Production of X(3872)

Eric Braaten Ohio State University

Li-Ping He, Kevin Ingles (Ohio State University)

Jun Jiang (Shandong University)

Support from U.S. Department of Energy

$X(3872) \equiv \chi_{c1}(3872)$

discovered at e^+e^- collider Belle 2003 $B^+ \rightarrow K^+ X, X \rightarrow J/\psi \pi^+\pi^$ confirmed at $p\bar{p}$ collider CDF 2003

- <u>quantum numbers</u> $J^{PC} = 1^{++}$ LHCb 2013
- <u>mass</u> LHCb 2020 extremely close to $D^{*0}\overline{D}^{0}$ threshold $E_X \equiv M_X - (M_{D^{*0}} + M_{D^{0}}) = (-0.07 \pm 0.12)$ MeV $|E_X| < 0.22$ MeV at 90% CL
- <u>width</u> LHCb 2020 $\Gamma_X = (1.19 \pm 0.19)$ MeV (Breit-Wigner line shape)
- 7 observed decay modes
 J/ψ π⁺π⁻, J/ψ π⁺π⁻π⁰, J/ψ γ, ψ(2S) γ, χ_{c1} π⁰, D⁰D⁰φ, D⁰D⁰π⁰

What is the X(3872)?

given: $J^{PC} = 1^{++}$, $|E_X| < 0.22 \text{ MeV}$ loosely bound molecule of neutral charm mesons !!

 $X(3872) = (D^{*0}\bar{D}^0 + D^0\bar{D}^{*0})/\sqrt{2}$

small additional components at long distances: $D^0 \overline{D}^0 \pi^0$ at short distances: charged charm mesons $D^{*+}D^- + D^+D^{*-}$ P-wave charmonium $\chi_{c1}(2P)$?? compact tetraquark $[cq][c\bar{q}]$?? What would the X(3872) be? if its mass was not fine-tuned to $D^{*0}\overline{D}^{0}$ threshold

- P-wave charmonium state ?? $\chi_{c1}(2P) = c\bar{c}$
- isospin-0 charm-meson molecule ?? $\left[(D^{*0}\bar{D}^0 + D^0\bar{D}^{*0}) + (D^{*+}D^- + D^+D^{*-}) \right] / 2$
- isospin-1 compact tetraquark ?? $([cu][\bar{c}\bar{u}] - [cd][\bar{c}\bar{d}])/\sqrt{2}$
- other ??

In all cases, *X*(3872) is transformed into neutral charm-meson molecule $(D^{*0}\overline{D}^0 + D^0\overline{D}^{*0})/\sqrt{2}$ by resonant coupling to $D^{*0}\overline{D}^0$ and $D^0\overline{D}^{*0}$

Universal wavefunction

for S-wave molecule near threshold

nontrivial zero-range limit $r_0 \longrightarrow 0$ completely determined by binding energy $|E_X|$

wavefunction: $\psi(r) = \exp(-r/a)/r$ scattering length: $a = 1/\sqrt{2\mu |E_X|}$

- large mean separation of constituents: $\langle r \rangle = a/2$ $|E_X| < 0.22 \text{ MeV} \implies \langle r \rangle > 4.8 \text{ fm}$
- constituents almost always beyond range: $P(r > r_0) \rightarrow 1$ as $r_0 \rightarrow 0$
- wavefunction at origin diverges as $r_0 \to 0$: $\psi(0) \longrightarrow 1/r_0$ $P(r < r_0) = r_0/\langle r \rangle$ instead of proportional to $(r_0/\langle r \rangle)^3$
- uncertainty principle: $(\Delta r)(\Delta p) = (a/2)(2/\sqrt{\pi r_0 a}) = \sqrt{(a/r_0)/\pi}$

 $5 \rightarrow \infty \text{ as } r_0 \longrightarrow 0$

Triangle Singularities in X(3872) Production

Triangle singularity

kinematic singularity when 3 lines forming triangle can all be on shell reaction rate has $\log^2(s/s_{\Delta})$ divergence at s_{Δ} determined by masses

- creation of $D^*\bar{D}^*$ at short distance
- $D^*\overline{D}^*$ rescatter into $X+\pi$ or $X+\gamma$ through Δ
- \overline{D}^{0*} and D^{0} can be on shell if $E_X = 0$
- D^* can be on shell if $\Gamma[D^{*0}] = 0$

 $\begin{aligned} |E_X| &\approx 100 \text{ keV}, \ \Gamma[D^{*0}] &\simeq 55 \text{ keV} \\ \log^2(s/s_{\Delta}) \text{ divergence is replaced by} \\ \text{narrow peak at } s_{\Delta}, \text{ width } \sim 1 \text{ or } 2 \text{ MeV} \end{aligned}$

see talk by Liping He at QWG March 2021

Triangle Singularities in X(3872) Production

<u>e+e-</u> annihilation Dubinskiy & Voloshin (2006) e+e- → X + γ BHI (2019), BHIJ (2020) narrow peak near 4016 MeV with width about 2 MeV $e^+e^- → π^+(X\gamma)$ Guo (2019), Sakai, Jing & Guo (2020)

<u>B meson decay</u>

 $B \rightarrow K + (X\pi)$ BHI (2019), Sakai, Jing & Guo (2020) narrow peak in $X\pi$ invariant mass about 6 MeV above $X\pi$ threshold with width about 1 MeV

prompt production in pp collisions BHI (2019)

narrow peak in $X\pi^{\pm}$ invariant mass about 6 MeV above $X\pi^{\pm}$ threshold with width about 1 MeV

Production of X(3872) at Hadron Collider

production by <u>b hadron decay</u>

decay products emerge from displaced secondary vertex number of charged particles: $N_{ch} < 10$ example: $B^+ \rightarrow K^+ X$, $X \rightarrow J/\psi \pi^+\pi^-$, $J/\psi \rightarrow \mu^+\mu^-$ ($N_{ch} = 5$)

prompt production by QCD mechanisms decay products emerge from primary collision vertex number of charged particles: $N_{ch} \sim 100$'s $dN_{ch}/dy \sim 10$'s

comoving hadrons could break up X

<u>convenient benchmark</u> for X(3872): $\psi(2S) = \psi(3686)$ similar mass both observed in $J/\psi \pi^+\pi^-$ decay channel

Dependence of Production on Multiplicity

pp collisions at Large Hadron Collider LHCb 2020 measure prompt fractions for X and ψ' X-to- ψ' ratios for prompt and b-decay as functions of number of tracks in vertex detector

prompt fraction for ψ ': seems to saturate at large N_{tracks} X-to- ψ ' ratio for prompt: significant decrease with N_{tracks}

Comover Interaction Model

Capella et al., Gavin and Vogt, Kharzeev et al. (1996) describes suppression of J/ψ and ψ (2S) in *pp*, *p*-nucleus, nucleus-nucleus collisions

- hard-parton collision creates $c\bar{c}$ pair which binds into $c\bar{c}$ meson
- other parton collisions produce gluons

(or resonances whose decays produce pions)

• comoving gluons (or pions) may break up $c\bar{c}$ meson

Ferreiro & Lansberg (2018)

more elaborate version of CI Model describes suppression of $\Upsilon(2S)$, $\Upsilon(3S)$ compared to Υ

momentum distribution of comovers:

Bose-Einstein distribution with effective temperature:

 $T_{\rm eff} = (250 \pm 50) \,\,{\rm MeV}$

• breakup cross section ≈ geometric cross section:

 $\sigma \approx \pi \langle r^2 \rangle$, $\langle r^2 \rangle$ = mean square separation of constituents

Comover Interaction Model

QQ meson can be broken up by scattering with comoving pions (or gluons) production rate decreases as light-hadron multiplicity dN/dy increases

Survival Probability

many-body parameters: $\sigma_{pp}(s)$, $N_{pp}(s, y)$

1 few-body parameter: $\langle v\sigma \rangle$ breakup reaction rate averaged over comovers

Analysis of LHCb Data

BHIJ arXiv:2012.13499

Assumptions

prompt cross section is sum of

term with survival probability $S = \exp\left(-\frac{\langle v\sigma \rangle (dN/dy)}{\sigma_{pp}}\log\frac{dN/dy}{N_{pp}}\right)$ term with survival probability = 1 (constant)

b decay cross section is constant

Analysis of LHCb Data

- "clearly supports X being a tetraquark state"
- "strongly disfavors the molecular interpretation" (based on incorrect few-body physics for molecule)

Analysis of LHCb Data

Esposito et al. arXiv:2006.15044

Comover Interaction Model

breakup reaction rates: $\langle v\sigma \rangle \approx \pi \langle r^2 \rangle$ ψ (2S): $\langle v\sigma \rangle = (5.2 \pm 0.8) \text{ mb}$ X(3872): $\langle v\sigma \rangle = (11.6 \pm 1.7) \text{ mb}$ if X is a tetraqua

Tetraquark band that fits LHCb data

is dominated by physics not captured by survival probability many-body physics: Glauber Monte Carlo?, ... ?? few-body physics: $\langle v\sigma \rangle$, ... ??

XEFT

Fleming, Kusunoki, Mehen & van Kolck 2007 Effective Field Theory for charm mesons and pions

XEFT describes $D^*\overline{D}$, $D\overline{D}^*$, $D\overline{D}\pi$, X with total energy near D^*D threshold

XEFT can also describe D^*D^* , $D^*D\pi$, $DD^*\pi$, $DD\pi\pi$, $X\pi$ with total energy near D^*D^* threshold arXiv:1005.1688 can calculate cross sections for breakup of X by scattering of low-energy pion: $\pi X \rightarrow D^*D^*$, $D^*D\pi$, $DD^*\pi$, $DD\pi\pi$

Galilean-invariant formulation of XEFTarXiv:1503.04791exploits approximate conservation of mass in $D^* \leftrightarrow D\pi$ improved formulationBHJarXiv:2010.0580

large NLO corrections in XEFT ?? Dai, Guo & Mehen arXiv:1912.04317

High-energy pions

 π scatters from constituents: $D^{*0}, \overline{D}^0, \overline{D}^{*0}, D^0$ breakup cross section: $\sigma \sim (m_{\pi}/f_{\pi}^2)^2 = 25 \text{ mb}$ orders of magnitude smaller than geometric cross section $\pi \langle r^2 \rangle$

Summary

given $J^{PC} = 1^{++}$, $|E_X| < 0.22 \text{ MeV}$

X(3872) must be loosely bound neutral charm-meson molecule with universal properties determined by $|E_X|$

 $X(3872) = \left(D^{*0}\bar{D}^0 + D^0\bar{D}^{*0}\right)/\sqrt{2}$

charm-meson triangle singularity

produces narrow peak in *X*π invariant mass (or *X*γ invariant mass) near *D*D** threshold with width 1 or 2 MeV <u>Smoking gun</u> for *X*(3872) as charm-meson molecule !!

multiplicity dependence

LHCb: production of X(3872) in *pp* collisions depends on dN/dy challenge: develop quantitative description of LHCb data treating *X*(3872) as charm-meson molecule with correct few-body physics

Production of X(3872) in heavy-ion collisions

production in PbPb collisions CMS arXiv:2102.13048

prompt X-to- ψ ' ratio = 1.08 ± 0.49 ±0.52 about an order of magnitude larger than in pp collisions !!

challenge: develop quantitative description of production of X(3872) in pp, p-nucleus, and nucleus-nucleus collisions