

High Power Lasers: Powerful Tools to Extreme Matter Studies Vincent Bagnoud **Plasma Physics department, GSI-Darmstadt** v.bagnoud@gsi.de Picture: G. Otto, GSI

- Introduction to Higher Power lasers
 - Enabling discoveries allowed high power lasers to reach the petawatt level in less than 40 years
 - An interesting technological race between CPA and OPCPA
 - The temporal contrast of lasers is a hot topic nowadays
- Experiment Program at PHELIX
 - Progress on ion stopping experiments
 - Recent results in x-ray generation
 - Ion acceleration and the LIGHT project
- Extreme Matter studies with Lasers
 - Test of vacuum birefringence at HIJ
 - plans for FAIR

The peak power of lasers has boomed since the 60's

The boom of lasers has relied on many enabling technologies

$$P_{peak} = \frac{E_{pulse}}{\delta t}, \quad P_{avg} = \frac{\sum E_{pulse}}{\Delta t}, \quad E_{pulse} \approx F_{saturation}.S^*$$

HELMHOLTZ

GSI

* The transverse dimension of laser materials cannot exceeds its length

Technology	Compatible for short pulse	High energy	Average power
Nd:Glass (1970's)	Medium (1 ps)	Medium	Low
Ti:sapphire (1990's)	Yes (10 fs)	Low	Yes
Yb⁺ materials (2000's)	Yes (100 fs)	Yes (limited by damage threshold)	Yes
CPA (1984)	Yes at 800 nm	medium	N/A
OP-CPA (1992)	Yes at 900 nm	medium	Yes
Diode-pumping (1990's)	N/A	yes	Yes

- Advantages
 - CPA allows to release the requirements on the pump laser
 - OPCPA requires a complicated pump laser but simplifies the amplifier
- Current Projects:
 - Apollon-10 P (ILE France) Ti:sapphire CPA system
 - VULCAN 10 PW (RAL UK) OPCPA pumped by Vulcan

- Amplified spontaneous emission (ASE) is the main limit in a standard CPA scheme
- ASE can be analyzed in a general noise theory in quantum amplifiers

 In first approximation a CPA system operates with 10⁸ injected photons, which is the standard contrast level in a CPA or OPCPA system

A 10²² W/cm² standard CPA laser system exhibits a nanosecond pedestal at 10¹⁴ W/cm²

Recent works have tried to increase the number of photons injected into the amplifier

 The acceptable temporal contrast for high power lasers must be 10¹⁰ and up to 10¹² for intensities beyond 10²¹ W/cm²

HELMHOLTZ

G 55 T

- It guaranties that the pedestal intensity stays below 10⁹ W/cm² on the nanosecond scale
- That requires an increase of the injected pulse energy by 10⁴ to 10⁶

Clean pulses with an energy of 10 μ J to 1 mJ are necessary

- Techniques that work
 - « pulse cleaning » in a double CPA scheme with a cleaning scheme showing an extinction ratio close to 10⁴ 10⁶
 - ultra-fast OPA (uOPA)
- Techniques that do not work
 - Pre-amplification with fast electro-optical gating
 - Nanosecond OPCPA

High power lasers in the world*, present and future facilities

FIAS-EMMI Day – FIAS, Tuesday 11 January 2011

* Source ICUIL web page for lasers with >100 TW peak power

The PHELIX Science Program

Part II

An overview of the current PHELIX experiments

Schematics of PHELIX

Performance of PHELIX in 2010

	Long pulse	Short pulse	
Pulse duration	0.7 – 20 ns	0.5 – 20 ps	
On-target energy	0.3 – 1 kJ	120 J	
Maximum intensity	10 ¹⁶ Wcm ⁻²	10 ²⁰ Wcm ⁻²	
Repetition rate at joule level	1 shot every 3 min		
Repetition rate at maximum power	1 shot every 1h		
Temporal contrast	50 dB	60 to 80 dB depending on settings	

Interaction of energetic ions with a hot Plasma target

Progress in ion stopping (Courtesy of A. Frank)

- The combined use of PHELIX and nhelix yields a significant improvement in quality of the experimental data
- Plasma uniformity upon double-sided heating of planar target is the key issue
- Recently the conversion of the laser light to 527 nm (both PHELIX and nhelix) has improved the data even more (data still under analysis)

Theory plasma: Basko, Maruhn, Tauschwitz

Progress in X-ray generation*

- Recently a pump-probe scheme has been implemented at PHELIX
- Two sub-aperture beams are simultaneously amplified and separately focused allowing for the generation and diagnosis of hot dense plasma with x-rays
- Each laser beam carries > 100 TW laser pulses
- The delay between the pulses is adjustable from 0 to 2 ns
- The experiment is still in progress and data under analysis

HELMHOLTZ

G 55 H

Near field image recorded at the end of chain sensor

PHELIX is the only facility in Germany to offer this capability

FIAS-EMMI Day – FIAS, Tuesday 11 January 2011

* Developed with the EMMI group of Dr. Paul Neumayer

Parametric amplification in the XUV/soft x-ray spectral range has been demonstrated

nature physics

AKTICLI PUBLISHED ONLINE: 18 APRIL 2010 | DOI: 10.1038/NPHYS

Laser-driven amplification of soft X-rays by parametric stimulated emission in neutral gases

J. Seres^{1,2}, E. Seres¹, D. Hochhaus^{3,4,5}, B. Ecker^{3,4}, D. Zimmer^{3,4,6}, V. Bagnoud³, T. Kuehl^{3,4} and C. Spielmann^{1,2}*

¹Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany, ²Department of Physics I. University of Würzburg, Am Hubland, 97074 Würzburg, Germany, ³GSI Helmholtz Centre for Heavy Ion Research GmbH, Planckstrasse 1, 64291 Darmstadt, Germany, ⁴Department of Physics, Johannes-Gutenberg-University Mainz, Staudingerweg 7, 55128 Mainz, Germany, ⁵EMMI Extreme Matter Institute, Planckstrasse 1, 64291 Darmstadt, Germany, ⁶LASERIX-CLUPS, LPGP UMR 8578, Université Paris-Sud 11, Bat 210, 91405 Orsay, France. *e-mail: christian.spielmann@uni-jena.de.

 We discovered an amplification mechanism based on parametric amplification :

X-ray Parametric Amplification (XPA)

- We experimentally observed amplification factors up to 8 x 10³ at 260 eV photon energy
- Our theoretical model describes for the first time the conditions for parametric amplification in the XUV and gives excellent agreement to experimental observations

HELMHOLTZ

651

Experimental signature of a parametric process (exponential gain) in the XUV

LIGHT – Laser Ion Generation, Handling and Transport

Joint research project located at GSI Darmstadt

Project partners:

- **TU Darmstadt** (Project leader M. Roth; acceleration experiments, collimation simulations, target development)
- Helmholtz Institute Jena (Project coordination, 100TW compressor, short laser pulse and ion beam diagnostics)
- **GSI** Plasma Physics, Accelerator, Beam Diagnostics, Atomic Physics Depts. (PHELIX Laser, timing, control system, beamlines, accelerator structures, beam diagnostics)
- FZ Dresden-Rossendorf (Solenoid for collimation + PSU)
- JWG University Frankfurt (Accelerator structure development)

Contributors:

A. Almomani, V. Bagnoud, W. Barth, A. Blazevic, C. Brabetz, T. Burris, T. Cowan, M. Droba, H. Eickhoff, P. Forck, K. Harres, I. Hofmann, O. Jäckel, M. Kaluza, F. Nürnberg, A. Orzhekhovskaya, G. Paulus, U. Ratzinger, C. Rödel, <u>M. Roth (PI)</u>, T. Stöhlker, A. Tauschwitz, W. Vinzenz, S. Yaramishev, <u>B. Zielbauer (PC)</u>

Progress on the 100 TW project

- GSI together with HI Jena, are building a short-pulse beamline to the Z6 target area to inject laser-accelerated particles into conventional accelerator structures: 100 TW project
- Project status
 - Conceptual Design Report (CDR) written
 - Funding of 250 kEuros/year (GSI, HI Jena) for 3 years secured
 - Vacuum beamline ready in December 2010
 - Short pulse compressor commissioned
 - First acceleration experiment in January 2011

HELMHOLTZ

Laser beam from PHELIX

651

Ion beam from UNILAC

• Up to 14 MeV protons were collimated using a coil developed at FZD (data courtesy of TU Darmstadt)

- > A pulsed solenoid was used to collimate laser accelerated protons
- Protons with energies lower than 14 MeV were refocused (see RCF stack images), protons with ~14 MeV were collimated
- The experiment is relevant to the 100 TW project supported by Euratom, GSI, TU Darmstadt, HI Jena, FZD
- Applications to heating of Warm Dense Matter and energy transport in plasma are expected

Part III: High Power lasers for Extreme Matter Studies

A selection of future experiments planned at GSI and HIJ

• The theory of strong electric field induced phase shift of a electromagnetic wave in birefringent vacuum predicts an ellipticity ~ $(D\Phi/2)2\sim10^{-11}$ for I₀=10²² W/cm²

Requirements	source	Polarizer
	 high photon number, 	 Adapted to the few keV
	 small source size: small interaction volume and small beam divergence 	 range 10⁻¹¹ efficiency via multiple reflection scheme
	 narrow bandwidth 	

FIAS-EMMI Day – FIAS, Tuesday 11 January 2011

* Experiment planned by the HIJ

Recent results* on x-ray polarimetry are encouraging

• A polarizer/analyzer setup based on 4 reflections on Si crystals shows very good extinction ratios for photon energies at 6 keV

FIAS-EMMI Day – FIAS, Tuesday 11 January 2011

* B. Marx et al. / Optics Communications 284 (2011) 915–918

Diagnostics of Warm Dense Matter

- WDM is important for basic science (astrophysical objects, theoretical complexity), and technical applications
- WDM offers challenges: expansion schemes fail, high-performance computing

WDM research at GSI/FAIR

Laser generated ultra bright sources enables crucial diagnostic techniques (x-ray radiography, x-ray Thomson scattering, x-ray diffraction, optical properties (opacity, plasmon resonances, conductivity, ...)

HELMHOLTZ

651

High pulse energy and increased repetition rates necessary

- Introduction to Higher Power lasers
 - Enabling discoveries allowed high power lasers to reach the petawatt level in less than 40 years
 - An interesting technological race between CPA and OPCPA
 - The temporal contrast of lasers is currently a hot topic
- Experiment Program at PHELIX
 - Progress on ion stopping experiments
 - Ion acceleration and the LIGHT project
 - Recent result in x-ray generation
- Extreme Matter studies with Lasers
 - Test of vacuum birefringence at HIJ
 - plans for FAIR

Thank You