

$D\bar{D}^*$ and χ_{c1} (3872) in nuclear matter

[arXiv:2102.08589]

Miguel Albaladejo (JLab) Experimental and theoretical status of and perspectives for XYZ states, Darmstadt, Apr 12-15, 2020

> In collaboration with: J. Nieves, L. Tolos

Outline

1 Introduction

2 Formalism

3 Results

4 Conclusions

Outline

1 Introduction

2

3

4

Introduction	Formalism	Results	Conclusions
0000	000000		

- X(3872) discovered by Belle [PRL,91,262001('03)].
- First XYZ state. J^{PC} = 1⁺⁺.
 CDF,PRL,93,072001('04); D0,PRL,93,162002('04); BaBar,PR,D71,071003('05);
 LHCb,EPJ,C72,1972('12).
- PDG: $m_{D^0} + m_{D^{*0}} m_X = 0.01 \pm 0.18$ MeV.
- See recent reviews:

Olsen, Front. Phys.,10,121('15), Chen *et al.*, Phys. Rept., 639,1('16), Hosaka *et al.*, PTEP,16,062C01('16), Guo *et al.*, RMP,90,015004('18).

Introduction	Formalism	Results	Conclusions
0000			

Interpretations

- Quark model: $\chi_{c1}(2P)$ around 3.93 GeV. Difficult assignment. Barnes, PR,D69,054008('04), Suzuki, PR,D72,114013('05).
- Molecular interpretation quite appealing.
 Swanson, PL,B588,189('04); Voloshin, PL,B604,69('04); Braaten, Kusunoki, PR,D72,054022('05); Gamerman, Oset, EPJ,A33,119('07)...
- **Compact tetraquark:** Maiani *et al.*, PRD,71,014028('05), Ebert *et al.*, PLB,634,214('06), Matheus, PRD,75,014005('07),...
- Many LQCD simulations performed. Chiu et al., PL,B646('07), ... Bali et al., PR,D84,094506('11), ..., Cheung et al.,JHEP,1612,089('16).
- First one to find evidence of X(3872): Prelovsek *et al.*, PRL, 111, 192001('13). Key to this evidence was the **inclusion of** $D\bar{D}^*$ **interpolators**.

Introduction	Formalism	Results	Conclusions
0000			

Why nuclear matter?

- Amplitudes ↔ resonances modify their behaviour in the presence of nuclear matter.
- Experimental facilities could detect final states with charmonium(-like) content: $D\bar{D}^*$, X(3872).

Formalism

Introduction	Formalism	Results	Conclusions
	00000		

Formalism:

- Particle basis: $\{D^0 \bar{D}^{*0}, D^{*0} \bar{D}^0, D^+ \bar{D}^{*-}, D^{*+} D^-\}$
- T-matrix: $T^{-1}(s) = V^{-1}(s) G(s)$ (matrices)
- Interaction kernels: $V(s) = AV_d(s)A$
 - $V_d(s) = diag(V_{0Z}(s), V_{0X}(s), V_{1Z}(s), V_{1X}(s))$
 - A transforms particle basis $\iff I^{\mathcal{C}}$ basis

• Loop functions:
$$G_i(s) = i \int \frac{d^4q}{(2\pi)^4} D_{Y_i}(P-q) D_{Y'_i}(q)$$
.

$$D_Y(q) = rac{1}{q_0^2 - ec q^2 - m_Y^2 - \Pi_Y(q^0, ec q)} = \int_0^\infty d\omega \left(rac{S_Y(\omega, |ec q|)}{q^0 - \omega + iarepsilon} - rac{S_{ar Y}(\omega, |ec q|)}{q^0 + \omega - iarepsilon}
ight) \,.$$

• D_{Y_i} are propagators, S_{Y_i} are spectral functions, $Y_i Y'_i$ =particle basis.

Introduction	Formalism	Results	Conclusions
0000	000000		

Formalism: Vaccuum vs Medium

Vaccuum

- We assume isospin symmetry, $m_{D^+} = m_{D^0}$.
- All loop functions G_i equal, $G(s) = \Sigma_0(s)\mathbb{I}_4$.
- The *T*-matrix diagonalizes as V(s): $\langle I'\mathbb{C}'|\hat{T}|I\mathbb{C}\rangle = \delta_{I,I'}\delta_{\mathbb{C},\mathbb{C}'}T_{I\mathbb{C}}(s)$

 $T(s) = AT_d(s)A, \quad T_d(s) = diag(T_{0Z}(s), T_{0X}(s), T_{1Z}(s), T_{1X}(s))$

Intro 000	duction O	Formalism 0000000	Results 00000000	Conclusions
Formalism: Vaccuum vs Medium				
		Ν	/ledium	
	• We assume	the potentials $V_d(s)$	do not change in nuclear mat	ter.
	• We still assume isospin symmetry: $S_{D^+} = S_{D^0} \equiv S_D$, $S_{D^-} = S_{\bar{D}^0} \equiv S_{\bar{D}}$, but in general $S_D \neq S_{\bar{D}}$.			
	• <i>T</i> -matrix on	ıly block diagonalized	I, $\mathit{G}(\mathit{s}; ho)$ is not $\propto \mathbb{I}_4$	
	$T^{-1}(s; ho) =$	$A\left(V_d^{-1}(s)-AG(s)\right)$	$(\rho)A)A$, $AG(s;\rho)A = \begin{bmatrix} \widetilde{G}(s;\rho)A \\ G(s;\rho)A \end{bmatrix}$	$\left[\begin{array}{cc} s; \rho \end{pmatrix} & 0 \\ 0 & \widetilde{G}(s; \rho) \end{array} \right]$
	$\widetilde{G}(s; ho) = \begin{bmatrix} \\ d \end{bmatrix}$	$ \begin{array}{l} \Sigma(s;\rho) & \delta G(s;\rho) \\ \delta G(s;\rho) & \Sigma(s;\rho) \end{array} \right] $, $\Sigma(s;\rho) = \frac{G_{D\bar{D}^*}(s;\rho)}{G_{D\bar{D}^*}(s;\rho)}$, $\delta G(s;\rho) = \frac{G_{D\bar{D}^*}(s;\rho)}{G_{D\bar{D}^*}(s;\rho)}$	$\frac{+ G_{\bar{D}D^*}(s;\rho)}{\frac{2}{-} G_{\bar{D}D^*}(s;\rho)}$
	• $\langle I' \mathbb{C}' \hat{T} I \mathbb{C} \rangle$ scattering is	$= \delta_{I,I'} T^{(I)}_{\mathbb{C},\mathbb{C}'}(s)$, b	ut no <i>C</i> -parity violation (of co	ourse): actual

everything gets back to fully diagonal

Intro 000	Formalism Results 0 000000 0000000	Conclusions		
Fo	ormalism: Vaccuum vs Medium			
	Medium			
	• We assume the potentials $V_d(s)$ do not change in nuclear matter.			
	• We still assume isospin symmetry: $S_{D^+} = S_{D^0} \equiv S_D$, $S_{D^-} = S_{\bar{D}^0} \equiv S_{\bar{D}}$, but in general $S_D \neq S_{\bar{D}}$.			
	• ${\mathcal T}$ -matrix only block diagonalized, ${\mathcal G}(s; ho)$ is not $\propto {\mathbb I}_4$			
	$T^{-1}(s;\rho) = A\left(V_d^{-1}(s) - AG(s;\rho)A\right)A, AG(s;\rho)A = \begin{bmatrix} \widetilde{G}(s;\rho) & 0\\ 0 & \widetilde{G}(s;\rho) \end{bmatrix}$; <i>ρ</i>)]		
	$\widetilde{G}(s;\rho) = egin{bmatrix} \Sigma(s; ho) & 0 \\ 0 & \Sigma(s; ho) \end{bmatrix}, \qquad \begin{split} \Sigma(s; ho) &= rac{G_{D\bar{D}^*}(s; ho) + G_{\bar{D}D^*}(s; ho)}{2}, \\ \delta G(s; ho) &= 0 \end{split}$	<u>. ρ)</u>		
	• $\langle I'\mathbb{C}' \hat{T} I\mathbb{C}\rangle = \delta_{I,I'}\delta_{\mathbb{C},\mathbb{C}'}T_{I\mathbb{C}}(s)$, but no <i>C</i> -parity violation (of course): act	ual		

- scattering is $Dar{D}^*N o Dar{D}^*N$
- $\delta G(s; \rho)$ is numerically small, everything gets back to fully diagonal.

Introduction	Formalism	Results	Conclusions
0000	000000		

Formalism: Vaccuum vs Medium

Medium

- We assume the potentials $V_d(s)$ do not change in nuclear matter.
- We still assume isospin symmetry: $S_{D^+} = S_{D^0} \equiv S_D$, $S_{D^-} = S_{\bar{D}^0} \equiv S_{\bar{D}}$, but in general $S_D \neq S_{\bar{D}}$.
- $\delta G(s; \rho)$ is numerically small, everything gets back to fully diagonal.

•
$$\langle I'\mathbb{C}'|\hat{T}|I\mathbb{C}\rangle = \delta_{I,I'}\delta_{\mathbb{C},\mathbb{C}'}T_{I\mathbb{C}}(s)$$

• $T_{0X}^{-1}(s;\rho) = V_{0X}^{-1}(s) - \Sigma(s;\rho)$

Introduction	Formalism 0000●0	Results 00000000	Conclusions
Interac	ction kernel $V(s)$		
($T^{-1}(s) = V^{-1}(s) - \Sigma_0(s)$		
 Simp 	lest option: $V(s) = C_{0X} = 1/\Sigma_0(m_0^2)$		
 <i>DD</i>[*] 	(molecular) probability P_0 :	1	
	$P_0 = -g_0^2 \Sigma_0'(m_0^2)$	P ₀)	
● Two	easy generalizations:	(_{A,B} (E;	
V _A (s	$)=a+b(s-m_{0}^{2})$		
V_{B}^{-1}	$(s)=a^{\prime}+b^{\prime}(s-m_0^2)$		
 Study 	y both V_A , V_B .	_2	3900
• Fix a	$(')$, $b^{(')}$ in terms of m_0^2 , P_0 :	l	E (MeV)
•	$Takem_0=m_D+m_{D^*}-2MeV$		

• "Play" varying P_0

Introduction	Formalism 0000€0	Results	Conclusions
Interact	tion kernel $V(s)$		
	$V^{-1}(s) = V^{-1}(s) - \Sigma_0(s)$		
 Simple 	est option: $V(s) = C_{0X} = 1/\Sigma_0(m_0^2)$		
 ■ DD̄* (molecular) probability P_0 :	1	
	$P_0 = -g_0^2 \Sigma_0'(m_0^2)$	0 0	
• Two e	asy generalizations:	, ^B (E	
$V_A(s)$	$=rac{1}{\Sigma_0(m_0^2)}+rac{\Sigma_0'(m_0^2)}{(\Sigma_0(m_0^2))^2}rac{1-P_0}{P_0}(s-m_0^2)$		
$V_B^{-1}(s$	$) = \Sigma_0(m_0^2) - \Sigma_0'(m_0^2) rac{1-P_0}{P_0}(s-m_0^2)$	-	
 Study 	both V_A , V_B .	_2	50 3900
• Fix a ^{(′}), $b^{(')}$ in terms of m_0^2 , P_0 :		E (MeV)

- Take $m_0 = m_D + m_{D^*} 2$ MeV
- "Play" varying P_0

Introduction	Formalism 0000€0	Results	Conclusions
Interact	ion kernel $V(s)$		
T	$V^{-1}(s) = V^{-1}(s) - \Sigma_0(s)$		
• Simples	st option: $V(s) = C_{0X} = 1/\Sigma_0(m_0^2)$	$V_A(E; 0.5)V_A(E; 0.8)V_A(E; 0.8)$	$-V_B(E; 0.5)$ $-V_B(E; 0.8)$
● <i>DD</i> [*] (1	molecular) probability P_0 :		
	$P_0 = -g_0 Z_0(m_0)$	0 D	
• Two ea	sy generalizations:	V _{A,B} (E	
$V_A(s)$ =	$= \frac{1}{\Sigma_0(m_0^2)} + \frac{\Sigma_0(m_0^2)}{(\Sigma_0(m_0^2))^2} \frac{1-P_0}{P_0} (s - m_0^2)$		
$V_{B}^{-1}(s)$	$) = \Sigma_0(m_0^2) - \Sigma_0'(m_0^2) \frac{1 - P_0}{P_0}(s - m_0^2)$		-

- Study both V_A , V_B .
- Fix $a^{(')}$, $b^{(')}$ in terms of m_0^2 , P_0 :
 - Take $m_0 = m_D + m_{D^*} 2$ MeV
 - "Play" varying P₀

3900

E (MeV)

3850

Introduction	Formalism 0000€0	Results	Conclusions
Intera	ction kernel $V(s)$		
	$T^{-1}(s) = V^{-1}(s) - \Sigma_0(s)$		
 Simple 	plest option: $V(s) = C_{0X} = 1/\Sigma_0(m_0^2)$	$V_A(E; 0.5)V_A(E; 0.8)V_A(E; 0.8)$	$-V_B(E; 0.5)$ $-V_B(E; 0.8)$
● DD [°]	* (molecular) probability P_0 :	1	
	$P_0 = -g_0^2 \Sigma_0'(m_0^2)$		
• Two	easy generalizations:	A,B(E;	N
$V_A(s)$	$S(s) = rac{1}{\Sigma_0(m_0^2)} + rac{\Sigma_0'(m_0^2)}{(\Sigma_0(m_0^2))^2} rac{1-P_0}{P_0} (s-m_0^2)$		
V_B^{-1}	$\Sigma(s) = \Sigma_0(m_0^2) - \Sigma_0'(m_0^2) rac{1-P_0}{P_0}(s-m_0^2)$		

- Study both V_A , V_B .
- Fix $a^{(')}$, $b^{(')}$ in terms of m_0^2 , P_0 :
 - Take $m_0 = m_D + m_{D^*} 2$ MeV
 - "Play" varying P₀

3900

E (MeV)

3850

Introduction	Formalism 000000	Results 00000000	Conclusions
Interactio	n kernel V(s)		
T ⁻¹	$V^{1}(s) = V^{-1}(s) - \Sigma_{0}(s)$	$V_A(E; 0.2)$ —	$-V_B(E; 0.2)$ $-V_B(E; 0.5)$
 Simplest 	option: $V(s) = C_{0X} = 1/\Sigma_0(m_0^2)$		
 <i>DD̄</i>[∗] (mo 	lecular) probability P_0 :	1	
	$P_0 = -g_0^2 \Sigma_0'(m_0^2)$	P ₀)	
Two easy	generalizations:	⁴ , ^B (Ë;	
$V_A(s) =$	$rac{1}{\Sigma_0(m_0^2)} + rac{\Sigma_0'(m_0^2)}{(\Sigma_0(m_0^2))^2} rac{1-P_0}{P_0} (s-m_0^2)$		
$V_B^{-1}(s) =$	$= \Sigma_0(m_0^2) - \Sigma_0'(m_0^2) \frac{1-P_0}{P_0}(s-m_0^2)$		
Study bot	th V_A , V_B .	_2	3900
• Fix a ^(') , I	$p^{(\prime)}$ in terms of m_0^2 , P_0 :	E (MeV)
 Take 	$m_0=m_D+m_{D^*}-2~{ m MeV}$		
 "Play 	" varying P_0		

Introduction	Formalism 0000€0	Results	Conclusions
Interac	tion kernel $V(s)$		
	$T^{-1}(s) = V^{-1}(s) - \Sigma_0(s)$	$V_A(E; 0.2)$	2) — $V_B(E; 0.2)$ 5) — $V_B(E; 0.5)$
 Simple 	est option: $V(s) = C_{0X} = 1/\Sigma_0(m_0^2)$	$V_A(E; 0.8)$	$(E; 0.8) \longrightarrow V_B(E; 0.8)$
 DD̄* 	(molecular) probability P_0 :	1	
	$P_0 = -g_0^2 \Sigma_0'(m_0^2)$	0 () 0 ()	
● Two e	easy generalizations:	^B (E	
$V_A(s)$	$=rac{1}{\Sigma_0(m_0^2)}+rac{\Sigma_0'(m_0^2)}{(\Sigma_0(m_0^2))^2}rac{1-P_0}{P_0}(s-m_0^2)$		
$V_{B}^{-1}(s)$	$\Sigma_{0}(m_{0}^{2}) - \Sigma_{0}'(m_{0}^{2}) \frac{1-P_{0}}{P_{0}}(s-m_{0}^{2})$	_2	
 Study 	both V_A , V_B .	- 385	50 3900
● Fix <mark>a⁽</mark> ● T	(), $b^{(')}$ in terms of m_0^2 , P_0 : Take $m_0 = m_D + m_{D^*} - 2$ MeV		E (MeV)

• "Play" varying P₀

Introduction	Formalism	Results	Conclusions
0000	000000		

X(3872) Self-energy

• Consider a "pre-existing" state with bare mass \hat{m} and coupling $\hat{g}/2$. Bare propagator: $\hat{\Delta}^{-1}(q^2) = q^2 - \hat{m}^2 + i\epsilon$.

• Renormalization: $\Delta^{-1}(q^2;\rho) = \hat{\Delta}^{-1}(q^2) - \hat{g}^2 \Sigma(q^2;\rho) \equiv \hat{\Delta}^{-1}(q^2) - \Pi_X(q^2;\rho)$.

• X(3872) self-energy:

$$S_X(q^2;\rho) = -\frac{1}{\pi} \text{Im}\Delta(q^2;\rho) = -\frac{1}{\pi} \frac{\text{Im}\Pi_X(q^2;\rho)}{\left[q^2 - m_0^2 - \text{Re}\Pi_X(q^2;\rho)\right]^2 + \left[\text{Im}\Pi_X(q^2;\rho)\right]^2}$$

• Depends on m_0^2 , P_0 (but not on "potential" V_A or V_B)

Introduction	Formalism	Results	Conclusions
	000000		

X(3872) Self-energy

- Consider a "pre-existing" state with bare mass \hat{m} and coupling $\hat{g}/2$. Bare propagator: $\hat{\Delta}^{-1}(q^2) = q^2 - \hat{m}^2 + i\epsilon$.
- Renormalization: $\Delta^{-1}(q^2;\rho) = \hat{\Delta}^{-1}(q^2) \hat{g}^2 \Sigma(q^2;\rho) \equiv \hat{\Delta}^{-1}(q^2) \Pi_X(q^2;\rho)$.
- Mass of X(3872) in vaccuum and in medium from $\Delta^{-1}(m^2(\rho); \rho) = 0$.
- In particular, one can write $m(\rho)$ and \hat{m} in terms of m_0 :

Bare
$$\rho$$
 $\hat{m}^2 = m_0^2 - \frac{g_0^2 \Sigma_0(m_0^2)}{1 + g_0^2 \Sigma_0'(m_0^2)}$ $m^2(\rho) = m_0^2 + \frac{g_0^2 \left(\Sigma[m^2(\rho); \rho] - \Sigma_0(m_0^2) \right)}{1 + g_0^2 \Sigma_0'(m_0^2)}$ $\hat{g}^2 = \frac{g_0^2}{1 + g_0^2 \Sigma_0'(m_0^2)}$ $g^2(\rho) = \frac{g_0^2}{1 - g_0^2 \left(\Sigma'[m^2(\rho); \rho] - \Sigma_0'(m_0^2) \right)}$

Introduction	Formalism	Results	Conclusions
		0000000	

Loop functions $\Sigma(s; \rho)$

- Threshold effect washed out as ρ increases. $D^{(*)}$, $\bar{D}^{(*)}$ acquire in-medium widths.
- Repulsion? Re[Σ(E; ρ)] is smaller in magnitude as ρ increases. Does this imply repulsion?

• Not so clear:

 $|\mathsf{Im}\Sigma(E;
ho)|\gtrsim |\mathsf{Re}\left(\Sigma(E;
ho)-\Sigma_0(E)
ight)|$

Introduction	Formalism	Results	Conclusions
		0000000	

Amplitudes (high P_0)

- For P_0 high ($\gtrsim 0.7$) almost no difference between V_A and V_B
- Very large broadening.
- Quasi-particle peak: $\operatorname{Re}[\Delta^{-1}(E_{qp}; \rho)] = 0$

•
$$P_0 = 1$$
:

- $|\mathcal{T}|^2$ peak shifted to the left
- No *E*_{qp}

$$P_0 = 0.8$$
:
• $|T|^2$ peak shifted to the right

• *E*_{qp}, but...

Introduction	Formalism	Results	Conclusions
		0000000	

Amplitudes (high P_0)

- For P_0 high ($\gtrsim 0.7$) almost no difference between V_A and V_B
- Very large broadening.
- Quasi-particle peak: $\operatorname{Re}[\Delta^{-1}(E_{qp}; \rho)] = 0$

•
$$P_0 = 1$$
:

- $|\mathcal{T}|^2$ peak shifted to the left
- No Eqp

$$P_0 = 0.8$$
:
• $|T|^2$ peak shifted to the righ

• *E*_{qp}, but...

Introduction	Formalism	Results	Conclusions
		0000000	

Amplitudes (high P_0)

- For P_0 high ($\gtrsim 0.7$) almost no difference between V_A and V_B
- Very large broadening.
- Quasi-particle peak: $\operatorname{Re}[\Delta^{-1}(E_{qp}; \rho)] = 0$

•
$$P_0 = 1$$
:

- $|\mathcal{T}|^2$ peak shifted to the left
- No $E_{\rm qp}$

•
$$P_0 = 0.8$$
:

- $|\mathcal{T}|^2$ peak shifted to the right
- *E*_{qp}, but...

Amplitudes (low P_0)

 $P_0 = 0.4$

- For low P_0 $V_A(s)$ and $V_B(s)$ tend to give different results (as expected).
- Zero in $V_A(s)$ gets closer to m_0^2 for $P_0 \rightarrow 0$.
- Density effects are larger for V_A than for V_B outside the X(3872) region.

Introduction	Formalism	Results	Conclusions
		0000000	

Amplitudes (low P_0)

- In $S_X(s; \rho)$ or $\Delta^{-1}(s; \rho)$ little variation wrt vaccuum.
- Physically $P_0 \rightarrow 0$ little coupling \rightarrow little medium effect.
- Always E_{qp} solution, very close to vaccuum mass m_0 .

 $P_0 = 0.4$

E (MeV)

E (MeV)

Introduction 0000	Formalism 000000	Results	Conclusions

Amplitudes (low P_0)

• For $P_0 = 0.2$, $E_{qp} \simeq E_{spe} \simeq E_{max,A}$, and $E_{max,B}$ still a bit off.

• For $P_0 = 0.4$, similar, but some more differences.

Introduction	Formalism	Results	Conclusions
		0000000	

Effective Loop function

- Observation: All the structure of $S_{D^{(*)}}$ and $S_{\overline{D}^{(*)}}$ washes out in $\Sigma(s; \rho)$.
- Ansatz:

$$\Sigma(s;
ho)\simeq G^{(\mathrm{eff})}(s;
ho)\equiv G(s,m_D^{(\mathrm{eff})}(
ho),m_{D^*}^{(\mathrm{eff})}(
ho))$$

Introduction	Formalism	Results	Conclusions
0000	000000	00000000	

Effective Loop function

- Observation: All the structure of $S_{D^{(*)}}$ and $S_{\overline{D}^{(*)}}$ washes out in $\Sigma(s; \rho)$.
- Ansatz:

$$\Sigma(s;
ho)\simeq G^{(\mathrm{eff})}(s;
ho)\equiv G(s,m_D^{(\mathrm{eff})}(
ho),m_{D^*}^{(\mathrm{eff})}(
ho))$$

Introduction	Formalism	Results	Conclusions
		00000000	

Results: "Probability"

$$P_0 = -g_0^2 \Sigma_0'(m_0^2) \Longrightarrow \widetilde{P}_
ho = -g^2(
ho) \left. rac{dG^{(extsf{eff})}(s;
ho)}{ds}
ight|_{s=m^2(
ho)}$$

- In-medium **generalization** of the formula for *P*₀.
- Complex masses \rightarrow complex \widetilde{P}_{ρ} : no interpretation as probability.

• For
$$P_0
ightarrow 0$$
 or 1, $\widetilde{P}_
ho
ightarrow P_0$

0000 000000 000000	

Explaining poles

- $P_0 \rightarrow 0$: Coupling of X to $D\bar{D}^*$ tends to zero, so X ignores what happens to $D\bar{D}^*$ in the medium
- $P_0 \rightarrow 1$:
 - $\,\circ\,$ In this case $V_{A}(s)\simeq 1/\Sigma_{0}(m_{0}^{2})$ (no energy dependence)
 - The pole must satisfy also $\text{Im}\,G^{(\text{eff})}(m(\rho)^2;\rho)=0$
 - This happens only at the line to the left of the threshold
 - The pole is "dragged" by the threshold

Outline

- Formalism and results for the in-medium modifications of $D\overline{D}^*$ scattering in the X(3872) channel has been presented.
- Studied with both the *T*-matrix and self-energy formalisms. **Understood** when both formalism give equivalent results
- E_{qp} and E_{max} do not generally coincide.
- A novel way to "hunt" poles with in-medium amplitudes.
- Measuring the modification of amplitudes in nuclear matter could help in understanding X(3872) in vacuum.
- Question: how could these results be experimentally tested?: