Electromagnetic form factors of hyperons in the time-like region

Johann Haidenbauer

Forschungszentrum Jülich, Germany

THEIA-STRONG2020 Web-seminar, February 24, 2021

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(Lingyun Dai, Xian-Wei Kang, Ulf-G. Meißner)

- 2 Electromagnetic form factors of the nucleon
- Electromagnetic form factors of hyperons

Johann Haidenbauer Electromagnetic form factors

▲御▶ ▲ 国▶ ▲ 国▶

Motivation

- the electromagnetic form factors of hadrons provide fundamental information on their structure and internal dynamics (cf. review by A. Denig, G. Salmè, Prog. Part. Nucl. Phys. 68 (2013) 113)
- space-like (e[−]B → e[−]B) and time-like (e⁺e[−] → B
 BB) regions are connected via crossing symmetry and analyticity
 ⇒ use/exploit dispersion relations (H.-W. Hammer, U.-G. Meißner, ...)

$e^+e^- ightarrow ar{B}B$ near threshold

- unexpected features of cross sections near threshold (R. Baldini, S. Pacetti, ...)
- near- (sub-) threshold resonances (?)
- information/constraint on the BB interaction
- p
 *p*p interaction near threshold: extensively studied and fairly well-known
 *p*p scattering experiments at LEAR facility at CERN
 partial-wave analysis (D. Zhou, R.G.E. Timmermans)
- *Y* Y interaction where Y = Λ, Σ, Ξ
 direct experiments are not feasible
 indirect information from final-state interaction in p
 *p*p → ΛΛ, etc.

Electromagnetic form factors of the nucleons

• Electromagnetic current (q = p' - p)

$$J^{\mu} = \langle \mathsf{N}(\mathsf{p}')|j^{\mu}|\mathsf{N}(\mathsf{p})\rangle = e\bar{u}(\mathsf{p}')\left[\gamma^{\mu}\mathsf{F}_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{N}}\mathsf{F}_{2}(q^{2})\right]u(\mathsf{p})$$

- *F*₁ and *F*₂ are the Dirac and Pauli form factors
- real in the space-like region ($q^2 \le 0$), complex in the time-like region
- Sachs form factors • Normalization $G_E = F_1 + \frac{q^2}{4M_N^2}F_2$ $F_1(0) = Q_N$ $G_L(0) = Q_N$ $G_M = F_1 + F_2$ $F_2(0) = \kappa_N$ $G_M(0) = \mu_N$

(figure taken from Samer Ahmed, Cyprus 2019)

イロト 不得 とくほ とくほとう

3

Electromagnetic form factors of the proton

(figure taken from Simone Pacetti, Dubna 2014)

イロト イポト イヨト イヨト

Basic formulae: $e^+e^- \rightarrow \bar{\rho}\rho$ ($\bar{B}B$)

$$\sigma_{e^+e^- \to \bar{p}p} = \frac{4\pi\alpha^2\beta}{3s} C_p(s) \left[|G_M(s)|^2 + \frac{2M_p^2}{s} |G_E(s)|^2 \right]$$
$$|G_{\text{eff}}(s)| = \sqrt{\frac{\sigma_{e^+e^- \to \bar{p}p}(s)}{\frac{4\pi\alpha^2\beta}{3s} C_p(s) \left[1 + \frac{2M_p^2}{s}\right]}}$$

$$\begin{split} \sqrt{s} &= M_{\overline{p}p} = q^2, \quad \beta = k_p/k_e \approx 2 \, k_p/\sqrt{s} \\ \text{Sommerfeld-Gamov factor: } C_p(s) &= y/(1 - exp(-y)); \quad y = \pi \alpha \sqrt{s}/(2 \, k_p) \quad (\text{for } \overline{p}p, \text{ etc.}) \end{split}$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta}{4s} C_{\rho}(s) |G_M(s)|^2 \left[(1 + \cos^2 \theta) + \frac{4M_{\rho}^2}{s} \left| \frac{G_E(s)}{G_M(s)} \right|^2 \sin^2 \theta \right]$$

$$P_{y} = \frac{2M_{p}\sin 2\theta}{\sqrt{s}D} \operatorname{Im} G_{E}^{*}G_{M} = -\frac{2M_{p}\sin 2\theta}{\sqrt{s}D} |G_{E}(s)| |G_{M}(s)| \sin \Phi; \quad \Phi = \arg(\frac{G_{E}}{G_{M}})$$

 $C_{xx}, C_{yy}, C_{zz}, C_{xz}, C_{zy} \dots$ involve other combinations of $G_E(s), G_M(s)$

$$D = \sin^2 \theta \frac{4M_{\rho}^2}{s} |G_E(s)|^2 + (1 + \cos^2 \theta) |G_M(s)|^2$$

P_y, *C_{xx}*, etc. ... difficult to measure for *p̄p* easier for ΛΛ, etc. (self-analyzing weak decay of hyperons)

experimental situation: $e^+e^- \rightarrow \bar{p}p$

BaBar: J.P. Lees et al., PRD 87 (2013) 092005, BESIII: M. Ablikim et al., PRL 124 (2020) 042001

Johann Haidenbauer Electromagnetic form factors

Calculate $e^+e^- \rightarrow \bar{p}p$ in DWBA

one-photon exchange $\Rightarrow \overline{N}N$, e^+e^- are in the 3S_1 , 3D_1 partial waves

$$f_{L=0}^{\rho^+ \rho^-} = \left[1 + \frac{m_{\rho}}{\sqrt{s}}\right]; \quad f_{L=2}^{\rho^+ \rho^-} = \left[1 - \frac{2m_{\rho}}{\sqrt{s}}\right]$$
$$f_{L=0}^{\bar{p}p} = \left[G_M + \frac{M_{\rho}}{\sqrt{s}}G_E\right]; \quad f_{L=2}^{\bar{p}p} = \left[G_M - \frac{2M_{\rho}}{\sqrt{s}}G_E\right]$$
$$f_{L=2}^{\bar{p}p}(k_{\rho} = 0) = 0 \rightarrow G_M(k_{\rho} = 0) = G_E(k_{\rho} = 0)$$

$$f_{L'}^{\bar{p}p}(k;E_k) = f_{L'}^{\bar{p}p;0}(k) + \sum_{L} \int_0^\infty \frac{dpp^2}{(2\pi)^3} f_L^{\bar{p}p;0}(p) \frac{1}{2E_k - 2E_p + i0^+} T_{LL'}^{\bar{p}p}(p,k;E_k)$$

 $f_{L'}^{\bar{p}p;0}$... bare vertex with bare form factors G_M^0 and G_E^0 • assume $G_M^0 \equiv G_E^0 = \text{const.}$... only single parameter (overall normalization)

The *NN* interaction

Traditional approach: meson-exchange

I) $V_{el}^{\overline{N}N}$... derived from an *NN* potential via G-parity (Charge conjugation plus 180° rotation around the *y* axis in isospin space) \Rightarrow

$$V^{NN}(\pi, \omega) = -V^{NN}(\pi, \omega) \quad \text{odd } \mathbf{G} - \text{parity}$$
$$V^{\bar{N}N}(\sigma, \rho) = +V^{NN}(\sigma, \rho) \quad \text{even } \mathbf{G} - \text{parity}$$

II) $V_{ann}^{\bar{N}N}$ employ a phenomenological optical potential, e.g.

$$V_{opt}(\mathbf{r}) = (U_0 + iW_0) e^{-\mathbf{r}^2/(2a^2)}$$

with parameters U_0 , W_0 , a fixed by a fit to $\overline{N}N$ data

examples: Dover/Richard (1980,1982), Paris (1982,...,2009), Nijmegen (1984), Jülich (1991,1995), ...

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

NN in chiral effective field theory (E. Epelbaum et al.)

• 4N contact terms involve low-energy constants (LECs) ... parameterize unresolved short-range physics

⇒ need to be fixed by fit to experiments

Johann Haidenbauer Elec

Electromagnetic form factors

The $\overline{N}N$ interaction in chiral EFT

- $V^{NN} = V_{1\pi} + V_{2\pi} + V_{3\pi} + ... + V_{cont}$
- $V_{el}^{\bar{N}N} = -V_{1\pi} + V_{2\pi} V_{3\pi} + ... + V_{cont}$
- $V_{ann}^{\bar{N}N} = \sum_X V^{\bar{N}N \to X}$ $X \doteq \pi, 2\pi, 3\pi, 4\pi, ...$
- $V_{1\pi}$, $V_{2\pi}$, ... can be taken over from chiral EFT studies of the NN interaction
- Xian-Wei Kang, J.H., Ulf-G. Meißner, JHEP 02 (2014) 113 (N²LO) starting point: NN interaction by Epelbaum, Glöckle, Meißner, NPA 747 (2005) 362
- Ling-Yun Dai, J.H., Ulf-G. Meißner, JHEP 07 (2017) 078 (N³LO) starting point: NN interaction by Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53

• V_{cont} ... same structure as in NN ($\bar{c} + c(p^2 + p'^2) + ...$). However, now the LECs have to be determined by a fit to $\bar{N}N$ data (phase shifts, inelasticites)! no Pauli principle \rightarrow more partial waves, more contact terms

• V_{ann}^{NN} has no counterpart in NN empirical information: annihilation is short-ranged and practically energy-independent $V_{ann;eff}^{\bar{N}N} = \sum_{X} V^{\bar{N}N \to X} G_{X}^{0} V^{X \to \bar{N}N}, \quad V^{\bar{N}N \to X}(p, p_{X}) \approx p^{L} (a+b p^{2}+...); \quad p_{X} \approx \text{ const.}$

(日) (四) (三) (三) (三) (三) (○) (○)

regularized Lippmann-Schwinger equation

$$T^{L'L}(p',p) = V^{L'L}(p',p) + \sum_{L''} \int_0^\infty \frac{dp''p''^2}{(2\pi)^3} \frac{V^{L'L''}(p',p'') T^{L''L}(p'',p)}{2E_p - 2E_{p''} + i\eta}$$

- $\overline{N}N$ potential up to N²LO (Kang et al., 2014) employ the non-local regularization scheme of EGM (NPA 747 (2005) 362)
- N
 N potential up to N³LO (Dai et al., 2017)

 employ the regularization scheme of EKM (EPJA 51 (2015) 53)
- Fit to phase shifts and inelasticity parameters in the isospin basis (D. Zhou, R.G.E. Timmermans, PRC 86 (2012) 044003)
- Calculation of observables is done in particle basis:
 - ★ Coulomb interaction in the p̄p channel is included
 - ⋆ the physical masses of p and n are used

 $\overline{n}n$ channels opens at $p_{lab} = 98.7$ MeV/c ($T_{lab} = 5.18$ MeV)

ヘロン 人間 とくほ とくほう

Results for *pp* integrated cross sections

Ling-Yun Dai, J.H., Ulf-G. Meißner, JHEP 07 (2017) 078 (N³LO)

N3LO:

- N2LO; ... NLO (bands are from a systematic uncertainty estimate)

Johann Haidenbauer Electromagnetic form factors

イロト 不同 トイヨト イヨト

Results for ${}^{3}S_{1} - {}^{3}D_{1}$ phase shifts

Xian-Wei Kang, J.H., Ulf-G. Meißner, JHEP 02 (2014) 113 (N²LO)

(bands represent cutoff variations!)

• PWA of Zhou, Timmermans, PRC 86 (2012) 044003

(日) (同) (日) (日)

J.H., X.-W. Kang, U.-G. Meißner, NPA 929 (2014) 102 (N²LO)

(bands represent cutoff variations!)

--- Jülich A (OBE) [meson-exchange; T. Hippchen et al., PRC 44 (1991) 1323]

PS170: G. Bardin et al., NPB 411 (1994) 3 $(\sigma_{\bar{p}p \rightarrow e^+e^-} \propto \frac{k_e^2}{k_h^2} \sigma_{e^+e^-} \rightarrow \bar{p}p;$ but there is a systematic overall difference of \approx 1.47)

Note: $\sigma_{e^+e^- \rightarrow \overline{p}p} \neq 0$ at threshold because of attractive Coulomb interaction in $\overline{p}p!$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Results for $e^+e^- \rightarrow \bar{p}p$

 $\epsilon = \sqrt{s} - 2M_p = 36.5 \text{ MeV}$

・ロン ・四 と ・ ヨ と ・

æ

J.H., C. Hanhart, X.-W. Kang, U.-G. Meißner, PRD 92 (2015) 054032 (N²LO)

(bands represent cutoff variations!)

--- Jülich A (OBE) [meson-exchange; T. Hippchen et al., PRC 44 (1991) 1323]

FENICE: A. Antonelli et al., NPB 517 (1998) 3 SND 2014: M.M. Achasov et al., PRD 90 (2014) 112007 SND 2017: K.I. Belobodorov et al., EPJ WoC 199 (2019) 02026 BESIII 2019: preliminary !!

Near-threshold measurements for hyperons

• $e^+e^- \rightarrow \overline{\Lambda}\Lambda$

DM2: D. Bisello et al., Z.Phys.C 48 (1990) 23 BaBar: B. Aubert et al., PRD 76 (2007) 092006 BESIII: M. Ablikim et al., PRD 97 (2018) 032013, PRL 123 (2019) 122003

• $e^+e^- \rightarrow \overline{\Sigma}^0 \Lambda$

DM2: D. Bisello et al., Z.Phys.C 48 (1990) 23 BaBar: B. Aubert et al., PRD 76 (2007) 092006

 e⁺e⁻ → ΣΣ BaBar: B. Aubert et al., PRD 76 (2007) 092006 BESIII: M. Ablikim et al., PLB 814 (2021) 136110

• $e^+e^- \rightarrow \overline{\Xi\Xi}$ BESIII: M. Ablikim et al., PRD 103 (2021) 012005

• $e^+e^- \rightarrow \bar{\Lambda}_c^- \Lambda_c^+$

Belle: G. Pakhlova et al., PRL 101 (2008) 172001 BESIII: M. Ablikim et al., PRL 120 (2018) 132001

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\bar{\rho}p \rightarrow \overline{Y}Y$ provides main source of information

- extensively studied at LEAR (CERN) by the PS185 experiment cf. review by E. Klempt et al., PR 368 (2002) 119
- measured $\bar{p}p \to \bar{\Lambda}\Lambda$, $\bar{p}p \to \bar{\Sigma}^0\Lambda$, $\bar{p}p \to \bar{\Sigma}^-\Sigma^+$, $\bar{p}p \to \bar{\Sigma}^+\Sigma^-$
- measured σ_{tot}, dσ/dΩ, P_y, C_{ij}, D_{NN} (exploiting self-analyzing weak ∧ → π⁻ p decay)
- calculations were performed in the meson-exchange picture and the constituent quark model utilizing a DWBA approach
- effects from the initial- and final-state interaction (ISI and FSI) play a very important role lead to a reduction of the transition amplitude by orders of magnitude

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

The transition $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$

meson exchange picture:

 $V^{\bar{p}p \to \bar{\Lambda}\Lambda} \propto \sum_{M_s = K, K^*} g_{N \Lambda M_s}^2 F_{N \Lambda M_s}^2(t)/(t - m_{M_s}^2)$ $(g_{N \Lambda M_s}, F_{N \Lambda M_s} \dots$ can be fixed from YN interaction (SU(3) symmetry)) (tensor part of K and K^* exchange add up coherently)

constituent quark model (Kohno-Weise, 1985):

$$V^{\overline{\rho}\rho \to \overline{\Lambda}\Lambda} = \frac{4}{3} 4\pi \frac{\alpha}{m_G^2} \delta_{S1} \delta_{T0} [\frac{3}{4\pi \langle r^2 \rangle}]^{3/2} \times exp(-3r^2/(4 \langle r^2 \rangle))$$

 α/m_G^2 ... effective (quark-gluon) coupling strength

 $\langle r^2 \rangle$... msr associated with the quark distribution in p or A

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ISI and FSI

 $V_{\bar{N}N} = V_{el} + V_{ann}$ V_{el} : G-parity transform of the (folded diagram) OBEPF NN model (J.H., K. Holinde, M.B. Johnson, PRC 45 (1992) 2055) $V_{ann} = (U_0 + iW_0) \times exp(-b^2r^2)$

 U_0, W_0, b ... free parameters fitted to $\overline{N}N$ data

$$\begin{split} V_{\overline{Y}Y} &= V_{el} + V_{ann} \\ V_{el}: \text{ G-parity } + SU(3) \text{ symmetry from Jülich } YN \text{ model A} \\ & \text{ (B. Holzenkamp, K. Holinde, J. Speth, NPA 500 (1989) 485)} \\ V_{ann} &= [U_0 + \mathrm{i} W_0 + (U_{LS} + \mathrm{i} W_{LS}) \vec{L} \cdot \vec{S} + (U_t + \mathrm{i} W_t) S_{12}] \times exp(-b^2 r^2) \\ U_i, W_i, b \dots \text{ free parameters fitted to } \vec{p}p \to \overline{\Lambda}\Lambda, \ \overline{\Sigma}^0\Lambda, \ \overline{\Sigma}\Sigma \text{ data} \\ \text{ (for different } \vec{p}p \to \overline{Y}Y \text{ transition scenarios)} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results for $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$: cross sections

J.H. et al., PRC 45 (1992) 931 J.H. et al., PRC 46 (1992) 2158

solid line: $K + K^*$ exchange dashed line: K exchange

 $\leftarrow \equiv \rightarrow$

ъ

Johann Haidenbauer Electromagnetic form factors

Results for differential cross sections

Results for polarizations

Johann Haidenbauer

Electromagnetic form factors

\wedge decay parameter α_{\wedge} from $J/\psi \to \overline{\wedge} \wedge, \, \gamma p \to K^+ \wedge$

BESIII (M. Ablikim et al.), Nature Phys. 15 (2019) 631 D.G. Ireland et al., PRL 123 (2019) 182301

parity violating decay $\Lambda \rightarrow p\pi^-$: $I(\theta) \propto 1 + \alpha P \cos \theta_y$

angular distribution allows to determine the Λ polarization P once α is known

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_0 \left\{1 - P^{\gamma} \Sigma \cos 2\phi + \alpha \cos \theta_x P^{\gamma} O_x \sin 2\phi + \alpha \cos \theta_y P - \alpha \cos \theta_y P^{\gamma} T \cos 2\phi + \alpha \cos \theta_z P^{\gamma} O_z \sin 2\phi\right\}$$

old PDG value: 0.642

BESIII: 0.750 ± 0.009 ± 0.004 C

CLAS: 0.721 \pm 0.006 \pm 0.005

ъ

イロト 不得 とくほ とくほ とう

 \Rightarrow : all spin-dependent observables for $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$, etc. need to be re-analysed!

colored lines: different models of the A interaction (J.H. et al., PRC 45 (1992) 931, PRC 46 (1992) 2158) black dashed line: phase space

J.H., U.-G. Meißner, PLB 761 (2016) 456

DM2: D. Bisello et al., Z.Phys.C 48 (1990) 23 BaBar: B. Aubert et al., PRD 76 (2007) 092006 BESIII: M. Ablikim et al., PRD 97 (2018) 032013, PRL 123 (2019) 122003

• near threshold: possible conflict between BaBar and BESIII data

- BESIII: anomalous threshold threshold behavior? $\sigma_{e^+e^- \to \overline{\Lambda}\Lambda}(k_{\Lambda}) \neq 0$ for $k_{\Lambda} \to 0$? would require a resonance at the $\overline{\Lambda}\Lambda$ threshold: $\sigma \propto \frac{k_{\Lambda}}{k_{e}} \times \frac{1}{k_{4}}$
- speculations on a near-threshold Ā∧ state by J. Carbonell et al., PLB 306 (1993) 407
 ⇒ no indications in (very) near-threshold p
 → ħ∧ measurements (Barnes et al., PRC 62 (2000) 055203)

J.H., U.-G. Meißner, PLB 761 (2016) 456

BaBar: B. Aubert et al., PRD 76 (2007) 092006 BESIII: M. Ablikim et al., PRD 97 (2018) 032013, PRL 123 (2019) 122003

 \Box ... data re-scaled to the old PDG value $\alpha = 0.642$ (by BESIII)

model I from PRC 45 (1992) 931 is favored ($\bar{p}p$ interaction with spin-orbit force; dominant K* transition potential)

イロト 不得 とくほと くほとう

Results for $\bar{\rho}\rho \rightarrow \bar{\Lambda}\Sigma^0 + c.c.$

J.H., K. Holinde, J. Speth, NPA 562 (1993) 317 PS185: P.D. Barnes et al., PLB 402 (1997) 227

イロト 不同 トイヨト イヨト

colored lines: different models of the $\overline{\Sigma}^0 \wedge$ interaction (J.H., K. Holinde, J. Speth, NPA 562 (1993) 317) black dashed line: phase space

J.H., U.-G. Meißner, L.-Y. Dai, PRD 103 (2021) 014028

DM2: D. Bisello et al., Z.Phys.C 48 (1990) 23 BaBar: B. Aubert et al., PRD 76 (2007) 092006

イロト イポト イヨト イヨト

Results for $\overline{p}p \rightarrow \overline{\Sigma}\Sigma$

J.H., K. Holinde, J. Speth, NPA 562 (1993) 317 PS185: P.D. Barnes et al., PLB 402 (1997) 227

 $\bar{p}p \rightarrow \bar{\Sigma}^+ \Sigma^-$ requires a two-step process (double charge exchange) nevertheless, $\sigma_{\bar{p}p \rightarrow \bar{\Sigma}^+ \Sigma^-} \approx \sigma_{\bar{p}p \rightarrow \bar{\Sigma}^- \Sigma^+}$

イロト 不得 とくき とくきとう

J.H., U.-G. Meißner, L.-Y. Dai, PRD 103 (2021) 014028

BaBar: B. Aubert et al., PRD 76 (2007) 092006 ($\bar{\Sigma}^0 \Sigma^0$) BESIII: M. Ablikim et al., PLB 814 (2021) 136110

 $---- \bar{\Sigma}^{-} \Sigma^{+}; \quad ---- \bar{\Sigma}^{0} \Sigma^{0}; \quad ---- \bar{\Sigma}^{+} \Sigma^{-}$

coupling between $\overline{\Sigma}\Sigma$ in final state included! (3 bare $G_M^{\overline{\Sigma}\Sigma;0}$; 1 real, 2 complex) $f^{\nu} = f^{\nu;0} + \sum_{\mu} f^{\mu;0} G^{\mu} T^{\mu \to \nu}, \qquad \nu, \mu = \overline{\Sigma}^{-} \Sigma^{+}, \overline{\Sigma}^{0} \Sigma^{0}, \overline{\Sigma}^{+} \Sigma^{-}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

J.H., U.-G. Meißner, L.-Y. Dai, PRD 103 (2021) 014028

BESIII: M. Ablikim et al., PLB 814 (2021) 136110 ($\bar{\Sigma}^-\Sigma^+$)

 $-\!\!-\!\!-\!\!\bar{\Sigma}^-\Sigma^+; -\!\!-\!\!\bar{\Sigma}^0\Sigma^0; -\!\!-\!\!\bar{\Sigma}^+\Sigma^-$

J.H., K. Holinde, J. Speth, PRC 47 (1993) 2982

イロン イ団ン イヨン イヨン

₹ 990

J.H., U.-G. Meißner, L.-Y. Dai, PRD 103 (2021) 014028 BESIII: M. Ablikim et al., PRD 103 (2021) 012005

イロト 不得 とくき とくきとう

$\psi(4630)$ versus $\psi(4660)$

one (or two ?) of the XYZ states, whose structure is unclear

PDG (2020): $M = (4633 \pm 7)$ MeV $\Gamma = (64 \pm 9)$ MeV [one state!]

イロト イポト イヨト イヨト

3

$e^+e^- ightarrow ar{\Lambda}_c^- \Lambda_c^+$

L.-Y. Dai, J.H., U.-G. Meißner, PRD 96 (2017) 116001

- construct a Λ
 ⁻_c Λ⁺_c potential guided by chiral EFT, in close analogy to our <u>N</u>N interaction (up to NLO)
- fix the LECs (for V^Λ₃C⁻Λ⁺_c) by a fit to the e⁺e⁻ → Λ⁻_cΛ⁺_c cross section (2 LECs for elastic part, 2 LECs for annihilation)
- include a resonance (pole diagram) with bare mass and bare coupling constant
- solve Lippmann-Schwinger eq. for $\bar{\Lambda}_c^- \Lambda_c^+$ potential
- determine pole position
- no unique set of LECs but, how stable is the pole position?

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

$e^+e^- \rightarrow \bar{\Lambda}_c^- \Lambda_c^+$

L.-Y. Dai, J.H., U.-G. Meißner, PRD 96 (2017) 116001

Belle: G. Pakhlova et al., PRL 101 (2008) 172001 BESIII: M. Ablikim et al., PRL 120 (2018) 132001

- $\Rightarrow M = (4652.5 \pm 3.4) \text{ MeV}$ $\Gamma = (62.6 \pm 5.6) \text{ MeV}$
- pole position compatible with ψ (4660) from $e^+e^- \rightarrow \pi^+\pi^-\psi$ (2*S*) data
- possible conflict between Belle and BESIII data

ヘロト 人間 とくほとくほとう

Summary & Outlook

- Electromagnetic form factors of nucleons and hyperons in the time-like region
- strongly influenced by the $\overline{N}N$ and $\overline{Y}Y$ final-state interactions
- \rightarrow test for $\overline{N}N$ interaction
- \rightarrow additional source of information on the $\overline{Y}Y$ interaction
- excellent description of the energy dependence of p
 p and n
 n form factors
- nice agreement with $e^+e^- \rightarrow \overline{\Lambda}\Lambda$ cross section
- ratio $|G_E/G_M|$ and phase $\Phi = \arg(G_E/G_M)$ are sensitive to details of the $\overline{\Lambda\Lambda}$ interaction
- $e^+e^- \rightarrow \overline{\Sigma}^0 \Lambda$, $\overline{\Sigma}\Sigma$, $\overline{\Xi}\Xi$: more data points near threshold are needed
- and measurements of $|G_E/G_M|$ and Φ for $\overline{\Sigma}^0 \Lambda$, $\overline{\Sigma}\Sigma$, $\overline{\Xi}\Xi$

Additional constraints on $\overline{Y}Y$ interaction:

- PANDA: measurements are planned of $\overline{\rho}p \to \overline{\Lambda}\Lambda, \overline{\Sigma}^0\Lambda, \overline{\Xi}\Xi$
- ALICE/STAR: measurement of *YY* two-body momentum correlations in high-energy *pp* collisions and in heavy-ion collisions

Backup slides

Johann Haidenbauer Electromagnetic form factors

<ロト < 回 > < 回 > < 回 > 、

æ

Annihilation potential

• experimental information:

- annihilation occurs dominantly into 4 to 6 pions
- thresholds: for 5 pions: \approx 700 MeV for $\overline{N}N$: 1878 MeV
- \Rightarrow annihilation potential depends very little on energy
- annihilation is a statistical process: individual properties of the produced particles (mass, quantum numbers) do not matter
- phenomenlogical models: bulk properties of annihilation can be described rather well by simple energy-independent optical potentials
- range associated with annihilation is around 1 fm or less
 → short-distance physics
- ⇒ describe annihilation in the same way as the short-distance physics in $V_{el}^{\bar{N}N}$, i.e. likewise by contact terms (LECs)
- ⇒ describe annihilation by a few effective (two-body) annihilation channels (unitarity is preserved!)

$$V^{\bar{N}N} = V_{el}^{\bar{N}N} + V_{ann;eff}^{\bar{N}N}; \quad V_{ann;eff}^{\bar{N}N} = \sum_{X} V^{\bar{N}N \to X} G_{X}^{0} V^{X \to \bar{N}N}$$
$$V^{\bar{N}N \to X} (p_{\bar{N}N}, p_{X}) \approx p_{\bar{N}N}^{L} (a + b p_{\bar{N}N}^{2} + ...); \quad p_{X} \approx \text{const.}$$
$$a, b, \dots \text{LECs}$$

イロト イポト イヨト イヨト

Contributions of V_{cont} for $\overline{N}N$ up to N³LO

$$\begin{aligned} V^{L=0} &= & \tilde{C}_{\alpha} + C_{\alpha}(p^2 + p'^2) + D_{\alpha}^1 p'^2 p'^2 + D_{\alpha}^2 (p^4 + p'^4) \\ V^{L=1} &= & C_{\beta} \, p \, p' + D_{\beta} \, p \, p' (p^2 + p'^2) \\ V^{L=2} &= & D_{\gamma} \, p^2 p'^2 \end{aligned}$$

 $\tilde{c}_i \dots$ LO LECs [4], $c_i \dots$ NLO LECs [+14], $D_i \dots N^3$ LO LECs [+30], $p = |\mathbf{p}|; p' = |\mathbf{p}'|$ $V_{ann;eff}^{\bar{N}N}$

$$\begin{split} V_{ann}^{L=0} &= -i \, (\tilde{C}_{\alpha}^{a} + C_{\alpha}^{a} p^{2} + D_{\alpha}^{a} p^{4}) \, (\tilde{C}_{\alpha}^{a} + C_{\alpha}^{a} p^{\prime 2} + D_{\alpha}^{a} p^{\prime 4}) \\ V_{ann}^{L=1} &= -i \, (G_{\beta}^{a} p + D_{\beta}^{a} p^{3}) \, (C_{\beta}^{a} p^{\prime} + D_{\beta}^{a} p^{\prime 3}) \\ V_{ann}^{L=2} &= -i \, (D_{\gamma}^{a})^{2} p^{2} p^{\prime 2} \\ V_{ann}^{L=3} &= -i \, (D_{\alpha}^{a})^{2} p^{3} p^{\prime 3} \end{split}$$

 $\begin{array}{l} \alpha \ \dots \ ^{1}S_{0} \ \text{and} \ ^{3}S_{1} \\ \beta \ \dots \ ^{3}P_{0}, \ ^{1}P_{1}, \ \text{and} \ ^{3}P_{1} \\ \gamma \ \dots \ ^{1}D_{2}, \ ^{3}D_{2} \ \text{and} \ ^{3}D_{3} \\ \delta \ \dots \ ^{1}F_{3}, \ ^{3}F_{3} \ \text{and} \ ^{3}F_{4} \end{array}$

• unitarity condition: higher powers than what follows from Weinberg power counting appear!

same number of contact terms (LECs)

colored lines: different models of the $\overline{\Sigma}^0 \wedge$ interaction (J.H., K. Holinde, J. Speth, NPA 562 (1993) 317) black dashed line: phase space

J.H., U.-G. Meißner, L.-Y. Dai, PRD 103 (2021) 014028

イロト イポト イヨト イヨト

J.H., U.-G. Meißner, L.-Y. Dai, PRD 103 (2021) 014028

 $e^+e^-
ightarrow =$

ヘロト 人間 とくほとくほとう

æ