Surrogate Modelling for Laser Driven Ion Acceleration: A Transfer Learning Approach, Current Status

General Idea – Laser-driven Neutron sources Pitcher-Catcher Setup

General Idea – Laser-driven Neutron sources Effektiv Model

TECHNISCHE UNIVERSITÄT DARMSTADT

Part I: Laser Plasma Accelerators

TECHNISCHE UNIVERSITÄT DARMSTADT

- 1. Basic Mechanisms
- 2. Issues / Uncertainties
- 3. Methodics

Laser Component Target Normal Sheath Acceleration (TNSA)

- 1. Intense laser hits target
- 2. Ponderomotive force accelerates electrons
- 3. Electron Sheath forms at the back
- 4. Charge separation accelerates lons

Roth M., Schollmeier M. (2013) Ion Acceleration: TNSA. In: Laser-Plasma Interactions and Applications. Springer, Heidelberg

Laser Component Uncertainties

TECHNISCHE UNIVERSITÄT DARMSTADT

Ion spectrum deviates

- Reproducibility of laser pulse
- Instabilities in laser-plasma-interaction
- Nonlinear effects

Florian Wagner, PhD Thesis, 2014, TU Darmstadt

Plasma Physic Methods Mathematical Formulation

- Vlasov-Maxwell EQS
- Many particles
- Sharp boundaries •
- Particle in cell simulations
- Full 3D FM Solver \rightarrow

$$\begin{split} \frac{\partial f_{\alpha}}{\partial t} + \vec{v}_{\alpha} \cdot \nabla f_{\alpha} + q_{\alpha} \left(\vec{E} + \vec{\beta} \times \vec{B} \right) \cdot \frac{\partial f_{\alpha}}{\partial \vec{p}} &= 0 \\ \nabla \times \vec{B} &= \frac{4\pi \vec{j}}{c} + \frac{1}{c} \frac{\partial \vec{E}}{\partial t} \\ \nabla \times \vec{E} &= -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \\ \nabla \cdot \vec{E} &= 4\pi \varrho \\ \nabla \cdot \vec{B} &= 0 \end{split}$$

_

Plasma Physic Methods Simulations and Surrogate Models

TECHNISCHE UNIVERSITÄT DARMSTADT

Analytical Calculation? – Not possible.

💛 (PIC) Simulations – Partly

- 3D: Month on \sim 100 Cores
- + 1.5D: Hours on \sim 10 Cores
- Approximation Errors
- ${\cal O}$ Experiments
- \oslash Data driven surrogate models

Laser-driven Neutron sources Modelling and approaches

Laser-driven Neutron sources Modelling and approaches

- 1. Experiments
- 2. Data driven Surrogate Model
- 3. PIC Simulations

- 1. Monte Carlo calculation
- 2. Experimental validation
- 3. Correction for nuclear MC

Laser-driven Neutron sources Modelling and approaches

- 1. Experiments
- 2. Data driven Surrogate Model
- 3. PIC Simulations

- 1. Monte Carlo calculation
- 2. Experimental validation
- 3. Correction for nuclear MC

Surrogate Modeling

TECHNISCHE UNIVERSITÄT DARMSTADT

- 1. Definitions
- 2. Jupyter Tools
- 3. Dataset and Dataquality

Surrogate Modeling: Dataset Definitions

- Each Y needs full set of x_i
- One model per target quantity
- Features:
 - Continuous distributed
 - Discrete distributed

Discrete Features:

- No interpolation useful
- Define disjunct dataclasses:
 - Cartesian Product
 - Datclasses will be compared to each other

Surrogate Modeling: Dataset Tool 1

Denut, s. Au, Unstructured

- Displays and investigates
 - features
 - data
- Allows to select data of interest

Surrogate Modeling: Dataset Tool 2 – Resampling

Data index: N0+7.60E+12 kT=1.05E+01MeV a0=2.85E+01.a1=2.22E-02.a2=-6.37E-03 No Sample: No Sigmas: ¥ 20' PDE Uniform Multiple Slices Multiple Silces D 30 Energy / Mai 25 30 Energy / Mark No of Slices 1.49992502681913 Lower Bord Higher Bor... 51.4999250268191 Time/or 288.5 288.5 Vertical/* Horizontal/ -8 -6 -4 -2 0 2 4 6

- Resampling of TNSA-ionbunches
 - Laminar expansion
 - Reproduces real data
 - Gaussian or uniform sampling
- Export to csv files

Surrogate Modeling: Dataset Laser Features 1

- Only 2 similar Lasersystems (Nd:Glass)
- On-target energy ...
- S and p polarized light $\approx 50:50$
- Mainly Gausslike spatial distribution

Surrogate Modeling: Dataset Laser Features 2

- Several different focus values
- Longpulses, other systems get down to 30 fs
- Mainly small incident angles
 - Gibbon et al.: 45° ideal?
- Contrast distributed between typical values
 - E-6 old value, not used anymore

Surrogate Modeling: Dataset Target Features

- Different solid targets
 - mainly flat planar and needle targets
 - · unstructured vs structured
- Mainly thin targets

Surrogate Modeling: Dataset Overview

TECHNISCHE UNIVERSITÄT DARMSTADT

- State from: 18.08.2020:
 - 158 Datasets total (8 invalid, 1 Polysterene)
 - 149 usable Datasets

9 Dataclasses:

s	Si+Cu	Structured	10
s	Si+Cu	Unstructured	4
s	Si	Unstructured	1
s	Au	Unstructured	24
s	Cu	Unstructured	1
р	Si	Structured	34
р	Si	Unstructured	31
р	Au	Unstructured	4
S	Au	Unstructured	40
	s s s p p s	s Si+Cu s Si+Cu s Au s Cu p Si p Si p Au s Au	sSi+CuStructuredsSi+CuUnstructuredsSiUnstructuredsAuUnstructuredpSiStructuredpSiUnstructuredpAuUnstructuredpAuUnstructuredsAuUnstructuredsAuUnstructuredsAuUnstructured

Metadata	Referenz	PHELIX	17640
Laser	Shape	Gauss	NaN
Laser	Energy/J	156.3	NaN
Laser	Polarization	S	NaN
Laser	Focus-FWHM/micron	5	NaN
Laser	Pulselength/fs	500	75
Laser	Incidentangle/deg	45	NaN
Laser	Contrast	E-12.5	NaN
Laser	Wavelength/nm	1054	0
Laser Target	Wavelength/nm Form	1054 Planar	0 NaN
Laser Target Target	Wavelength/nm Form Thickness/micron	1054 Planar 1	0 NaN NaN
Laser Target Target Target	Wavelength/nm Form Thickness/micron Elements	1054 Planar 1 Au	0 NaN NaN NaN
Laser Target Target Target RCF	Wavelength/nm Form Thickness/micron Elements Composition	1054 Planar 1 Au NaN	0 NaN NaN NaN NaN
Laser Target Target RCF RCF	Wavelength/nm Form Thickness/micron Elements Composition Distance/mm	1054 Planar 1 Au NaN 50	0 NaN NaN NaN NaN NaN

Surrogate Modeling: Dataset RCF Results

Surrogate Modeling: Dataset RCF Results

$$\begin{split} N_0 &= f_1^i \left(E_L, W_L, \tau_L, \Theta_L, C_L, \lambda_L, d_T \right) \\ k_B T &= f_2^i \left(E_L, W_L, \tau_L, \Theta_L, C_L, \lambda_L, d_T \right) \\ E_c &= f_3^i \left(E_L, W_L, \tau_L, \Theta_L, C_L, \lambda_L, d_T \right) \\ a_0 &= f_4^i \left(E_L, W_L, \tau_L, \Theta_L, C_L, \lambda_L, d_T \right) \\ a_1 &= f_5^i \left(E_L, W_L, \tau_L, \Theta_L, C_L, \lambda_L, d_T \right) \\ a_2 &= f_6^i \left(E_L, W_L, \tau_L, \Theta_L, C_L, \lambda_L, d_T \right) \\ i \in \mathbb{N}, \quad \text{index of dataclass} \end{split}$$

 $\Rightarrow 6 \times \#$ Classes functions needed!

To be taken into account:

- Noise of Parameters
- Region of Fit Possible Methods:
- PCE: Polynomial Chaos Exp;
- PCE: Polynomial Chaos Expansion
- GPR: Gaussian Progress Regression Goals:
- Surrogate Model
- Sensitivity Analysis
- Correlation of the Observables
- Laser Uncertainties

Surrogate Modeling: Dataset Current Fazit

TECHNISCHE UNIVERSITÄT DARMSTADT

Univariate Models

- Model depends on reference points.
- Variations are small.
- Sparse parameter space.
- Combined Dataclasses \rightarrow bad prediction

Multivariate Models

- Variations are small.
- Sparse parameter space.
- Single Dataclasses → Overfitting!
- Difficult to use for sensitivity analysis.

Surrogate Modeling: What now?

- Simpler models not sufficient
 - ⇒ Acquire more data
- Transfer Learning
 - \Rightarrow Add PIC simulations and neural network

Surrogate Model with Sparse Data Overview

TECHNISCHE UNIVERSITÄT DARMSTADT

Idea

Find scalings in reduced simulations. \rightarrow Fit to Experimental Data: several approaches

Surrogate Model with Sparse Data Transfer Learning Concept

Surrogate Model with Sparse Data Problems and Solutions I

TECHNISCHE UNIVERSITÄT DARMSTADT

- Large Parameter space
 - Real: 11D
 - 2D: 7D + 3Dk
 - 1.5D+boosted: 6D + 3Dk
 - 1.5D: 4D + 3Dk
- Random sampling

Units	Range (2D)	Range (1.5D)	Range (1.5D)	Range (real)	Attribute	Element	#
		Boosted					
	{Gauss}	{Gauss}	{Gauss}	{Gauss, Donut}	Shape	Laser	1
Joule	[1E-3, 2E+2]	[1E-3, 2E+2]	[1E-3, 2E+2]	[1E-3, 2E+2]	Energy	Laser	2
micro meter	[2, 20]			[2, 20]	Focus-FWHM	Laser	3
femto second	[15, 1000]	[15, 1000]	[15, 1000]	[15, 1000]	Pulselength	Laser	4
	{s, p}	{s, p}		{s, p}	Polarization	Laser	5
degree	{0, 85}	{0, 85}		{0, 85}	Incidentangle	Laser	6
				[1E-6, 5E-12]	Contrast	Laser	7
nano meter	[550, 1100]	[550, 1100]	[550, 1100]	[550, 1100]	Wavelength	Laser	8
	{Planar}	{Planar}	{Planar}	{Planar, {Non-Planar}}	Form	Target	9
nano meter	[3E0, 2E3]	[3E0, 2E3]	[3E0, 2E3]	[3E0, 2E3]	Thickness	Target	10
	{Poly}	{Poly}	{Poly}	{Si, Au, Cu, Si+Cu, Poly}	Elements	Target	11

Surrogate Model with Sparse Data Problems and Solutions II

Reduce further: Introduce relevant analytical conditions

• TNSA Intensity:

 $\frac{E_L}{A_L \cdot \tau_L} = I \in \left[1 \times 10^{18}, 1 \times 10^{21}\right] \mathrm{W \, cm^{-2}}$

- Lower boundary τ_L : $\Delta \tau \cdot \Delta \nu \geq K \quad K(\mathsf{Shape})$ $\Delta \nu$ dependent of lasermedium
- $\lambda > 550$ nm
- Incidentangle: ?
 - s-pol: Ideal close to 0°
 - p-pol: Ideal close to 45°

Surrogate Model with Sparse Data Problems and Solutions III

- Randomized parameter resampling
- Large number of Simulations
- (+) Additional Parameterset
- (+) Smoothness?

TECHNISCHE

Surrogate Model with Sparse Data Problems and Solutions IV

Nuclear Nuclear

- Topology of NN
- Bayesian optimization for hyperparameters
- Physics informed NN?
- Incorporate contrast?

Conclusion

TECHNISCHE UNIVERSITÄT DARMSTADT

Status

) 149 Datapoints in 9 Dataclasses

🖉 Model defined

- 1.5D
- 2D

 ${\cal O}$ Start parameters found

 \oslash SMILEI tested

Acknowledgement:

This work is made possible by LOEWE center for Nuclear Photonics.

Outlook

- Additional Data (HHUD, Marvel Fusion, LIGHT)
- Model defined
 - 1.5D Lorentzboosted?
 - 3D azimuthal?
- SMILEI on Lichtenberg II and Virgo
- EPOCH tests from Marvel Fusion

Exzellente Forschung für Hessens Zukunft

