odel

Results

X(6200)

Tests

Conclusions

Coupled-channel interpretation of the LHCb double-J/psi spectrum

Alexey Nefediev

Lebedev Physical Institute of RAS, Moscow

Based on X.-K. Dong, V. Baru, F.-K. Guo, C. Hanhart, A.N. Phys. Rev. Lett. **126** 132001 (2021)

X(620)

Conclusions

LHCb: nonresonant production

NRSPS=NonResonant Single Parton Scattering DPS=Double Parton Scattering

315

Results

X(6200

비교 소문에 소문에 소문에 소문

Conclusions

LHCb: conclusions from analysis

Introduction Model Results X(6200) Tests
Response from the community

Immediate and massive:

- LHCb announcement: CERN seminar (16 June 2020) arXiv submission (30 June 2020)
- First citations:
 3 Nov 2019 (1911.00960)
 11 Mar 2020 (2003.05154)

Model

Results

X(620)

Tests

Conclusions

Response from the community

Immediate and massive:

- LHCb announcement: CERN seminar (16 June 2020) arXiv submission (30 June 2020)
- First citations:
 3 Nov 2019 (1911.00960)
 11 Mar 2020 (2003.05154)

Model

Results

X(620)

Tests

Conclusions

Response from the community

Immediate and massive:

- LHCb announcement: CERN seminar (16 June 2020) arXiv submission (30 June 2020)
- First citations:
 3 Nov 2019 (1911.00960)
 11 Mar 2020 (2003.05154)
 23 Jun 2020 (2006.13028)

. . .

79 citations for 10 months

Model

Results

X(620)

Tests

Conclusions

Response from the community

Immediate and massive:

- LHCb announcement: CERN seminar (16 June 2020) arXiv submission (30 June 2020)
- First citations:
 3 Nov 2019 (1911.00960)
 11 Mar 2020 (2003.05154)
 23 Jun 2020 (2006.13028)

79 citations for 10 months

The usual suspects:

- Fully charm tetraquark (most popular model)
- Molecule (several hundred MeV above threshold \implies unlikely)
- Threshold effects (to be quantified)

Introduction	Model	Results	X(6200)	Tests	Conclusions
		General	remarks		

- Naive models and parametrisations have to be disregarded
 - \implies Breit-Wigner fits mislead rather than educate
 - \implies Breit-Wigner parameters (M and Γ) hide nature of states

	-	(
	General	remarks	

- Naive models and parametrisations have to be disregarded
 - \implies Breit-Wigner fits mislead rather than educate
 - \implies Breit-Wigner parameters (M and Γ) hide nature of states
- Coupled-channel approach is a must

		Comme			
Introduction	Model	Results	X(6200)	Tests	Conclusions

General remarks

- Naive models and parametrisations have to be disregarded
 - \implies Breit-Wigner fits mislead rather than educate
 - \implies Breit-Wigner parameters (M and Γ) hide nature of states
- Coupled-channel approach is a must

Minimal models compatible with data are considered

Introduction	Model	Results	X (6200)	lests	Conclusions
		Conoral	romarks		

General remarks

- Naive models and parametrisations have to be disregarded
 - \implies Breit-Wigner fits mislead rather than educate
 - \implies Breit-Wigner parameters (M and Γ) hide nature of states
- Coupled-channel approach is a must

Minimal models compatible with data are considered

- \implies Only most relevant channels included (see next slide)
- \implies Minimal necessary order in EFT expansion
- \implies Interpret only results robust w.r.t. model modification
- \Longrightarrow Highlight predictions to distinguish between models

Introduction	Model	Results	X(6200)	Tests	Conclusions
	Choo	sing rele	vant chan	nels	

- $J/\psi J/\psi \Leftrightarrow \psi(2S)J/\psi, \psi(3770)J/\psi$ HQSS-allowed, mediated by soft gluons (two pions)
- $J/\psi J/\psi \iff \psi(2S)\psi(2S), \psi(2S)\psi(3770), \psi(3770)\psi(3770), \dots$ Thresholds above the investigated mass range
- $J/\psi J/\psi \Leftrightarrow \eta_c \eta_c, h_c h_c$ Heavy guark spin flip needed \Longrightarrow HQSS-suppressed
- $J/\psi J/\psi \iff \chi_{cJ}\chi_{cJ'} \ (J=0,1,2)$

Lowest exchange particle (ω) is (relatively) heavy \implies suppression

Model

Results

X(6200)

Tests

Conclusions

The models

Two-channel model (7 parameters) $J/\psi J/\psi \& \psi(2S) J/\psi$ Three-channel model (8 parameters) $J/\psi J/\psi, \ \psi(2S)J/\psi \& \ \psi(3770)J/\psi$

$$V_{2ch}(E) = \begin{pmatrix} a_1 + b_1 k_1^2 & c \\ c & a_2 + b_2 k_2^2 \end{pmatrix} \qquad V_{3ch}(E) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

Lippmann-Schwinger equation

$$T(E) = V(E) \cdot [1 - G(E)V(E)]^{-1}$$

Production amplitude in $J/\psi J/\psi$ channel (channel 1):

$$\mathcal{M}_1 = \alpha e^{-\beta E^2} \Big[b + G_1(E) T_{11}(E) + G_2(E) T_{21}(E) + r_3 G_3(E) T_{31}(E) \Big]$$

Slope β fixed to double-parton scattering (DPS): $\beta = 0.0123$ GeV⁻²

$$r_3 = \left\{ egin{array}{cc} 0 & 2 {
m ch} \mbox{ model} \ 1 & 3 {
m ch} \mbox{ model} \end{array}
ight.$$

Model

Results

X(6200)

Test

Conclusions

Fits & poles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

| Results X(6200) | V(COOO) | V(COOOO) | V(COOOOO) | V(COOOOO) | V(COOOOO) | V(COOOOO) | V(COOOO) | V(COOOOO) | V(COOOOOO) | V(COOOOO) | V(COOOOO) | V(COOOOOO) | V(COOOOO) | V(COOOOO) | V(COOOOOO) | V(COOOOO) | V(COOOOOOO) | V(COOOOO) | V(COOOOOO | V(COOOOO) | V(COOOOO) | V(COOOOO) | V(COOOOO) | V(COOOOOO) | V(COOOOOO | V(COOOOOO) | V(COOOOO) | V(COOOOO) | V(COOOOO | V(COOOOO) | V(COOOOO | V(COOOOO) | V(COOOOO | V(COOOOO) | V(COOOOO | V(COOOOO | V(COOOOO | V(COOOOO | V(COOOO | V(COOOO | V(COOOO) | V(COOOO | V(COOOO | V(COOOO | V(COOOO | V(COOOO | V(COOOO | V(COOOO) | V(COOOO | V(COOOOO) | V(COOOOO | V(COOOO | V(COOO | V(COOOO | V(COOO | V(COOO | V(COOO | V(COOOO | V(COOOO | V(COOO | V(

X(6200) vs X(6900)

- Poles above the double- J/ψ threshold (X(6900)) are badly determined
- Pole near the double- J/ψ threshold (X(6200)) is robust

$$\begin{split} E_0^{2\text{ch}} &= 6203^{+\ 6}_{-27} - i\,12^{+\ 1}_{-12} \ (\text{RS}_{-+}) \text{ or } [6179, 6194] \ (\text{RS}_{++}) \\ E_0^{3\text{ch}}[\text{Fit } 1] &= 6163^{+18}_{-32} \ (\text{RS}_{+++}) \\ E_0^{3\text{ch}}[\text{Fit } 2] &= 6189^{+\ 5}_{-10} \ (\text{RS}_{-++}) \text{ or } [6159, 6194] \ (\text{RS}_{+++}) \end{split}$$

• Compositeness of X(6200) is large \Longrightarrow hint for a molecule

$$T(k) \approx -8\pi\sqrt{s} \left[\frac{1}{a_0} + \frac{1}{2}r_0k^2 - ik\right]^{-1}$$
$$\bar{X}_A = (1+2|r_0/a_0|)^{-1/2} \sim 1$$

Matuschek.et al. Eur.Phys.J. A57 (2021) 101

< □ > < @ > < 글 > < 글 > 코 = 의 = 의 Q (10/12

Introduction Model Results X(6200) Tests Conclusions Further tests

• Data in the $\psi(2S)J/\psi$ channel \Longrightarrow distingush between the models

- Data in the double- η_c channel \implies verify predictive power of the models
- Models for J/ψ - J/ψ binding \implies (dis)prove X(6200) nature
- Data on double- Υ production \implies check in complementary sector
- Lattice simulation of double- J/ψ (η_c) scattering \implies independent test

X(6200

Tests

Conclusions

- LHCb data on the double- J/ψ spectrum are consistent with a coupled-channel description
- Even minimalistic models provide a good description of the data $(\chi^2/{
 m dof}\simeq 1)$
- Position of the poles above the double- J/ψ threshold is vaguely fixed by the present data
- All models employed support the existence of the X(6200) state with $J^{PC} = 0^{++}$ or 2^{++} near the double- J/ψ threshold
- Molecular model for X(6200) is plausible and compatible with the data
- Experimental tests are outlined to verify the existence of X(6200) and shed light on its nature
- More data on double charmonium and bottomonium production are desperately awaited!

Backup

Values of the parameters found in the fits

Parameters of the two-channel model ($[\bar{a}_i]$ =GeV⁻², $[\bar{b}_j]$ =GeV⁻⁴, $[\bar{c}]$ =GeV⁻²) \bar{a}_1 \bar{a}_2 \bar{c} \bar{b}_1 \bar{b}_2 α b $0.2^{+0.6}_{-0.5}$ -4.2 ± 0.7 $2.94^{+0.36}_{-0.29}$ $-1.8^{+0.4}_{-0.5}$ -7.1 ± 0.4 70^{+8}_{-7} 3.3 ± 0.4

Parameters of the three-channel model ($[\bar{a}_{ij}]$ =GeV⁻²)

Each parameter with bar needs to be multiplied by $\prod_{i=1}^4 \sqrt{2m_i}$, where m_i 's are the involved charmonium masses

 $m_{J/\psi} = 3.0969 \text{ GeV}$ $m_{\psi(2S)} = 3.6861 \text{ GeV}$

<ロト < 部 > < 目 > < 目 > の Q () 2/3

Compositeness of X(6200)

$$T(k) = -8\pi\sqrt{s} \left[\frac{1}{a_0} + \frac{1}{2}r_0k^2 - ik + \mathcal{O}(k^4)\right]^{-1}$$
$$\bar{X}_A = (1+2|r_0/a_0|)^{-1/2}$$

	2-ch. fit	3-ch. fit 1	3-ch. fit 2
$a_0(\mathrm{fm})$	$\leq -0.49 \mathrm{or} \geq 0.48$	$-0.61^{+0.29}_{-0.32}$	$\leq -0.60 \mathrm{or} \geq 0.99$
$r_0(\mathrm{fm})$	$-2.18\substack{+0.66\\-0.81}$	$-0.06\substack{+0.03\\-0.04}$	$-0.09\substack{+0.08\\-0.05}$
\bar{X}_A	$0.39^{+0.58}_{-0.12}$	$0.91\substack{+0.04 \\ -0.07}$	$0.95\substack{+0.04 \\ -0.06}$