MVD prepairing

Dilepton meeting Frankfurt, Germany December 18, 2020

Etienne Bechtel University of Frankfurt

What is checked?

12 A GeV Au+Au UrQMD collisions 0-10% centrality

Standard sis100 electron setup as in APR20

	Events	Location
In-medium	2.5 M	/lustre/cbm/pwg/common/mc/cbmsim/apr20_fr_18.2.1_fs_jun19p1/ urqmd_pluto_inmed_had_epem/auau/12agev/centr_0_10/sis100_electron_target_25_mkm/ TGeant4/
In-medium (no MVD)	2.5 M	/lustre/cbm/users/isegal/mc/cbmsim/apr20_fr_18.2.1_fs_jun19p1/ urqmd_pluto_inmed_had_epem/auau/12agev/centr_0_10/ sis100_electron_target_25_mkm_no_mvd/TGeant4/

Track selection

Sts hits > 2

 χ^2/NDF < 3

 p_T > 50 MeV/c

A full pairing procedure is done and both tracks are rejected if the invariant mass is $< 25 \text{ MeV/c}^2$

Point of interest for this analysis

Rich hits > 5

ANN output (at 90% for all momenta)

Trd hits > 2

Electron-Likelihood (at 80% for all momenta)

Basic idea

Use proximity of hits in the MVD/STS to reject physical background pairs

Basic idea

I can define per track:

- Distance to closest hit
- Number of reconstructed daughter hits

Per pair:

Distance between + and - in the first station

(something I am still checking if it could be useful)

Physical background

Most of our combinatorial electron contributions come from gamma conversions and pions

Daughter track hits

 $\begin{array}{c|c} 8 & 10 & 12 & 14 \\ hits_{STS}^{d_1} + hits_{MVD}^{d_1} + hits_{RICH}^{d_1} \end{array}$

Etienne Bechtel - Dilepton meeting - Frankfurt, Germany

0

0

2

4

6

Daughter track hits

Acceptance - MVD closest hit rejection

Acceptance - STS closest hit rejection

Reduction of of the total combinatorial background

Overall, there is a significant subtraction of background

The signal-to-background increases up to a factor 3

18.12.20

Significance

18.12.20

Cut efficiency

However, there is also a significant signal loss included

The total reduction is lower than on slide 9/10 suggested due to the previous pair rejection

Detection probability

The signal loss causes a decrease at larger invariant masses

Invariant mass spectra

The invariant mass spectra look comparable

Conclusion

MVD usage

- A rudimentary implementation of a "closest hit" cut was compared between STS and MVD
- The background contributions from gamma conversion and pi0-dalitz decays were suppressed substantially
- The signal-to-background ratio increased significantly

MVD pair hit distance

18.12.20

18.12.20