+19}_{-36}$ MeV, with width $162 \pm 21^{+24}_{-49}$ MeV, not very narrow; the mass is around the threshold of $J/\psi\phi$.

No evidence of a narrow threshold resonance at $J/\psi\phi$ in our data

Details in Sebastian's Talk

Comparing the unnormalized Legendre moments of Run 1 model and updated model, new X(4630) and X(4685) are required.

$$< P_{\ell}^{U} > = \sum_{i=1}^{N_{\text{events}}} \frac{1}{\epsilon_{i}} P_{\ell}(\cos \theta)$$



Summary

- > Four new $J/\psi K^+$ and $J/\psi \phi$ structures are observed $B^+ \to J/\psi \phi K^+$
 - 1. 4 X states observed in Run 1 data sample are confirmed, and J^P determined with higher significance.
 - 2. $Z_{cs}(4000)^+ \rightarrow J/\psi K^+$ state is observed for first time, the significance is around 15σ , and $J^P = 1^+$ is also determined; another broad $Z_{cs}(4220)^+$ is also observed
 - 3. A new 1⁺ X(4685) is > 15 σ , and new $X(4630) > 5\sigma$
- Understanding of Z_{cs}(4000)⁺ and Z_{cs}(3985)⁻ may shed light on molecular and compact tetraquarks

Prospects

- LHCb is now boosting the data to a new level
 - Expect to 7x more data (14x hadronic events) by 2029 than current, half of these by 2024
 - The J^P of Z⁺_{cs} (4220) could be determined with larger data sample
 The J^{PC} of X(4630) might be 1⁻⁺, which is arousing interest

[arXiv:2103.03127]

- If the Z_{cs}^+ (4000) observed at LHCb and Z_{cs}^- (3985) observed at BESIII are same state?
- The Z_{cs}^0 , isospin partner of Z_{cs}^+ , can be searched at LHCb

Thanks for listening

Backup

Many exotic states observed at LHCb

> 59 new hadron states (conventional & exotic) observed at LHC, most of them discovered at LHCb [Taken from CERNCOURIER]

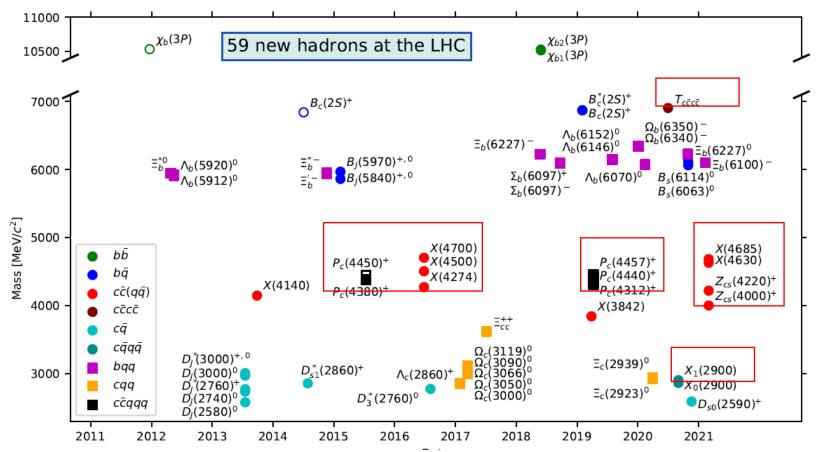
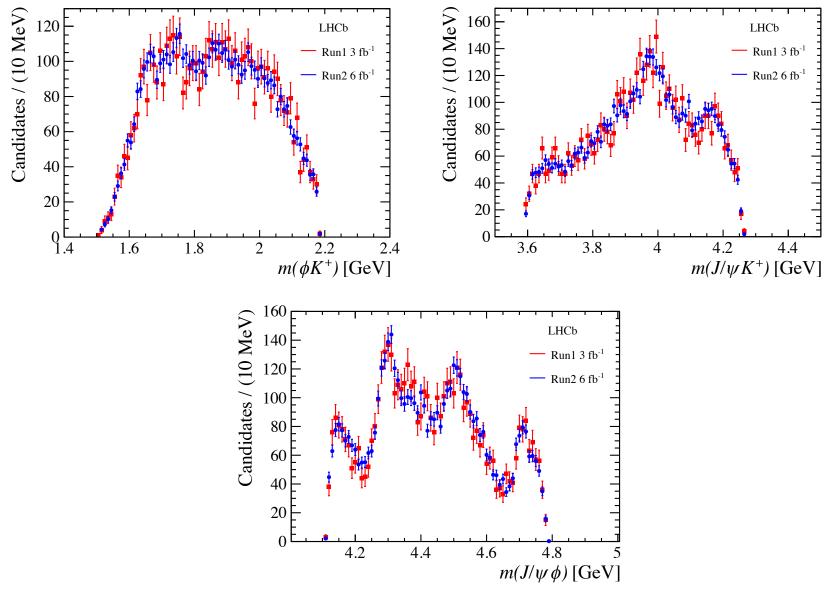



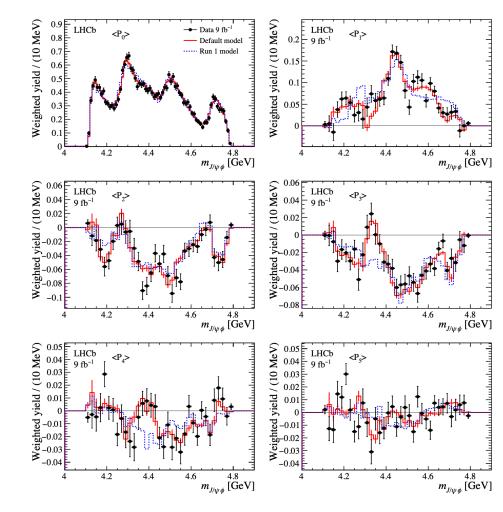
Diagram of discovery The ATLAS, CMS and LHCb collaborations have discovered 59 new hadronic states so far - the most recent being the four tetraquarks reported in this article. Credit: CERN 4/11/21

Run 1 and Run 2 comparison

Zehua.XU

[arXiv:2103.01803]

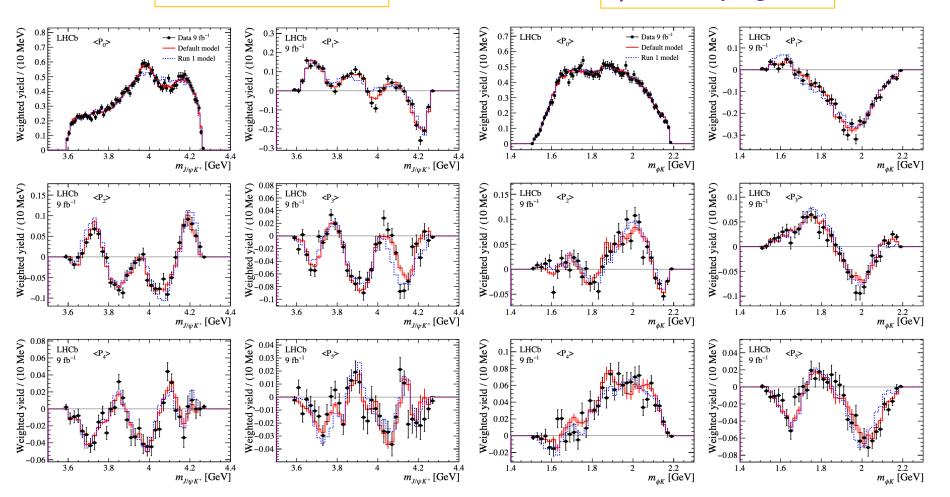
Legendre moments


Unnormalized Legendre moments:

Angular moments of $J/\psi\phi$ helicity angle

Legendre polynomial of order l and efficiency for each event i.

The moments distribution is obtained by a $\frac{1}{\epsilon_i} P_l(\cos\theta)$ weight.



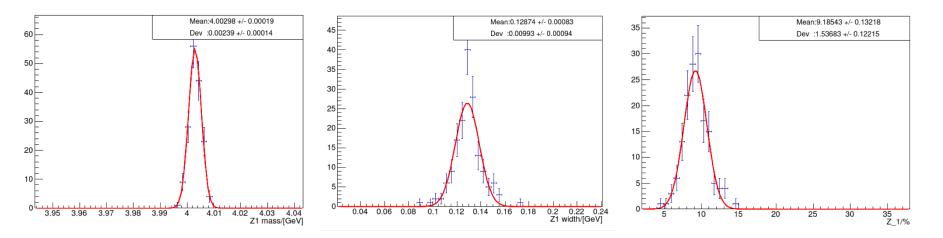
Legendre moments

[arXiv:2103.01803]

Angular moments of $J/\psi K^+$ helicity angle

Angular moments of ϕK^+ helicity angle

- To evaluate uncertainties due to the fixed masses and widths of known K* resonances: free the masses and widths but impose Gaussian constraints to the PDG values.
- $\succ \chi^2_{IP}$ of B^+ is not well modeled, smeared to match the data.
- > To explore uncertainty in the background model, vary the B^+ sideband window.
- > The uncertainty in the background fraction β : change background shape to exponential function.
- > Vary the Blatt-Weisskopf barrier factor d (hadron-size parameter).
- Vary the smallest allowed orbital momentum in the resonance description function, associate the L dependent term with each LS coupling.


$$R_{K_{n}^{*}}(m_{K\phi}) = B_{L_{B}^{K_{n}^{*}}}'(p, p_{0}, d) \left(\frac{p}{M_{B}}\right)^{L_{B}^{K_{n}^{*}}} BW(m_{K\phi}|M_{0}^{K_{n}^{*}}, \Gamma_{0}^{K_{n}^{*}}) B_{L_{K_{n}^{*}}}'(q, q_{0}, d) \left(\frac{q}{M_{0}^{K_{n}^{*}}}\right)^{L_{K_{n}^{*}}}$$
Angular momentum barrier factor
Relative Breit-Wigner function

- Uncertainty due to the choice of NR component, change the constant parameterization to exponential function.
- > 1^+ or 2^+ NR X contributions are optionally introduced.
- > The difference between nominal model and extended model.
- Flatté function to parameterize X(4140) or $Z_{cs}(4000)$ to replace BW function.

$$\text{Flatte}_X(m|M_0, g_{J/\psi\phi}, g_{D_s^*D_s}) = \frac{1}{M_0^2 - m^2 - iM_0(g_{J/\psi\phi}\rho_{J/\psi\phi} + g_{D_s^*D_s}\rho_{D_s^*D_s})},$$

- > Additional X states with different J^P in the extended model.
- Neglected no-φ contribution: 1)Change the φ mass window from ±15MeV to ± 7MeV, 2) sFit to subtract no-φ contribution is performed as alternative to cFit
- Modification of K^* width: as the partial width to ϕK is unknown, try a fit with mass dependence of the width driven by the lowest allowed decay channel, which is $K\pi$ for the natural spin-parity and $K\omega$ for others.

- L0 trigger : change the requirement from L0 global decision to TOS on L0 Muon or Dimuon decision.
- PID correction : the nominal PID calibration is performed from PIDcorr package, recalibrate from PIDGen package. (small)
- MC size : simulation sample size is studied from bootstrap method, 200 bootstrapping samples are generated, and the deviations are taken as systematic uncertainties (see plots below)

As an alternative to the 2D factorization of 6D background PDF, decompose the background density into multidimensional moments in the K^* decay chain variables (this uncertainty is small)

≻ K-Matrix model :

1. Some K^* with the same J^P are overlapping, we use a simple K-Matrix formula to describe them as alternative

$$RKM_n(m|M_{0n},\Gamma_{0n}) = \frac{\frac{1}{M_{0n}^2 - m^2}}{1 - i(\sum_j \frac{M_{0j}\Gamma_{0j}(m)}{M_{0j}^2 - m^2} + f_{sc} \cdot \rho(m))},$$

denominator sums over the same $J^P K^*$ resonances, f_{sc} accounts for possible non-resonance contribution. This fit didn't change the conclusion.

2. Alternative K-Matrix model with two coupling channels are tested, used to describe the $2^1 P_1$ and $2^3 P_1 K^*$ resonances

$$\mathcal{K}_{ba}(s) = \sum_R rac{g_b^R g_a^R}{M_R^2 - s} + \sum_{i=0}^{N_{ ext{b.g.}}} b_{ba}^{(i)} s^i \, ,$$

more floating parameters are included, the nominal model is stable.

4/11/21

Zehua.XU