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Cold atoms in a laser trap

typical density

particle number N = 106

cloud volume V = 10−9 cm3

interparticle distance d = 0.1 µm

typical temperature

temperature T = 10−6K
thermal de-Broglie length λT = 1 µm

typical interaction parameters

interaction range λvdW = 10−4 µm
scattering length a = (0...∞) µm



Theoretical challenge

quantum effects are important

many particles / nonzero density

nonzero temperature

large interaction strength

possibly non-equilibrium dynamics

similar problems as in QCD matter: Heavy ion collisions,
Neutron stars, ...

advantage for cold quantum gases: very well controlled,
experiments on a table-top



Complexity problem with strong interaction

Strong interactions lead to strong effects. Qualitative features
of a theory can change!

Physical properties can become universal! Microscopic details
become irrelevant.

Strong interaction effects lead to fast Equilibration: Dynamics
can be described by Close-to-Equilibrium methods.
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On the lattice: Trion formation

(Rapp, Zarand, Honerkamp, and Hofstetter, PRL 98, 160405 (2007),

Rapp, Hofstetter and Zarand, PRB 77, 144520 (2008).)



Single component Fermi gas

Most properties of dilute ultracold quantum gases are
dominated by s-wave interactions.

For identical fermions (only one spin component)
wavefunction has to be antisymmetric in position space.

s-wave interaction suppressed by Pauli blocking.

Behaves like ideal Fermi gas in many respects.



Two component Fermi gas

Two spin (or hyperfine-spin) components ψ1 and ψ2.

For equal mass Mψ1
=Mψ2

, density nψ1
= nψ2

etc. SU(2)
spin symmetry

s-wave interaction measured by scattering length a.

Repulsive microscopic interaction: Landau Fermi liquid.

Attractive interaction leads to many interesting effects!

Scattering length can be tuned experimentally with Feshbach
resonances.



BCS-BEC Crossover

Small negative scattering length a→ 0−
Formation of Cooper pairs in momentum space
BCS-theory valid
superfluid at small temperatures
order parameter ϕ ∼ ψ1ψ2

Small positive scattering length a→ 0+
Formation of dimers or molecules in position space
Bosonic mean field theory valid
superfluid at small temperatures
order parameter ϕ ∼ ψ1ψ2

Between both limits: Continuous BCS-BEC Crossover
scattering length becomes large: strong interaction
superfluid, order parameter ϕ ∼ ψ1ψ2 at small T



Phase diagram BCS-BEC Crossover

Crossover best parameterized by c−1 = (akF )
−1.

Different methods give phase diagram

Result of renormalization group study:
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(Floerchinger, Scherer and Wetterich, PRA 81, 063619 (2010).)

More complicated phase diagram with population imbalance



Three component Fermi gas

For equal masses, densities etc. global SU(3) symmetry





ψ1

ψ2

ψ3



 → u





ψ1

ψ2

ψ3



 , u ∈ SU(3).

Similar to flavor symmetry in the Standard model!

For small scattering length |a| → 0

BCS (a < 0) or BEC (a > 0) superfluidity at small T.
order parameter is conjugate triplet 3̄ under SU(3)

ϕ =





ϕ1

ϕ2

ϕ3



 ∼





ψ2ψ3

ψ3ψ1

ψ1ψ2



 .

SU(3) symmetry is broken spontaneously for ϕ 6= 0.

What happens for large |a|?
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Classical field theory

Describes electro-magnetic fields, waves, ... (~ → 0).

Crucial object: classical action

S[φ] =

∫

dt

∫

ddx L(φ, ∂tφ, ~∇φ, . . . )

Classical field equations from δS
δφ = 0.

Symmetries of S lead to conserved currents.

All physical observables are easily obtained from S.



Quantum field theory

Describes electrons, atoms, quarks, gluons, protons,...
...and cold quantum gases

Crucial object: quantum effective action

Γ[φ] =

∫

dt

∫

ddx U(φ) + ...

Quantum field equations from δΓ
δφ = 0

Symmetries of Γ lead to conserved currents

All physical observables are easily obtained from Γ

Γ is generating functional of 1-PI Feynman diagrams and
depends on external parameters like T, µ, or ~B



The renormalization group

very important in modern understanding of quantum field
theory

describes how (effective) theories evolve to other (effective)
theories at smaller energy/momentum scales

makes a simple, efficient and intuitive description of complex
phenomena possible



How do we obtain the quantum effective action Γ[φ]?

Idea of functional renormalization: Γ[φ] → Γk[φ]

k is additional infrared cutoff parameter.

Γk[φ] → Γ[φ] for k → 0.

Γk[φ] → S[φ] for k → ∞.

Dependence on T, µ or ~B trivial for k → ∞.



How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

∂kΓk[φ] =
1

2
STr

(

Γ
(2)
k [φ] +Rk

)−1
∂kRk.

Differential equation for a functional.

For most cases not solvable exactly.

Approximate solutions can be found from Truncations.

Ansatz for Γk with a finite number of parameters.
Derive ordinary differential equations for this parameters or
couplings from the flow equation for Γk.
Solve these equations numerically.



Simple truncation for fermions with three components

Γk =

∫

x
ψ†(∂τ − ~∇2 − µ)ψ + ϕ†(∂τ −

1

2
~∇2 +m2

ϕ)ϕ

+χ∗(∂τ −
1

3
~∇2 +m2

χ)χ

+h ǫijk(ϕ
∗
iψjψk + h.c.) + g(ϕiψ

∗
i χ+ h.c.).

Units are such that ~ = kB = 2M = 1

Wavefunction renormalization for ψ, ϕ and χ is implicit.
Γk contains terms for

fermion field ψ = (ψ1, ψ2, ψ3)
bosonic field ϕ = (ϕ1, ϕ2, ϕ3) ∼ (ψ2ψ3, ψ3ψ1, ψ1ψ2)
trion field χ ∼ ψ1ψ2ψ3

ψi ϕi χ h g



Binding energies

Vacuum limit T → 0, n→ 0.
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For large scattering length a trion is energetically favorable!

Three-body bound state even for a < 0.



Quantum phase diagram

replacements

BCS Trion BEC

BCS-Trion-BEC transition
(Floerchinger, Schmidt, Moroz and Wetterich, PRA 79, 013603 (2009)).

a→ 0
−
: Cooper pairs, SU(3)× U(1) → SU(2)× U(1).

a→ 0+: BEC of molecules, SU(3)× U(1) → SU(2)× U(1).
a→ ±∞: Trion phase, SU(3) unbroken.

Quantum phase transitions

from BCS to Trion phase
from Trion to BEC phase.



Efimov effect
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Self-similarity in energy spectrum.
Efimov trimers become more and more shallow. At a = ∞

En+1 = e−2π/s0 En.

Simple truncation: s0 ≈ 0.82.
Advanced truncation: s0 ≈ 1.006 (exact result)
(Moroz, Floerchinger, Schmidt and Wetterich, PRA 79, 042705 (2009).)



Renormalization group limit cycle

For µ = 0 and a−1 = 0 flow equations for rescaled couplings

k
∂

∂k

(

g̃2

m̃2
χ

)

=

(

7/25 −13/25
36/25 7/25

)(

g̃2

m̃2
χ

)

.

Solution is log-periodic in scale.
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Every zero-crossing of m̃2
χ corresponds to a new bound state.

For µ 6= 0 or a−1 6= 0 limit cycle scaling stops at some scale
k. Only finite number of Efimov trimers.



Contact to experiments

Model can be generalized to case without SU(3) symmetry
(Floerchinger, Schmidt and Wetterich, PRA A 79, 053633 (2009)).

Hyperfine states of 6Li have large scattering lengths.
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Binding energies might be measured using RF-spectroscopy.

Lifetime is quite short ∼ 10ns.



Three-body loss rate

Three-body loss rate measured experimentally (Ottenstein et al.,

PRL 101, 203202 (2008); Huckans et al., PRL 102, 165302 (2009))

trion decay products

trion

effective boson

atoms

Trion may decay into deeper bound molecule states

Calculate B-field dependence of loss process above.

Left resonance (position and width) fixes model parameters.

Form of curve for large B is prediction.

Similar results obtained by other methods
(Braaten, Hammer, Kang and Platter, PRL 103, 073202 (2009);

Naidon and Ueda, PRL 103, 073203 (2009).)



Conclusions

Physics of ultracold fermions with three components quite
interesting.

Few-body physics (Efimov effect) well described by functional
renormalization.

Many-body physics shows parallels to QCD

BCS – “Color” – superfluidity for small negative a.
Trion – “Hadron” – phase for large |a|.
BEC – “Color” – superfluidity for small positive a.

Very nice playground for renormalization group methods.

Experimental tests seem possible.



“Refermionization”

Trion field is introduced via a generalized
Hubbard-Stratonovich transformation

Fermion-boson coupling is regenerated by the flow

∂k = ∂̃k

Express this again by trion exchange

(Gies and Wetterich, PRD 65, 065001 (2002),

Floerchinger and Wetterich, PLB 680, 371 (2009).)



Truncations

For many purposes derivative expansions are suitable
approximations. For example we use for the BCS-BEC Crossover

Γk =

∫

τ,~x

{

ψ†(∂τ − ~∇2 − µ)ψ + ϕ∗(Zϕ∂τ −Aϕ
1

2
~∇2)ϕ

−h(ϕ∗ψ1ψ2 + h.c.) +
1

2
λψ(ψ

†ψ)2 + Uk(ϕ
∗ϕ, µ)
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For many purposes derivative expansions are suitable
approximations. For example we use for the BCS-BEC Crossover

Γk =

∫

τ,~x

{
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∗ϕ, µ)

}

The coefficients Zϕ, Aϕ, λψ, h and the effective potential Uk
are scale-dependent.

The effective potential Uk contains no derivatives - describes
homogeneous fields.

Wave-function renormalization and self-energy corrections for
fermions can be included as well.
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The effective potential

We use a Taylor expansion around the minimum ρ0

Uk(ϕ
∗ϕ) = −p+m2 (ϕ∗ϕ− ρ0) +

1

2
λ (ϕ∗ϕ− ρ0)

2.

Typical flow:
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