Chromaticity Correction with Physics-inspired Neural Networks

5.11.2020

Artificial Neural Networks

Artificial Neural Networks are

▶ able to approximately represent any function $f : \mathbb{R}^m \to \mathbb{R}^n$ with arbitrary precision

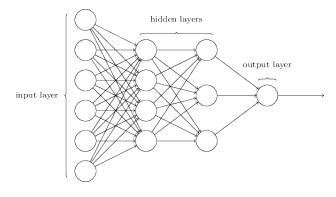


Figure: [Nie15]

Artificial Neural Networks

Layers are

- Iayers are composition of a linear map / and an element-wise non-linear map σ, e.g. x → (σ ∘ l)x
- ▶ I contains trainable weights M_{ij} and biases b_i

$$l(\boldsymbol{x}) = M\boldsymbol{x} + b$$

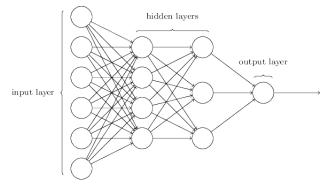


Figure: [Nie15]

Training Artificial Neural Networks

- train from a set of n examples $\{(x_n, y(x_n))\}_n$
- ▶ minimize some metric ∑_n ||y(x_n) net(x_n)|| via gradient descent with respect to the trainable weights

Training Artificial Neural Networks

- train from a set of n examples $\{(x_n, y(x_n))\}_n$
- ▶ minimize some metric ∑_n ||y(x_n) net(x_n)|| via gradient descent with respect to the trainable weights
- training successful if prediction is accurate for inputs not included in examples
 - the ANN is able to generalize

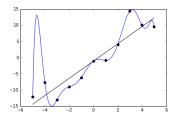


Figure: [Wik]

- exploit domain knowledge to construct network architecture
- ► replace layers by polynomial maps with trainable weights W_k $I(\mathbf{x}) = \mathbf{x} + W_1 \mathbf{x} + W_2 \mathbf{x}^2 + ...$
- weight matrices W_k can be obtained from beam dynamics, e.g. affiliated from MAD-X, elegant, ...
- represent each element in beamline by a layer

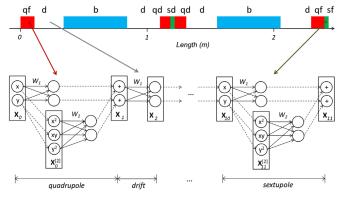


Figure: [IA20]

NNs prone to overfitting

usually if NN is too large / training set is small

NNs prone to overfitting

- usually if NN is too large / training set is small
- can be reduced by regularization
 - append penalty term to loss by adding constraints on trainable weights

- NNs prone to overfitting
 - usually if NN is too large / training set is small
- can be reduced by regularization
 - append penalty term to loss by adding constraints on trainable weights
- symplectic regularization

derive constraints from symplectic property

$$\left(\frac{\partial M}{\partial \mathbf{x}}\right)^{-1} J\left(\frac{\partial M}{\partial \mathbf{x}}\right) - J = 0; \quad J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$$

- NNs prone to overfitting
 - usually if NN is too large / training set is small
- can be reduced by regularization
 - append penalty term to loss by adding constraints on trainable weights
- symplectic regularization

derive constraints from symplectic property

$$\left(\frac{\partial M}{\partial \mathbf{x}}\right)^{-1} J\left(\frac{\partial M}{\partial \mathbf{x}}\right) - J = 0; \quad J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$$

alternatively: use thin-lens approximation

- symplectic by design
- fewer trainable weights

Goals

- use PNNs for fast particle tracking
- exploit common machine-learning libraries
 - offers building blocks for NNs
 - provides tools for model training like optimizers, gradient calculation, ...
 - use optimized code from high-level programming language
 - access to GPUs

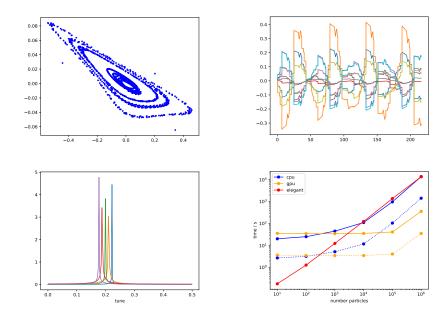
Goals

- use PNNs for fast particle tracking
- exploit common machine-learning libraries
 - offers building blocks for NNs
 - provides tools for model training like optimizers, gradient calculation, ...
 - use optimized code from high-level programming language
 - access to GPUs
- use PNNs to obtain accurate accelerator model by fitting measured data
- predict chromaticity of SIS18 and correct it

Goals

- use PNNs for fast particle tracking
- exploit common machine-learning libraries
 - offers building blocks for NNs
 - provides tools for model training like optimizers, gradient calculation, ...
 - use optimized code from high-level programming language
 - access to GPUs
- use PNNs to obtain accurate accelerator model by fitting measured data
- predict chromaticity of SIS18 and correct it
- optional: try to include space charge effects

Current Status



References I

- [IA20] Andrei Ivanov and Ilya Agapov. Physics-based deep neural networks for beam dynamics in charged particle accelerators. *Physical Review Accelerators and Beams*, 23(7):074601, 2020.
- [Nie15] Michael A. Nielsen. *Neural Networks and Deep Learning*. Determination Press, 2015.
- [Wik] Wikipedia, the free encyclopedia. Polynomial overfitting. [Online; accessed November 4, 2020].