2021.01.21 meeting with Tohoku and Mainz group J. Yoshida

- How does the B_{Λ} calculation using the old Λ mass deviate from the true value?
- Is it possible to re-calibrate the past value of B_{Λ} ?
- How accurately can we measure the B_{Λ} of single Λ hypernuclei with E07 emulsion sheets?

Nuclear Physics B52 (1973) 1-30. A NEW DETERMINATION OF THE BINDING-ENERGY VALUES OF THE LIGHT HYPERNUCLEI (A ~< 15) M. JURIC, et al.

Nuclear Physics B4 (1968) 511-526. A DETERMINATION OF THE BINDING-ENERGY VALUES OF LIGHT HYPERNUCLEI G. Bohm, et al.

Procedure of B_{Λ} measurement of hypernucleus

• Event search

- Event selection
- Measurement of range and angles of the tracks
- Measurement of emulsion density
- Measurement of Λ mass
- Kinematical analysis and Identification of nuclide

Event selection and measurement

Example: ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$

K.E._daughter = Barkas_formula(range, nuclide, emulsion_density)

Mass_hypernucleus = $\sum_{\text{daughters}}$ (Mass + K.E.) to be updated with kinematic fitting B_A = Mass_core + Mass_A - Mass_hypernucleus

Measurement of emulsion density and Σ^+ mass

Bohm, et al., Nuclear Physics B48 (1972) 1-12. https://doi.org/10.1016/0550-3213(72)90047-8

The values of the mass of the Σ^+ hyperon, m_{Σ^+} , and the density of the emulsion, d, were obtained by equating the kinetic energies of the Σ^+ hyperon from reaction (2) and the proton from reaction (1), $T_{\Sigma^+}^R$ and T_p^R respectively, derived from their measured ranges in emulsion with those obtained from the kinematics of these reactions $T_{\Sigma^+}^K$ and T_p^K . The problem reduces to solving the two simultaneous equations,

$$T_{p}^{R}(R_{p}, m_{p}, A_{i}, r; d) - T_{p}^{K}(m_{p}, m_{\pi^{0}}; m_{\Sigma^{+}}) = 0, \qquad (10)$$

$$T_{\Sigma^{+}}^{\mathrm{R}}(R_{\Sigma^{+}}, m_{\mathrm{p}}, A_{i}, r; m_{\Sigma^{+}}, d) - T_{\Sigma^{+}}^{\mathrm{K}}(m_{\pi^{-}}, m_{\mathrm{K}^{-}}, m_{\mathrm{p}}; m_{\Sigma^{+}}) = 0$$
(11)

to determine the unknowns m_{Σ^+} and d, all the other quantities being known. The

Bohm, et al., Nuclear Physics B48 (1972) 1-12. https://doi.org/10.1016/0550-3213(72)90047-8

Via simultaneous equations,

 $M_{\Sigma_{+}} = 1189.39 + 0.06 \text{ MeV/c}^2$

Emulsion density = $3.843 + 0.003 \text{ g/cm}^3$

"slightly higher than the standard value, 3.815"

PDG2020 $M_{\Sigma+} = 1189.37 +- 0.07 \text{ MeV/c}^2$

The Co	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			
The fit use:	sz [,] , z [,] , z	, and A mass and	mass-	-difference measurements.
VALUE (MeV)	EVTS	DOCUMENT ID		TECN COMMENT
1189.37±0.07 OUR	FIT Error	includes scale fact	or of 2	2.2.
1189.37±0.06 OUR	AVERAGE	Error includes sca	le fact	tor of 1.8. See the ideogram
below.				
1189.33 ± 0.04	607	¹ BOHM	72	EMUL
1189.16 ± 0.12		HYMAN	67	HEBC
1189.61 ± 0.08	4205	SCHMIDT	65	HBC See note with A mass
1189.48 ± 0.22	58	² BHOWMIK	64	EMUL
1189.38 ± 0.15	144	² BARKAS	63	EMUL
				0

Measurement of Λ mass in emulsion

B. Bhowmik et al., Il Nuovo Cimento 22, 296-303 (1961)

https://link.springer.com/article/10.1007/BF02783020

	A MASS			
	The fit uses A, Σ^+ , Σ^0 , Σ^- mass and mass-difference measurements.			
PDG2020	VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT 1115.683±0.006 OUR FIT 1115.683±0.006 OUR AVERAGE Image: Comment of the second s	-		
$\rm M_{\Lambda}$ = 1115.683 \pm 0.006 MeV/c^2	1115.678±0.006±0.006 20k HARTOUNI 94 SPEC <i>pp</i> 27.5 GeV/ <i>c</i> 1115.690±0.008±0.006 18k ¹ HARTOUNI 94 SPEC <i>pp</i> 27.5 GeV/ <i>c</i>			

Cancellation of systematic deviation

 $B_{\Lambda} = Mass(Core) + Measured_Mass(\Lambda) - Measured_Mass(_{\Lambda}Z)$

If $\varepsilon 1$ and $\varepsilon 2$ is the same, They will cancel out. However, evidence is necessary.

Identification of nuclide

The conditions for an event to be considered as uniquely identified

(i) A fit exists for which the resultant momentum of the decay products is zero with a C.L. > 10% (χ^2 < 6.3, D.O.F=3)

(ii) $|\text{The}_{fit}B_{\Lambda} - \text{known}B_{\Lambda}| < 5 \text{ MeV}$

(iii) there exists no other fit to a known decay mode for which the resultant momentum is zero with a C.L. > 1% (χ^2 < 11.3, D.O.F=3)

Fig. 1. χ_3^2 distribution for $\Lambda^5 \text{He} \rightarrow \pi^{-1}\text{H}^4\text{He}$. The curve represents the expected distribution for three degrees of freedom.

Table of ${\rm B}_{\Lambda}$

M. JURIC, et al. (1973)	Table 1 Binding energies f	Table 1 Binding energies for the s-shell hypernuclei.			S
	Hypernucleus	Decay mode	No of events	$B_{\Lambda} \pm \Delta B_{\Lambda}$ (MeV)	
	$^{3}_{\Lambda}$ H	$\pi^{-} + {}^{1}H + {}^{2}H$ $\pi^{-} + {}^{3}He$	24 58	0.23 ± 0.11 0.06 ± 0.11	
		total	82	0.15 ± 0.08	Large dependency
	$^{4}_{\Lambda}$ H	$\pi^{-} + {}^{1}H + {}^{3}H \\ \pi^{-} + {}^{2}H + {}^{2}H$	56 11	2.14 ± 0.07 1.92 ± 0.12	on decay mode
		total	67	2.08 ± 0.06	
	⁴ He	$\pi^{-} + {}^{1}H + {}^{3}He \pi^{-} + {}^{1}H + {}^{1}H + {}^{2}H$ total	83 15 98	2.42 ± 0.05 2.44 ± 0.09 2.42 ± 0.04	
	s _Λ He	$\pi^{-} + {}^{1}H + {}^{4}He$ $\pi^{-} + {}^{1}H + {}^{1}H + {}^{3}H$ $\pi^{-} + {}^{2}H + {}^{3}He$	798 8 15	3.19 ± 0.02 2.95 ± 0.07 3.04 ± 0.06	
		π^{-} + ¹ H + ² H + ² H	1	3.49 ± 0.14	
		total	822	5.17 ± 0.02	
		Table	3	n 2237 events	
G. Bohm, et al. (1968)	Hypernuclide	Decay mode	Number of events	$B_{\Lambda} \pm \Delta B_{\Lambda}$ (MeV)	
	Λ^{3H}	π^{-3}_{He} $\pi^{-1}_{H^2H}$ total	86 16 102	$+0.05 \pm 0.08$ -0.11 ± 0.13 $+0.01 \pm 0.07$	Large dependency on decay mode
	4 H	π^{-4} He	552	2.29 ± 0.04	Not used
	24	$\pi^{-1}_{H}^{H3}_{H}_{\pi^{-2}_{H}^{2}H}$	63 7	2.08 ± 0.06	
		not averaged, see tex	t		
	Λ^4 He	$\pi^{-1}\mathrm{H}^{3}\mathrm{He}$ $\pi^{-1}\mathrm{H}^{1}\mathrm{H}^{2}\mathrm{H}$	127 3	2.36 ± 0.04	
	$\Lambda^{\rm 5He}$	$\pi^{-1}_{H}^{H4}_{He} \pi^{-2}_{H}^{H3}_{He} \pi^{-1}_{H}^{H1}_{H}^{H3}_{H}$	724 10 1	3.08 ± 0.02	9

Why 2-body decay of ${}^{4}_{\Lambda}$ H is not used?

G. Bohm et al., Il Nuovo Cimento A 70, 384–390 (1970) https://link.springer.com/article/10.1007/BF02725382

- Discrepancy between the B_{Λ} by $[{}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}]$ and $[{}^{4}_{\Lambda}H \rightarrow {}^{1}H + {}^{3}H + \pi^{-}]$
- Due to systematic error in the range-energy relation for particle velocities > 0.6c
- Lambda mass with π^- 4cm range is deviate from the average.

AN INVESTIGATION OF THE RANGE-ENERGY RELATION IN EMULSION 387

TABLE I. – Variation of the observed value for \overline{M}_{Λ} with the range of the π^- -meson. The quoted errors are statistical only.

Limits o	f pion range (µm)	No. of events	$\overline{M}_{\Lambda}\pm\Delta\overline{M}_{\Lambda}~({ m MeV})$	
$ \begin{array}{r} 1000\\ 2000\\ 3000\\ 3500\\ 4000\\ \end{array} $	$R \leqslant 10\ 000 \ 0 < R \leqslant 20\ 000 \ 0 < R \leqslant 30\ 000 \ 0 < R \leqslant 35\ 000 \ 0 < R \leqslant 40\ 000 \ 0 < R \leqslant 45\ 000 \ R > 45\ 000$	$ 181 \\ 594 \\ 371 \\ 133 \\ 82 \\ 77 \\ 86 $	$\begin{array}{c} 1115.43 \pm 0.04 \\ 1115.56 \pm 0.03 \\ 1115.56 \pm 0.04 \\ 1115.42 \pm 0.07 \\ 1115.37 \pm 0.09 \\ 1115.22 \pm 0.09 \\ 1115.65 \pm 0.09 \end{array}$	557 556 556 557 558 554 554 554 554 554 554 554 554 554

1115.52 + -0.03

10

Combine

The binding energy of the ${}^{5}_{\Lambda}$ He hypernucleus has been measured also, as a further point of calibration (see subsect. 3. l).

Table 2 Comparison of the B_{Λ} values for the s-shell hypernuclei obtained by Bohm et al. [2] and in this work

	$B_{\Lambda} \pm \Delta B_{\Lambda}$ (MeV)	δ B_{Λ} (MeV)	
	Bohm et al. ^{a)}	This work	
$^{3}_{\Lambda}$ H	0.01 ± 0.07	0.15 ± 0.08	0.14 ± 0.11
⁴ _Λ H ^{b)}	2.09 ± 0.06	2.08 ± 0.06	-0.01 ± 0.09
$^{4}_{\Lambda}$ He	2.39 ± 0.04	2.42 ± 0.04	0.03 ± 0.06
$^{5}_{\Lambda}$ He	3.08 ± 0.02	3.17 ± 0.02	0.09 ± 0.03

- a) The small difference appearing between some of the quoted values and those reported by Bohm et al. (see table 3 of ref. [2]) come from the procedure used in calculating the mean values. In Bohm et al. a cut based on both the momentum and energy balances was applied. The value quoted here were obtained by the iterative procedure based on a cut at 3 standard deviations from the mean B_A as in this experiment.
- b) Excluding π -recoil decays.

"the results of both works are consistent and may thus be combined."

Combined data

4042 uniquely identified events, 37000 mesonic decay

Table 8 B_{Λ} compilation				
Hypernuclide	Number of events	$B_{\Lambda} \pm \Delta B_{\Lambda} (\text{MeV})$		
³ _A H	204	0.13 ± 0.05		
$^{4}_{\Lambda}H$	155	2.04 ± 0.04		
$^{4}_{\Lambda}$ He	279	2.39 ± 0.03		
$^{5}_{\Lambda}$ He	1784	3.12 ± 0.02		

M. Jurić et al., Hypernuclei binding energies

	Juric	Bohm	Others	total
${}^{3}{}_{\Lambda}{}^{H}$	82	102	20	204
${}^{4}{}_{\Lambda}{}^{H}$	67	70	18	155
${}^{4}{}_{\Lambda}$ He	98	130	51	279
${}^{\rm 5}{}_{\Lambda}{\rm He}$	822	735	227	1784

25

"Recalibration" of B_{Λ} of $\ensuremath{\,^3_\Lambda}\xspace$ H by STAR group

arXiv:1904.10520v1 [hep-ex] 23 Apr 2019

Table 1 | **Assumed masses in past and present determinations of hypertriton binding energy** B_{Λ} **.** All masses are in units of MeV/ c^2 .

	Measurements	Λ mass	π^- mass	p mass	d mass	³ He mass
	Gajewski et al. (1967) ³¹	1115.44 ³²	139.59 ⁴¹	938.26 ⁴¹	1875.50 ^{40,45,46}	2808.22 ^{40,45,46}
	Bohm et al. (1968) ³²	1115.57 ³²	139.58 ⁴²	938.26 ⁴²	1875.50 ^{40,45,46}	$2808.22^{40,45,46}$
	Keyes et al. (1970) ³³	1115.67 ³³	139.58 ⁴³	938.26 ⁴³	1875.58 ³³	2808.22 ^{40,45,46}
Juric	-Bohm et al. (1973) ⁴	1115.57 ⁴	139.58 ⁴⁴	938.26 ⁴⁴	1875.50 ^{40,45,46}	2808.22 ^{40,45,46}
	Present study	1115.68 ¹⁸	139.57 ¹⁸	938.27 ¹⁸	1875.61 ³⁰	2808.39 ³⁰

Table 2 | **The previous measurements of** B_{Λ} **for hypertriton and its corresponding recalibration results.** B_{Λ} is in units of MeV. The uncertainties are the reported statistical uncertainties.

	Measurements	Original		Recalibrated	
	wiedsurements	B_{Λ}	Combined B_{Λ}	B_{Λ}	Combined B_{Λ}
	Gajewski et al. $(1967)^{31}$	0.13 ± 0.15 (2-body)	0.20 ± 0.12	0.33 ± 0.15 (2-body)	0.41 ± 0.12
	Oajewski <i>ei ui</i> . (1907)	0.33 ± 0.21 (3-body)	0.20 ± 0.12	0.58 ± 0.21 (3-body)	0.41 ± 0.12
	Bohm <i>et al.</i> $(1968)^{32}$	0.05 ± 0.08 (2-body)	0.01 ± 0.07	0.11 ± 0.08 (2-body)	0.08 ± 0.07
	Domin <i>et ut</i> . (1900)	-0.11 ± 0.13 (3-body)	0.01 ± 0.07	0.00 ± 0.13 (3-body)	0.08 ± 0.07
	Keyes <i>et al.</i> $(1070)^{33}$	0.25 ± 0.31 (2-body)	-0.07 ± 0.27	0.13 ± 0.31 (2-body)	-0.16 ± 0.27
	Reyes et ul. (1970)	-0.74 ± 0.43 (3-body)	-0.07 ± 0.27	-0.73 ± 0.43 (3-body)	-0.10 ± 0.27
luric	Bohm <i>et al.</i> $(1973)^4$	0.06 ± 0.11 (2-body)	0.15 ± 0.08	0.12 ± 0.11 (2-body)	0.23 ± 0.08
Junc	<u>– Bomire</u> t al. (1975)	0.23 ± 0.11 (3-body)	0.15 ± 0.00	0.34 ± 0.11 (3-body)	0.25 ± 0.00

The paper on the recalibration

Peng Liu *et al.*, 2019 *Chinese Phys. C* **43** 124001 https://arxiv.org/pdf/1908.03134v2.pdf

> "We note that the early emulsion measurements in 1968 and 1973 benefited from a compensating effect in normalizing the BA values via measuring the mass of the A hyperon with the decay daughter π^- range of 1-2 cm in the same emulsion stack."

• They recognized the benefit of the calculation of early measurement.

"This difference in π^- range can also yield a difference in the measured Q value as large as 0.43 +- 0.13 (stat.) MeV, and cannot ensure the deviations of measured Q value for Λ decay and hypernuclear decay are in the same direction."

• I agree with this statement.

We will evaluate how the error or shift of the inputs affect B_A s using MC simulation. This study is ongoing and to be published by A. Kasagi and E. Liu. How accurately can we measure the B_{Λ} of single Λ hypernuclei with E07 emulsion sheets?

- We are trying re-measurement of the hypertriton mass.
- Collaboration between High Energy Nuclear Physics Lab at RIKEN and Gifu-U.
- Machine learning based object detection.
- 2-body decay of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H.

If emulsion density = 3.500 g/cm³

- Typical B_{Λ} error of an event is ~0.5 MeV
- The B_{Λ} of ${}^{4}{}_{\Lambda}H$ will be compared to that of MAMI's experiment

Event search

2.1.	Exposure,	processing and	scanning	method
------	-----------	----------------	----------	--------

Paper	G. Bohm, et al. (1968)	M. JURIC, et al. (1973)
Experiment	CERN P.S	AGS
Beam	K- 700MeV/c -> degraded	K- 760MeV/c -> degraded
Emulsion		
Туре	Illford K5	Illford K5
Amount	20 litters	6 litters
Sheet	pellicles	pellicles
		15cm*20cm*600µm*363
Optics		
area-scan	x300	x300
meas.	?	x600
Mesonic decay		
found	7000	27000
identified	2008	2237