Electromagnetic form factors of hyperons in the time-like region

Johann Haidenbauer

Forschungszentrum Jülich, Germany

THEIA-STRONG2020 Web-seminar, February 24, 2021

(Lingyun Dai, Xian-Wei Kang, Ulf-G. Meißner)

Outline

(1) Introduction
(2) Electromagnetic form factors of the nucleon
(3) Electromagnetic form factors of hyperons

4 Summary

Motivation

- the electromagnetic form factors of hadrons provide fundamental information on their structure and internal dynamics (cf. review by A. Denig, G. Salmè, Prog. Part. Nucl. Phys. 68 (2013) 113)
- space-like ($e^{-} B \rightarrow e^{-} B$) and time-like ($e^{+} e^{-} \rightarrow \bar{B} B$) regions are connected via crossing symmetry and analyticity \Rightarrow use/exploit dispersion relations (H.W. Hammer, U.-G. Meisner, ...)
$e^{+} e^{-} \rightarrow \bar{B} B$ near threshold
- unexpected features of cross sections near threshold (R. Baldini, S. Pacetti, ...)
- near- (sub-) threshold resonances (?)
- information/constraint on the $\bar{B} B$ interaction
- $\bar{p} p$ interaction near threshold: extensively studied and fairly well-known $\bar{p} p$ scattering experiments at LEAR facility at CERN partial-wave analysis (D. Zhou, R.G.E. Timmermans)
- $\bar{Y} Y$ interaction where $Y=\Lambda, \Sigma$, \equiv direct experiments are not feasible indirect information from final-state interaction in $\bar{p} p \rightarrow \bar{\Lambda} \wedge$, etc.

Electromagnetic form factors of the nucleons

- Electromagnetic current $\left(q=p^{\prime}-p\right)$

$$
J^{\mu}=\left\langle N\left(p^{\prime}\right)\right| j^{\mu}|N(p)\rangle=e \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M_{N}} F_{2}\left(q^{2}\right)\right] u(p)
$$

- F_{1} and F_{2} are the Dirac and Pauli form factors
- real in the space-like region $\left(q^{2} \leq 0\right)$, complex in the time-like region
- Sachs form factors

$$
\begin{aligned}
& G_{E}=F_{1}+\frac{q^{2}}{4 M_{N}^{2}} F_{2} \\
& G_{M}=F_{1}+F_{2}
\end{aligned}
$$

- Normalization

$$
\begin{array}{ll}
F_{1}(0)=Q_{N} & G_{E}(0)=Q_{N} \\
F_{2}(0)=\kappa_{N} & G_{M}(0)=\mu_{N}
\end{array}
$$

(figure taken from Samer Ahmed, Cyprus 2019)

Electromagnetic form factors of the proton

(figure taken from Simone Pacetti, Dubna 2014)

Basic formulae: $e^{+} e^{-} \rightarrow \bar{p} p(\bar{B} B)$

$$
\begin{gathered}
\sigma_{e^{+} e^{-} \rightarrow \bar{p} p}=\frac{4 \pi \alpha^{2} \beta}{3 s} C_{p}(s)\left[\left|G_{M}(s)\right|^{2}+\frac{2 M_{p}^{2}}{s}\left|G_{E}(s)\right|^{2}\right] \\
\left|G_{\mathrm{eff}}(s)\right|=\sqrt{\frac{\sigma_{e^{+} e^{-} \rightarrow \bar{p} p}(s)}{\frac{4 \pi \alpha^{2} \beta}{3 s} C_{p}(s)\left[1+\frac{2 M_{p}^{2}}{s}\right]}}
\end{gathered}
$$

$\sqrt{s}=M_{\bar{p} p}=q^{2}, \quad \beta=k_{p} / k_{e} \approx 2 k_{p} / \sqrt{s}$
Sommerfeld-Gamov factor: $C_{p}(s)=y /(1-\exp (-y)) ; y=\pi \alpha \sqrt{s} /\left(2 k_{p}\right)$ (for $\bar{p} p$, etc.)

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta}{4 s} C_{p}(s)\left|G_{M}(s)\right|^{2}\left[\left(1+\cos ^{2} \theta\right)+\frac{4 M_{p}^{2}}{s}\left|\frac{G_{E}(s)}{G_{M}(s)}\right|^{2} \sin ^{2} \theta\right]
$$

$$
P_{y}=\frac{2 M_{p} \sin 2 \theta}{\sqrt{s} D} \operatorname{Im} G_{E}^{*} G_{M}=-\frac{2 M_{p} \sin 2 \theta}{\sqrt{s} D}\left|G_{E}(s)\right|\left|G_{M}(s)\right| \sin \Phi ; \quad \Phi=\arg \left(\frac{G_{E}}{G_{M}}\right)
$$

$C_{x x}, C_{y y}, C_{z z}, C_{x z}, C_{z y} \ldots$ involve other combinations of $G_{E}(s), G_{M}(s)$

$$
D=\sin ^{2} \theta \frac{4 M_{p}^{2}}{s}\left|G_{E}(s)\right|^{2}+\left(1+\cos ^{2} \theta\right)\left|G_{M}(s)\right|^{2}
$$

- $P_{y}, C_{x x}$, etc. ... difficult to measure for $\bar{p} p$ easier for $\bar{\Lambda} \wedge$, etc. (self-analyzing weak decay of hyperons)

experimental situation: $e^{+} e^{-} \rightarrow \bar{p} p$

BaBar: J.P. Lees et al., PRD 87 (2013) 092005, BESIII: M. Ablikim et al., PRL 124 (2020) 042001

Calculate $e^{+} e^{-} \rightarrow \bar{p} p$ in DWBA

one-photon exchange $\Rightarrow \bar{N} N, e^{+} e^{-}$are in the ${ }^{3} S_{1},{ }^{3} D_{1}$ partial waves
(M)
e^{-}
p
$M_{L, L^{\prime}} \propto f_{L}^{e^{+}} e^{-} \cdot f_{L^{\prime}}^{\bar{p} p}$
$f_{L=0}^{e^{+} e^{-}}=\left[1+\frac{m_{e}}{\sqrt{s}}\right] ; \quad f_{L=2}^{e^{+} e^{-}}=\left[1-\frac{2 m_{e}}{\sqrt{s}}\right]$
$f_{L=0}^{\bar{p} p}=\left[G_{M}+\frac{M_{p}}{\sqrt{s}} G_{E}\right] ; \quad f_{L=2}^{\bar{p} p}=\left[G_{M}-\frac{2 M_{p}}{\sqrt{s}} G_{E}\right]$
$f_{L=2}^{\bar{p} p}\left(k_{p}=0\right)=0 \rightarrow G_{M}\left(k_{p}=0\right)=G_{E}\left(k_{p}=0\right)$

$$
f_{L^{\prime}}^{\bar{p} p}\left(k ; E_{k}\right)=f_{L^{\prime}}^{\bar{p} p ; 0}(k)+\sum_{L} \int_{0}^{\infty} \frac{d p p^{2}}{(2 \pi)^{3}} f_{L}^{\bar{p} p ; 0}(p) \frac{1}{2 E_{k}-2 E_{p}+i 0^{+}} T_{L L^{\prime}}^{\bar{p} p}\left(p, k ; E_{k}\right)
$$

$f_{L^{\prime}}^{\bar{p} p ; 0} \ldots$ bare vertex with bare form factors G_{M}^{0} and G_{E}^{0}

- assume $G_{M}^{0} \equiv G_{E}^{0}=$ const. ... only single parameter (overall normalization)
$V^{N N}$
$N N$

〔G-parity
mesons

Traditional approach: meson-exchange

I) $V_{e l}^{\bar{N} N}$... derived from an $N N$ potential via G-parity
(Charge conjugation plus 180° rotation around the y axis in isospin space)
\Rightarrow

$$
\begin{array}{lll}
V^{\bar{N} N}(\pi, \omega)=-V^{N N}(\pi, \omega) & \text { odd } \mathrm{G}-\text { parity } \\
V^{\bar{N} N}(\sigma, \rho)=+V^{N N}(\sigma, \rho) & \text { even } \mathrm{G}-\text { parity }
\end{array}
$$

II) $V_{a n n}^{\bar{N} N}$
employ a phenomenological optical potential, e.g.
$V_{\text {opt }}(r)=\left(U_{0}+i W_{0}\right) e^{-r^{2} /\left(2 a^{2}\right)}$
with parameters U_{0}, W_{0}, a fixed by a fit to $\bar{N} N$ data
examples: Dover/Richard (1980,1982), Paris (1982,..,2009), Nijmegen (1984), Jülich (1991,1995), ...

NN in chiral effective field theory (E. Epelbaum et al.)

NLO

...

- $4 N$ contact terms involve low-energy constants (LECs) ... parameterize unresolved short-range physics
\Rightarrow need to be fixed by fit to experiments

The $\bar{N} N$ interaction in chiral EFT

- $V^{N N}=V_{1 \pi}+V_{2 \pi}+V_{3 \pi}+\ldots+V_{\text {cont }}$
- $V_{e l}^{\bar{N} N}=-V_{1 \pi}+V_{2 \pi}-V_{3 \pi}+\ldots+V_{\text {cont }}$
- $V_{\text {ann }}^{\bar{N} N}=\sum_{X} V^{\bar{N} N \rightarrow X} \quad X \hat{=} \pi, 2 \pi, 3 \pi, 4 \pi, \ldots$
- $V_{1 \pi}, V_{2 \pi}, \ldots$ can be taken over from chiral EFT studies of the NN interaction
- Xian-Wei Kang, J.H., Ulf-G. Meißner, JHEP 02 (2014) 113 (N2LO)
starting point: NN interaction by Epelbaum, Glöckle, Meißner, NPA 747 (2005) 362
- Ling-Yun Dai, J.H., Ulf-G. Meißner, JHEP 07 (2017) 078 (N3²O) starting point: NN interaction by Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53
- $V_{\text {cont }} \ldots$ same structure as in $N N\left(\tilde{C}+C\left(p^{2}+p^{\prime 2}\right)+\ldots\right)$. However, now the LECs have to be determined by a fit to $\bar{N} N$ data (phase shifts, inelasticites)!
no Pauli principle \rightarrow more partial waves, more contact terms
- $V_{a n n}^{\bar{N} N}$ has no counterpart in $N N$
empirical information: annihilation is short-ranged and practically energy-independent
$V_{a n n ; e f f}^{\bar{N} N}=\sum_{X} V^{\bar{N} N \rightarrow X} G_{X}^{0} V^{X \rightarrow \bar{N} N}, \quad V^{\bar{N} N \rightarrow X}\left(p, p_{X}\right) \approx p^{L}\left(a+b p^{2}+\ldots\right) ; \quad p_{X} \approx$ const.

regularized Lippmann-Schwinger equation

$$
T^{L^{\prime} L}\left(p^{\prime}, p\right)=V^{L^{\prime} L}\left(p^{\prime}, p\right)+\sum_{L^{\prime \prime}} \int_{0}^{\infty} \frac{d p^{\prime \prime} p^{\prime \prime 2}}{(2 \pi)^{3}} \frac{V^{L^{\prime} L^{\prime \prime}}\left(p^{\prime}, p^{\prime \prime}\right) T^{L^{\prime \prime} L}\left(p^{\prime \prime}, p\right)}{2 E_{p}-2 E_{p^{\prime \prime}}+i \eta}
$$

- $\bar{N} N$ potential up to N^{2} LO (Kang et al., 2014) employ the non-local regularization scheme of EGM (NPA 747 (2005) 362)
- $\bar{N} N$ potential up to N^{3} LO (Dai et al., 2017) employ the regularization scheme of EKM (EPJA 51 (2015) 53)
- Fit to phase shifts and inelasticity parameters in the isospin basis (D. Zhou, R.G.E. Timmermans, PRC 86 (2012) 044003)
- Calculation of observables is done in particle basis:
\star Coulomb interaction in the $\bar{p} p$ channel is included
* the physical masses of p and n are used
$\bar{n} n$ channels opens at $p_{l a b}=98.7 \mathrm{MeV} / \mathrm{c}\left(T_{l a b}=5.18 \mathrm{MeV}\right)$

Results for po integrated cross sections

Ling-Yun Dai, J.H., Ulf-G. Meißner, JHEP 07 (2017) 078 (N3LO)

- N3LO; - - $-\mathrm{N} 2 \mathrm{LO} ; \quad \cdots \mathrm{NLO}$ (bands are from a systematic uncertainty estimate)

Results for ${ }^{3} S_{1}-{ }^{3} D_{1}$ phase shifts

Xian-Wei Kang, J.H., Ulf-G. Meißner, JHEP 02 (2014) 113 (N²LO)
(bands represent cutoff variations!)

${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1}(\mathrm{I}=0)$

$$
{ }^{3} \mathrm{~S}_{1}-{ }^{-} \mathrm{D}_{1}(\mathrm{I}=1)
$$

- Jülich A (OBE); - N2LO; - NLO
- PWA of Zhou, Timmermans, PRC 86 (2012) 044003

J.H., X.-W. Kang, U.-G. Meißner, NPA 929 (2014) 102 (N²LO)

(bands represent cutoff variations!)

-- Jülich A (OBE) [meson-exchange; T. Hippchen et al., PRC 44 (1991) 1323]
PS170: G. Bardin et al., NPB 411 (1994) 3
($\sigma_{\bar{p} p \rightarrow e^{+} e^{-}} \propto \frac{k_{e}^{2}}{k_{p}^{2}} \sigma_{e^{+} e^{-} \rightarrow \bar{p} p} ; \quad$ but there is a systematic overall difference of ≈ 1.47)
Note: $\sigma_{e^{+} e^{-} \rightarrow \bar{p} p} \neq 0$ at threshold because of attractive Coulomb interaction in $\bar{p} p!$

Results for $e^{+} e^{-} \rightarrow \bar{p} p$

J.H., C. Hanhart, X.-W. Kang, U.-G. Meißner, PRD 92 (2015) 054032 (N²LO)

(bands represent cutoff variations!)

-- Jülich A (OBE) [meson-exchange; T. Hippchen et al., PRC 44 (1991) 1323]
FENICE: A. Antonelli et al., NPB 517 (1998) 3
SND 2014: M.M. Achasov et al., PRD 90 (2014) 112007
SND 2017: K.I. Belobodorov et al., EPJ WoC 199 (2019) 02026
BESIII 2019: preliminary !!

Near-threshold measurements for hyperons

- $e^{+} e^{-} \rightarrow \bar{\Lambda} \wedge$

DM2: D. Bisello et al., Z.Phys.C 48 (1990) 23
BaBar: B. Aubert et al., PRD 76 (2007) 092006
BESIII: M. Ablikim et al., PRD 97 (2018) 032013, PRL 123 (2019) 122003

- $e^{+} e^{-} \rightarrow \bar{\Sigma}^{0} \Lambda$

DM2: D. Bisello et al., Z.Phys.C 48 (1990) 23
BaBar: B. Aubert et al., PRD 76 (2007) 092006

- $e^{+} e^{-} \rightarrow \bar{\Sigma} \Sigma$

BaBar: B. Aubert et al., PRD 76 (2007) 092006
BESIII: M. Ablikim et al., PLB 814 (2021) 136110

- $e^{+} e^{-} \rightarrow$ 三二

BESIII: M. Ablikim et al., PRD 103 (2021) 012005

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \bar{\Lambda}_{c}^{-} \Lambda_{c}^{+}$

Belle: G. Pakhlova et al., PRL 101 (2008) 172001
BESIII: M. Ablikim et al., PRL 120 (2018) 132001

$\bar{p} p \rightarrow \bar{Y} Y$ provides main source of information

- extensively studied at LEAR (CERN) by the PS185 experiment cf. review by E. Klempt et al., PR 368 (2002) 119
- measured $\bar{p} p \rightarrow \bar{\Lambda} \wedge, \bar{p} p \rightarrow \bar{\Sigma}^{0} \wedge, \bar{p} p \rightarrow \bar{\Sigma}^{-} \Sigma^{+}, \bar{p} p \rightarrow \bar{\Sigma}^{+} \Sigma^{-}$
- measured $\sigma_{t o t}, d \sigma / d \Omega, P_{y}, C_{i j}, D_{N N}$ (exploiting self-analyzing weak $\wedge \rightarrow \pi^{-} p$ decay)
- calculations were performed in the meson-exchange picture and the constituent quark model utilizing a DWBA approach
- effects from the initial- and final-state interaction (ISI and FSI) play a very important role lead to a reduction of the transition amplitude by orders of magnitude

The transition

meson exchange picture:
$V^{\bar{\rho} p \rightarrow \bar{\Lambda} \Lambda} \propto \sum_{M_{s}=K, K^{*}} g_{N \wedge M_{s}}^{2} F_{N / M_{s}}^{2}(t) /\left(t-m_{M_{s}}^{2}\right)$
($g_{N \wedge M_{s}}, F_{N \wedge M_{s}} \ldots$ can be fixed from $Y N$ interaction (SU(3) symmetry))
(tensor part of K and K^{*} exchange add up coherently)
constituent quark model (Kohno-Weise, 1985):
$V^{\bar{\rho} p \rightarrow \bar{\Lambda} \Lambda}=\frac{4}{3} 4 \pi \frac{\alpha}{m_{G}^{2}} \delta_{S 1} \delta_{T 0}\left[\frac{3}{4 \pi\left\langle r^{2}\right\rangle}\right]^{3 / 2} \times \exp \left(-3 r^{2} /\left(4\left\langle r^{2}\right\rangle\right)\right)$
α / m_{G}^{2}... effective (quark-gluon) coupling strength
$\left\langle r^{2}\right\rangle \ldots \mathrm{msr}$ associated with the quark distribution in p or \wedge

$$
V_{\bar{N} N}=V_{e l}+V_{a n n}
$$

$V_{e l}$: G-parity transform of the (folded diagram) OBEPF NN model
(J.H., K. Holinde, M.B. Johnson, PRC 45 (1992) 2055)
$V_{\text {ann }}=\left(U_{0}+\mathrm{i} W_{0}\right) \times \exp \left(-b^{2} r^{2}\right)$
$U_{0}, W_{0}, b \ldots$ free parameters fitted to $\bar{N} N$ data
$V_{\bar{Y} Y}=V_{e l}+V_{a n n}$
$V_{e l}$: G-parity $+S U(3)$ symmetry from Jülich $Y N$ model A (B. Holzenkamp, K. Holinde, J. Speth, NPA 500 (1989) 485)
$V_{\text {ann }}=\left[U_{0}+\mathrm{i} W_{0}+\left(U_{L S}+\mathrm{i} W_{L S}\right) \vec{L} \cdot \vec{S}+\left(U_{t}+\mathrm{i} W_{t}\right) S_{12}\right] \times \exp \left(-b^{2} r^{2}\right)$
$U_{i}, W_{i}, b \ldots$ free parameters fitted to $\bar{p} p \rightarrow \bar{\Lambda} \Lambda, \bar{\Sigma}^{0} \Lambda, \bar{\Sigma} \Sigma$ data
(for different $\bar{p} p \rightarrow \bar{Y} Y$ transition scenarios)

Results for $\overline{\bar{\rho}} p \rightarrow M$: cross sections

J.H. et al., PRC 45 (1992) 931
J.H. et al., PRC 46 (1992) 2158
solid line: $K+K^{*}$ exchange dashed line: K exchange
dash-dotted, dotted: quark-gluon

Johann Haidenbauer
Electromagnetic form factors

Results for polarizations

Johann Haidenbauer
Electromagnetic form factors
parity violating decay $\Lambda \rightarrow p \pi^{-}: I(\theta) \propto 1+\alpha P \cos \theta_{y}$ angular distribution allows to determine the Λ polarization P once α is known

$$
\begin{aligned}
\frac{d \sigma}{d \Omega}= & \left(\frac{d \sigma}{d \Omega}\right)_{0}\left\{1-P^{\gamma} \Sigma \cos 2 \phi+\alpha \cos \theta_{x} P^{\gamma} O_{x} \sin 2 \phi\right. \\
& \left.+\alpha \cos \theta_{y} P-\alpha \cos \theta_{y} P^{\gamma} T \cos 2 \phi+\alpha \cos \theta_{z} P^{\gamma} O_{z} \sin 2 \phi\right\}
\end{aligned}
$$

old PDG value: $0.642 \quad$ BESIII: $0.750 \pm 0.009 \pm 0.004 \quad$ CLAS: $0.721 \pm 0.006 \pm 0.005$

\Rightarrow : all spin-dependent observables for $\bar{p} p \rightarrow \bar{\Lambda} \wedge$, etc. need to be re-analysed!

colored lines: different models of the $\bar{\wedge} \wedge$ interaction (J.H. et al., PRC 45 (1992) 931, PRC 46 (1992) 2158) black dashed line: phase space
J.H., U.-G. Meißner, PLB 761 (2016) 456

DM2: D. Bisello et al., Z.Phys.C 48 (1990) 23
BaBar: B. Aubert et al., PRD 76 (2007) 092006
BESIII: M. Ablikim et al., PRD 97 (2018) 032013, PRL 123 (2019) 122003

- near threshold: possible conflict between BaBar and BESIII data
- BESIII: anomalous threshold threshold behavior? $\sigma_{e^{+} e^{-} \rightarrow \overline{\Lambda \Lambda}^{\prime}}\left(k_{\Lambda}\right) \neq 0$ for $k_{\Lambda} \rightarrow 0$?
would require a resonance at the $\bar{\Lambda} \wedge$ threshold: $\sigma \propto \frac{k_{\Lambda}}{k_{e}} \times \frac{1}{k_{\Lambda}^{4}}$
- speculations on a near-threshold $\bar{\wedge} \wedge$ state by J. Carbonell et al., PLB 306 (1993) 407
\Rightarrow no indications in (very) near-threshold $\bar{p} p \rightarrow \bar{\Lambda} \wedge$ measurements (Barnes et al., PRC 62 (2000) 055203)

J.H., U.-G. Meißner, PLB 761 (2016) 456

BaBar: B. Aubert et al., PRD 76 (2007) 092006
BESIII: M. Ablikim et al., PRD 97 (2018) 032013, PRL 123 (2019) 122003
$\square \ldots$ data re-scaled to the old PDG value $\alpha=0.642$ (by BESIII)
model I from PRC 45 (1992) 931 is favored
($\bar{p} p$ interaction with spin-orbit force; dominant K^{*} transition potential)

Results for

J.H., K. Holinde, J. Speth, NPA 562 (1993) 317

PS185: P.D. Barnes et al., PLB 402 (1997) 227

colored lines: different models of the $\bar{\Sigma}^{0} \wedge$ interaction (J.H., K. Holinde, J. Speth, NPA 562 (1993) 317) black dashed line: phase space
J.H., U.-G. Meißner, L.-Y. Dai, PRD 103 (2021) 014028

DM2: D. Bisello et al., Z.Phys.C 48 (1990) 23
BaBar: B. Aubert et al., PRD 76 (2007) 092006

Results for

J.H., K. Holinde, J. Speth, NPA 562 (1993) 317

PS185: P.D. Barnes et al., PLB 402 (1997) 227
$\bar{p} p \rightarrow \bar{\Sigma}^{+} \Sigma^{-}$requires a two-step process (double charge exchange)
nevertheless, $\sigma_{\bar{p} p \rightarrow \Sigma^{+} \Sigma^{-}} \approx \sigma_{\bar{p} p \rightarrow \Sigma^{-} \Sigma^{+}}$

J.H., U.-G. Meißner, L.-Y. Dai, PRD 103 (2021) 014028

BaBar: B. Aubert et al., PRD 76 (2007) $092006\left(\bar{\Sigma}^{0} \Sigma^{0}\right)$ BESIII: M. Ablikim et al., PLB 814 (2021) 136110
$-\bar{\Sigma}^{-} \Sigma^{+} ; \quad-\bar{\Sigma}^{0} \Sigma^{0} ; \quad-\bar{\Sigma}^{+} \Sigma^{-}$
coupling between $\bar{\Sigma} \Sigma$ in final state included! (3 bare $G_{M}^{\bar{\sum} \Sigma ; 0}$; 1 real, 2 complex)
$f^{\nu}=f^{\nu ; 0}+\sum_{\mu} f^{\mu ; 0} G^{\mu} T^{\mu \rightarrow \nu}, \quad \nu, \mu=\bar{\Sigma}^{-} \Sigma^{+}, \Sigma^{0} \Sigma^{0}, \Sigma^{+} \Sigma^{-}$

J.H., U.-G. Meißner, L.-Y. Dai, PRD 103 (2021) 014028

BESIII: M. Ablikim et al., PLB 814 (2021) $136110\left(\bar{\Sigma}^{-} \Sigma^{+}\right)$
$-\Sigma^{-} \Sigma^{+} ; \quad-\bar{\Sigma}^{0} \Sigma^{0} ; \quad-\Sigma^{+} \Sigma^{-}$

J.H., K. Holinde, J. Speth, PRC 47 (1993) 2982

J.H., U.-G. Meißner, L.-Y. Dai, PRD 103 (2021) 014028

BESIII: M. Ablikim et al., PRD 103 (2021) 012005

4630) versus

one (or two ?) of the XYZ states, whose structure is unclear


```
\(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)\)
Belle (2007)
\[
e^{+} e^{-} \rightarrow \bar{\Lambda}_{c}^{-} \Lambda_{c}^{+}
\]
Belle (2008)
\(e^{+} e^{-} \rightarrow D_{s}^{+} D_{s 1}(2536)^{-}+\)c.c.
Mass (MeV):
\(4664 \pm 11 \pm 5 \quad 4634_{-7-8}^{+8+5} \quad 4625.9_{-6.0}^{+6.2} \pm 0.4\)
\(\Gamma(\mathrm{MeV})\) :
\(48 \pm 15 \pm 3 \quad 92_{-24}^{+40+21} \quad 49.8_{-11.5}^{+13.9} \pm 4.0\)
PDG (2020): \(M=(4633 \pm 7) \mathrm{MeV} \quad \Gamma=(64 \pm 9) \mathrm{MeV} \quad\) [one state!]
```

L.-Y. Dai, J.H., U.-G. Meißner, PRD 96 (2017) 116001

- construct a $\bar{\Lambda}_{c}^{-} \Lambda_{c}^{+}$potential guided by chiral EFT, in close analogy to our $\bar{N} N$ interaction (up to NLO)
- fix the LECs (for $\left.V_{3} \bar{s}_{1},{ }^{-}{ }_{c}^{-} \nu_{1}^{+}\right)$) by a fit to the $e^{+} e^{-} \rightarrow \bar{\Lambda}_{c}^{-} \Lambda_{c}^{+}$cross section (2 LECs for elastic part, 2 LECs for annihilation)
- include a resonance (pole diagram) with bare mass and bare coupling constant
- solve Lippmann-Schwinger eq. for $\bar{\Lambda}_{c}^{-} \Lambda_{c}^{+}$potential
- determine pole position
- no unique set of LECs - but, how stable is the pole position?

L.-Y. Dai, J.H., U.-G. Meißner, PRD 96 (2017) 116001

Belle: G. Pakhlova et al., PRL 101 (2008) 172001
BESIII: M. Ablikim et al., PRL 120 (2018) 132001
$\Rightarrow M=(4652.5 \pm 3.4) \mathrm{MeV} \quad \Gamma=(62.6 \pm 5.6) \mathrm{MeV}$

- pole position compatible with $\psi(4660)$ from $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$ data
- possible conflict between Belle and BESIII data

Summary \& Outlook

- Electromagnetic form factors of nucleons and hyperons in the time-like region
- strongly influenced by the $\bar{N} N$ and $\bar{Y} Y$ final-state interactions
- \rightarrow test for $\bar{N} N$ interaction
- \rightarrow additional source of information on the $\bar{Y} Y$ interaction
- excellent description of the energy dependence of $\bar{p} p$ and $\bar{n} n$ form factors
- nice agreement with $e^{+} e^{-} \rightarrow \bar{\Lambda} \wedge$ cross section
- ratio $\left|G_{E} / G_{M}\right|$ and phase $\Phi=\arg \left(G_{E} / G_{M}\right)$ are sensitive to details of the $\bar{\Lambda} \wedge$ interaction
- $e^{+} e^{-} \rightarrow \bar{\Sigma}^{0} \wedge, \bar{\Sigma} \Sigma$, $\bar{\equiv} \equiv$: more data points near threshold are needed
- and measurements of $\left|G_{E} / G_{M}\right|$ and Φ for $\bar{\Sigma}^{0} \wedge, \bar{\Sigma} \Sigma$, $\bar{\equiv}=$

Additional constraints on $\bar{Y} Y$ interaction:

- PANDA: measurements are planned of $\bar{p} p \rightarrow \bar{\Lambda} \wedge, \bar{\Sigma}^{0} \wedge$, $\bar{三} \equiv$
- ALICE/STAR: measurement of $\bar{Y} Y$ two-body momentum correlations in high-energy pp collisions and in heavy-ion collisions

Backup slides

Annihilation potential

- experimental information:
- annihilation occurs dominantly into 4 to 6 pions
- thresholds: for 5 pions: $\approx 700 \mathrm{MeV}$ for $\bar{N} N: 1878 \mathrm{MeV}$
\Rightarrow annihilation potential depends very little on energy
- annihilation is a statistical process: individual properties of the produced particles (mass, quantum numbers) do not matter
- phenomenlogical models: bulk properties of annihilation can be described rather well by simple energy-independent optical potentials
- range associated with annihilation is around 1 fm or less
\rightarrow short-distance physics
\Rightarrow describe annihilation in the same way as the short-distance physics in $V_{e l}^{\bar{N} N}$, i.e. likewise by contact terms (LECs)
\Rightarrow describe annihilation by a few effective (two-body) annihilation channels (unitarity is preserved!)

$$
\begin{aligned}
& V^{\bar{N} N}=V_{e l}^{\bar{N} N}+V_{a n n ; e f f}^{\bar{N} N} ; \quad V_{a n n ; e f f}^{\bar{N} N}=\sum_{X} V^{\bar{N} N \rightarrow X} G_{X}^{0} V^{X \rightarrow \bar{N} N} \\
& V^{\bar{N} N \rightarrow X}\left(p_{\bar{N} N}, p_{X}\right) \approx p_{\bar{N} N}^{L}\left(a+b p_{\bar{N} N}^{2}+\ldots\right) ; \quad p_{X} \approx \text { const. } \\
& a, b, \ldots \text { LECs }
\end{aligned}
$$

Contributions of $V_{\text {cont }}$ for $\bar{N} N$ up to

$V_{e l}^{\bar{N} N}$

$$
\begin{aligned}
& v^{L=0}=\tilde{C}_{\alpha}+C_{\alpha}\left(p^{2}+p^{\prime 2}\right)+D_{\alpha}^{1} p^{2} p^{\prime 2}+D_{\alpha}^{2}\left(p^{4}+p^{\prime 4}\right) \\
& v^{L=1}=C_{\beta} p p^{\prime}+D_{\beta} p p^{\prime}\left(p^{2}+p^{\prime 2}\right) \\
& v^{L=2}=D_{\gamma} p^{2} p^{\prime 2}
\end{aligned}
$$

$\tilde{C}_{i} \ldots$ LO LECs [4], $\quad C_{i} \ldots$ NLO LECs [+14],$\quad D_{i} \ldots$ N 3 LO LECs [+30], $\quad p=|\mathbf{p}| ; p^{\prime}=\left|\mathbf{p}^{\prime}\right|$
$V_{a n n}^{\bar{N} N}$
ann;eff

$$
\begin{aligned}
& V_{a n n}^{L=0}=-i\left(\tilde{C}_{\alpha}^{a}+C_{\alpha}^{a} p^{2}+D_{\alpha}^{a} p^{4}\right)\left(\tilde{C}_{\alpha}^{a}+C_{\alpha}^{a} p^{\prime 2}+D_{\alpha}^{a} p^{\prime 4}\right) \\
& V_{a n n}^{L=1}=-i\left(C_{\beta}^{a} p+D_{\beta}^{a} p^{3}\right)\left(C_{\beta}^{a} p^{\prime}+D_{\beta}^{a} p^{\prime 3}\right) \\
& V_{a n n}^{L=2}=-i\left(D_{\gamma}^{a}\right)^{2} p^{2} p^{\prime 2} \\
& V_{a n n}^{L=3}=-i\left(D_{\delta}^{a}\right)^{2} p^{3} p^{\prime 3}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha \ldots{ }^{1} S_{0} \text { and }{ }^{3} S_{1} \\
& \beta \ldots{ }^{3} P_{0},{ }^{1} P_{1} \text {, and }{ }^{3} P_{1} \\
& \gamma \ldots{ }^{1} D_{2},{ }_{2} \text { and }{ }^{3} D_{3} \\
& \delta \ldots{ }^{1} F_{3},{ }^{3} F_{3} \text { and }{ }^{3} F_{4}
\end{aligned}
$$

- unitarity condition: higher powers than what follows from Weinberg power counting appear!
- same number of contact terms (LECs)

colored lines: different models of the $\bar{\Sigma}^{0} \wedge$ interaction (J.H., K. Holinde, J. Speth, NPA 562 (1993) 317) black dashed line: phase space
J.H., U.-G. Meißner, L.-Y. Dai, PRD 103 (2021) 014028

J.H., U.-G. Meißner, L.-Y. Dai, PRD 103 (2021) 014028

