Plans and challenges for SEEIIST

Mariusz Sapinski, Elena Benedetto

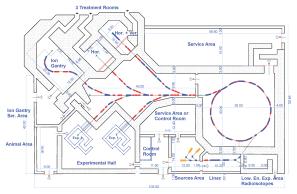
TERA Foundation and CERN

Kick-off Meeting for I.FAST-REX: REsonant eXtraction improvement February 8-9, 2021

Outline

- Presentation of SEEIIST and NIMMS projects.
- Medical requirements beam intensity.
- Slow extraction:
 - RF-KO Extraction and spot scanning
 - Multiple-Energy Extraction
 - Oblique raster scanning
 - Alternative synchrotrons
 - Superconducting synchrotron
 - Low emittance beams
- Beam extraction for FLASH therapy
- Conclusions

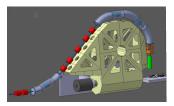
What is SEEIIST?


South East European International Institute for Sustainable Technologies

https://seeiist.eu

- Association with a goal to construct hadron therapy and research facility in one of East European countries
- Medical CERN with focus on cancer radiotherapy
- Research program as important as treatment
- Facility construction will end around 2030 need to future-proof systems

Experiments at low and high energy


AREA: 6.500 M2

• Experimental requirements are difficult to foresee - flexible design

What is NIMMS?

Next Ion Medical Machine Study

- R&D programme for the development of critical accelerator technologies related to ion therapy
- Started in 2019
- Follows tradition of CERN involvement in medical machines (see Proton-Ion Medical Machine Study, PIMMS)
- Workpackages:
 - superconducting magnets for synchrotron and gantry
 - synchrotron
 - gantries
 - high-frequency linac
- SEEIIST is to profit from NIMMS developments

superconducting ion gantry, weight= 30 t for the rotating part (CERN & TERA)

Design specifications addresses the main issues of existing machines

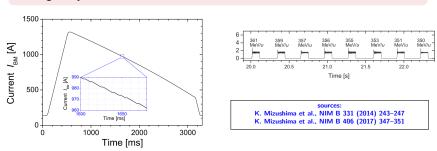
Requirement: treat 1 liter tumor with 2 Gy in one synchrotron fill.

Injection/Acceleration	Unit					
Particle after stripping		р	⁴ He ²⁺	$^{12}C^{6+}$	¹⁶ O ⁸⁺	³⁶ Ar ¹⁶⁺ (*)
Energy	MeV/u	7				
Magnetic rigidity at injection	Tm	0.38	0.76	0.76	0.76	0.86
Extraction energy range (**)	MeV/u	60 – 250 (1000)	60 – 250 (430)	100 - 430	100 - 430	200 - 350
Magnetic rigidity at highest energy (for therapy)	Tm	2.42	4.85	6.62	6.62	6.62
Maximum nominal field	Т	1.5				
Maximum number of particles per cycle		2.6 ·10 ¹¹	$8.2 \cdot 10^{10}$	$2 \cdot 10^{10}$	$1.4 \cdot 10^{10}$	5 ·10 ⁹

source: SEEIIST ESFRI (European Strategy for Research Infrastructure) proposal

Current machines store 10^9 carbon ions per fill.

Baseline: RF-KO extraction, active scanning


- Beam rigidity between 2.3 and 6.7 Tm (the same as in other medical facilities)
- RF-KO extraction baseline for Multiple-Energy operation
- spill duration in range 0.5-30 s (or shorter, see FLASH discussion)
- spill quality: for raster scanning each voxel dose withing 3-5% with respect to treatment plan (including range uncertainty, patient positioning, energy error)
- spot irradiation time $t_s = 13-15 \ ms,$ margin needed: R&D on faster scanning magnets
- maximum spot dose usually 2 Gy, but can be 60 Gy (hypofractionation)
- rescanning possible

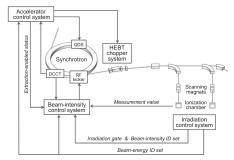
Multiple sources of information, eg:

M. Palm, CERN-THESIS-2013-421

Multiple-Energy Extraction

MEE greatly shortens the irradiation time!

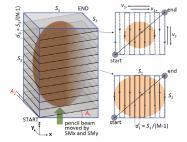
- extraction of ion beams with various energies in a single synchrotron cycle
- spill duriation: 100 ms, between spills: 220 ms
- HIMAC: up to 200 energy levels, $\Delta E = 1 7 \text{ MeV}$ (typical treatment: 40-80 layers)
- MEE is commercially available in Hitachi proton synchrotron:
 - only up to 4 layers per fill
 - irradiation time reduced by 35%


J.E. Younkin et al., Advances in Radiation Oncology (2018) 3, 412-420

Multiple-Energy Extraction

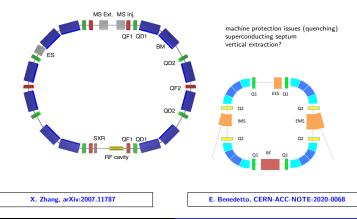
Issues and potential improvements:

- HIMAC: tune fluctuations due to energy ramping suppressed by fast quadrupoles
- still intensity spike after each energy change removed by HEBT chopper
 - chopping spikes contributes to 220 ms between energy layers, can it be reduced by KO-exciter or better power converters?
- Intensity feedback from dose delivery detectors
 - as fast as possible (RF exciter controller)
 - with new detector technologies (eg. scintillating fibers),


standarized interface needed?

Oblique raster scanning

Continuous Multiple-Energy extraction


- why not to go a step further and ramp the energy continuously during the scan?
- this saves irradiation time and helps to avoid problems of optics jumps
- relaxes ramp-rates of superconducting magnets
- U. Amaldi, Phys. Med. Biol. 64 (2019) 115003
- for scanning velocity of 20 m/s it can save even 50% of irradiation time

- the treatment plans must be validated for this method
- the new KO-exciter should allow for continuous modulation of excitation pattern and amplitude
- i.e. it should follow the continuous ramp of the revolution frequency

RF-KO in superconducting synchrotron

- SEEIIST baseline design is based on PIMMS: large machine (75 m), quite complex but flexible (needed for experimental programme)
- Other desings are considered eg. based on Double-Bend Achromat (55 m)
- Ongoing work on superconducting ring (30 m)
- The exciter should fit to smaller machine and DCCT should measure ripple with SC magnet in the circuit

High brightness beam

Electron Beam Ion Sources (EBIS)

- Currently ECR ion sources are used to provide enough intensity for injection
- Multiturn injection has to be used (20-30 turns)
- For SEEIIST advanced 18 GHz source is needed (AISHA/Catania or PK-ISIS/Pantechnik)
- or a source with smaller emittance to improve multiturn injection efficiency
- Reports on EBIS and ESIS are optimistic:

Boytsov, Review of Scientific Instruments 86, 083308 (2015)

- EBIS/ESIS: 10 × smaller emittance
- In case of EBIS the beam brightness will be much larger, what will escalate problems with separatrix fluctuations and spill quality

What does it means FLASH with C-ions?

- FLASH effect appears at dose rates above 40 Gy/s
- Experiments show that healthy tissue is much better spared than at standard dose rates
- To reach FLASH dose rate the spill has to be less than 50 ms (exact values debatable, better assure 5-10 ms)
- The simplest method: use double scattering to get uniform dose distribution and cut it with collimators
- Probable mode of FLASH operation using synchrotron:
 - fill the machine with all intensity needed for irradiation
 - extract small portion of the beam for QA (and feed forward)
 - extract the beam either by fast extraction or driving the beam right to the resonance (maybe half-integer?)
 - RF-KO probably not helpful here (to slow)
 - use more instrumentation to control the dose delivery

FLASH therapy - scanning

Is scanning still possible?

Jolly, Owen, Schippers, Welsch, Physica Medica 78 (2020) 71-82

- FLASH with standard scanning method: need 100 times faster scanning
- Hybrid delivery: broad beam, 3 ms spills, energy change in between

To provide the temporal beam characteristics needed for FLASH spot scanning (see Section 4.1), the extraction time for a single energy layer will need to be reduced from several seconds to <3 ms, a reduction by 3 orders of magnitude. This clearly requires a novel approach not yet described. The large variations in current during extraction also need to be significantly reduced — ideally below 10% — in order to prevent under- or overdosing of individual spots. Ideally this new extraction method would have rise and fall times « 600 ns to allow the beam to be switched off between spots when using the step-and-shoot method. This

maybe some hybrid of burst-model slow extraction while energy ramping would

do the job?

M. pari et al., 0 doi:10.18429/JACoW-IPAC2019-WEPMP03

- Hybrid delivery: spot scanning using the SOBP (3D-printed range modulators), delivery time for each spot: $20 \ \mu s$
- energy scanning and SOBP-spot scanning require further investigations to clarifyu= requirements for RF-KO system

Conclusions

- SEEIIST is future ion therapy and research center.
- Baseline is RF-KO extraction because of flexibility, intensity control and fast switching.
- Multiple Energy Extraction is a must from the beginning.
- 10x higher beam intensity quality of slow extraction more critical.
- The I.FAST-REX exciter should allow for implementation of Oblique Raster Scanning:

- continuos change of extraction parameters with beam energy.

- Dose rates, even without FLASH, will be larger, so fast feedback ability is crucial.
- Delivering FLASH doses using RF-KO extraction requires additional study and may impose very challenging requirements for the system.
- NIMMS has PhD student on slow extraction (from Imperial and John Adams), starting March 1st.

Thank you for your attention!