Exclusive measurement of $\gamma d \rightarrow d\pi^+\pi^-$ with NKS2 at ELPH (Search for N Δ dibaryon)

Yuichi Toyama for the NKS2 collaboration

2020/12/10

Tohoku-Mainz

Contents

Introduction

- What's Dibaryon?
- $\gamma d \rightarrow d\pi^0 \pi^0$ from Forest
- Experiment
 - Research Center for ELectron PHoton Science (ELPH), Tohoku Univ.
 - Neutral Kaon Spectrometer 2 (NKS2)
- Search for N Δ dibaryon
 - Event selection
 - Invariant mass
 - Possible scenario
- Future prospects
- Summary

What is "dibaryon" ?

Molecule state of 2 baryons? Compact 6 quarks state?

Classification of 2-baryon state without strangeness

M = A + B (I(I + 1) + S(S + 1) - 2) A = 1878 MeV B = 47 MeVDyson-Xuong, PRL 13 (1964) 815

```
2020/12/10
```

Tohoku-Mainz

What is "dibaryon"?

Classification of 2-baryon state without strangeness

2020/12/10

Yuichi Toyama

T. Ishikawa et al., PLB789, 413 (2019) $\gamma d \rightarrow d\pi^0 \pi^0$ Forest, ELPH

2020/12/10

Tohoku-Mainz

2020/12/10

Tohoku-Mainz

Experiment

Tohoku-Mainz

Research Center for ELectron PHoton Science (ELPH) 8

Max Beam current	30 mA
Ring top energy	0.8—1.3 GeV
Duty factor	~0.7
Injection Beam energy	90 MeV

- Location: Sendai, Japan
- Electron Synchrotron
 - · Internal target system for γ beam

2020/12/10

Tohoku-Mainz

Neutral Kaon Spectrometer 2 (NKS2)

- ${\scriptstyle \bullet } \gamma + d \rightarrow \pi^{\pm} + X \rightarrow \pi^{+} + \pi^{-} + d$
- Data taken in Oct. 2010
- $E_v = 0.8 1.1 \text{ GeV}$ (before 2011)
- liq. D target (516 mg/cm²)
- $N_{\gamma} = 3 \times 10^{12}$

2020/12/10

- Dipole magnet : B ~ 0.42 T, R = 0.8 m
- Hodoscopes (IH and OH): TOF measurement
- MWDC's (CDC and VDC) : Tracking for momentum and vertex finding
- EV: Reduction of e⁺e⁻ background
- Geometrical acceptance: ~ 1 π sr

Neutral Kaon Spectrometer 2 (NKS2)

- $\bullet \gamma + d \to \pi^\pm + X \to \pi^+ + \pi^- + d$
- Data taken in Oct. 2010
- $E_v = 0.8 1.1 \text{ GeV}$ (before 2011)
- liq. D target (516 mg/cm²)
- $N_{\gamma} = 3 \times 10^{12}$

2020/12/10

- Dipole magnet : B ~ 0.42 T, R = 0.8 m
- Hodoscopes (IH and OH): TOF measurement
- MWDC's (CDC and VDC) : Tracking for momentum and vertex finding
- EV: Reduction of e⁺e⁻ background
- Geometrical acceptance: ~ 1 π sr

Particle ID

PID plot χ^2 & vpos & dE & OA & DCA cut

- 2track vertex events
 - w/ several cuts for good track
- 1/β from Hodoscopes (and DCs)
- Mom. from drift chambers
 Runge-Kutta

2020/12/10

Tohoku-Mainz

Vertex & weakly decay events

- Λ, K⁰ : good reference of the momentum calib.
- Decay volume cut (weak decay)

Vertex Position(p- π)

100 104 1.02 1.04 1.06 1.08 1.10 1.12 1.14 $M(p\pi)$ GeV/ c^2 10³ 10² 1.0 Counts/(6.0 MeV) 0.5 10 0.0 Vacuum chamber 40 -10 20 x [cm] Selected region 0.2 0.3 0.4 0.5 Tohoku-Mainz 12/10 2020/

Vertex & weakly decay events

- Λ, K⁰ : good reference of the momentum calib.
- Decay volume cut (weak decay)

Vertex Position(p- π)

100 104 1.02 1.04 1.06 10³ 10² 1.0 Counts/(6.0 MeV) 0.5 10 Vacuum chamber 40 -10 20 x [cm] Selected region 0.2 0.3 Tohoku-Mainz 2020/12/10

13 $p\pi^{-}$ invariant mass 1.0 0.5 Counts/(2.0 MeV) w/o dvol cut 200 Λ w/ dvol cut 1.10 1.12 1.08 1.14 1.16 1.20 1.18 $M(p\pi)$ GeV/ c^2 $\pi^+\pi^-$ invariant mass w/o dvol cut K^0 w/ dvol cut 0.4 0.5 0.6 0.7 0.8 $M(\pi^+\pi^-)$ [GeV/c²]

Λ , K⁰ inclusive measurement

Momentum calibration was successfully done. Cross section analysis is ongoing.

2020/12/10

Tohoku-Mainz

Search for N Δ dibaryon

Tohoku-Mainz

Event selection

Target state : D_{12} (N Δ)

- 3 track analysis
 - Detect 3 charged particles, $d\pi^+\pi^-$
- 2 track analysis
 - Detect 2 charged particles, $d\pi^+$ or $d\pi^-$
 - Missing mass for $\pi^{\text{+/-}}$

2020/12/10

Tohoku-Mainz

Invariant mass spectra $(d\pi)$

• Bump around N Δ mass

2020/12/10

Tohoku-Mainz

Yuichi Toyama

Invariant mass spectra (W binned)

2020/12/10

Tohoku-Mainz

Yuichi Toyama

Invariant mass spectra (W binned, vs phase space sim.)

2020/12/10

Tohoku-Mainz

Possible mechanisms of coherent $\pi^+\pi^-$ production

2020/12/10

Tohoku-Mainz

Yuichi Toyama

Invariant mass spectra (W binned, vs phase space sim.)

2020/12/10

Tohoku-Mainz

Angular distribution (v.s. phase space b.g.)

2020/12/10

Tohoku-Mainz

Yuichi Toyama

Future prospects

For my PhD. thesis

- Cross section
 - Acceptance correction
 - Efficiencies
 - Contaminations (pππ)

Further more...

- Deuteron missing analysis
 - Recovers backward deuteron emission events (QF $\pi\pi$ dominant region)
- Further statistics as biproducts of Λn FSI and η 'd exp. in the future (2022?)
 - An FSI by Dr. M. Kaneta
 - η'd exp. by Prof. H. Fujioka, Tokyo Tech.

Summary

- N Δ dibaryon search via the $\gamma d \rightarrow d\pi^+\pi^-$
- Resonance like structure in $d\pi^{+/-}$ invariant mass at 2.15 GeV ($\Gamma \sim 0.1$ GeV)
- Further discussion about angular dist.

d missing analysis

Request of current analysis : deuteron OH hit

- Low mom. d (< 400 MeV/c, backward in CM frame) cannot be measured (out of acceptance)
- Backward d is dominant in QF calc. (A. Fix)

New Idea : deuteron ID w/ ToF btwn a vertex point of $\pi\pi$ and IH_d

- Increasing deuteron acceptance not only kinematically but also geometrically
 How effective is it?
- **D** Separation from $p\pi^+\pi^-$ (~100 times larger b.g.)

Tohoku-Mainz