
Chromaticity Correction with
Physics-inspired Neural Networks

5.11.2020

1 / 10

Artificial Neural Networks

Artificial Neural Networks are

I able to approximately represent any function f : Rm → Rn

with arbitrary precision

Figure: [Nie15]

2 / 10

Artificial Neural Networks

Layers are
I layers are composition of a linear map l and an element-wise

non-linear map σ, e.g. x → (σ ◦ l)x
I l contains trainable weights Mij and biases bi

l(x) = Mx + b

Figure: [Nie15]
3 / 10

Training Artificial Neural Networks

I train from a set of n examples {(xn, y(xn)}n
I minimize some metric

∑
n ||y(xn)− net(xn)|| via gradient

descent with respect to the trainable weights

I training successful if prediction is accurate for inputs not
included in examples

I the ANN is able to generalize

Figure: [Wik]

4 / 10

Training Artificial Neural Networks

I train from a set of n examples {(xn, y(xn)}n
I minimize some metric

∑
n ||y(xn)− net(xn)|| via gradient

descent with respect to the trainable weights
I training successful if prediction is accurate for inputs not

included in examples
I the ANN is able to generalize

Figure: [Wik]

4 / 10

Physics-inspired Neural Networks

Physics-inspired Neural Networks

I exploit domain knowledge to construct network architecture

I replace layers by polynomial maps with trainable weights Wk

l(x) = x + W1x + W2x2 + ...

I weight matrices Wk can be obtained from beam dynamics,
e.g. affiliated from MAD-X, elegant, ...

I represent each element in beamline by a layer

5 / 10

Physics-inspired Neural Networks

Figure: [IA20]

6 / 10

Physics-inspired Neural Networks

I NNs prone to overfitting
I usually if NN is too large / training set is small

I can be reduced by regularization

I append penalty term to loss by adding constraints on trainable
weights

I symplectic regularization

I derive constraints from symplectic property(
∂M

∂x

)−1

J

(
∂M

∂x

)
− J = 0; J =

[
0 I
−I 0

]

I alternatively: use thin-lens approximation

I symplectic by design
I fewer trainable weights

7 / 10

Physics-inspired Neural Networks

I NNs prone to overfitting
I usually if NN is too large / training set is small

I can be reduced by regularization
I append penalty term to loss by adding constraints on trainable

weights

I symplectic regularization

I derive constraints from symplectic property(
∂M

∂x

)−1

J

(
∂M

∂x

)
− J = 0; J =

[
0 I
−I 0

]

I alternatively: use thin-lens approximation

I symplectic by design
I fewer trainable weights

7 / 10

Physics-inspired Neural Networks

I NNs prone to overfitting
I usually if NN is too large / training set is small

I can be reduced by regularization
I append penalty term to loss by adding constraints on trainable

weights

I symplectic regularization
I derive constraints from symplectic property(

∂M

∂x

)−1

J

(
∂M

∂x

)
− J = 0; J =

[
0 I
−I 0

]

I alternatively: use thin-lens approximation

I symplectic by design
I fewer trainable weights

7 / 10

Physics-inspired Neural Networks

I NNs prone to overfitting
I usually if NN is too large / training set is small

I can be reduced by regularization
I append penalty term to loss by adding constraints on trainable

weights

I symplectic regularization
I derive constraints from symplectic property(

∂M

∂x

)−1

J

(
∂M

∂x

)
− J = 0; J =

[
0 I
−I 0

]
I alternatively: use thin-lens approximation

I symplectic by design
I fewer trainable weights

7 / 10

Goals

I use PNNs for fast particle tracking
I exploit common machine-learning libraries

I offers building blocks for NNs
I provides tools for model training like optimizers, gradient

calculation, ...
I use optimized code from high-level programming language
I access to GPUs

I use PNNs to obtain accurate accelerator model by fitting
measured data

I predict chromaticity of SIS18 and correct it

I optional: try to include space charge effects

8 / 10

Goals

I use PNNs for fast particle tracking
I exploit common machine-learning libraries

I offers building blocks for NNs
I provides tools for model training like optimizers, gradient

calculation, ...
I use optimized code from high-level programming language
I access to GPUs

I use PNNs to obtain accurate accelerator model by fitting
measured data

I predict chromaticity of SIS18 and correct it

I optional: try to include space charge effects

8 / 10

Goals

I use PNNs for fast particle tracking
I exploit common machine-learning libraries

I offers building blocks for NNs
I provides tools for model training like optimizers, gradient

calculation, ...
I use optimized code from high-level programming language
I access to GPUs

I use PNNs to obtain accurate accelerator model by fitting
measured data

I predict chromaticity of SIS18 and correct it

I optional: try to include space charge effects

8 / 10

Current Status

0.4 0.2 0.0 0.2 0.4

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.0 0.1 0.2 0.3 0.4 0.5
tune

0

1

2

3

4

5

0 50 100 150 200

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

101 102 103 104 105 106

number particles

100

101

102

103

104

tim
e

/ s

cpu
gpu
elegant

9 / 10

References I

[IA20] Andrei Ivanov and Ilya Agapov. Physics-based deep neural
networks for beam dynamics in charged particle accelerators.
Physical Review Accelerators and Beams, 23(7):074601,
2020.

[Nie15] Michael A. Nielsen. Neural Networks and Deep Learning.
Determination Press, 2015.

[Wik] Wikipedia, the free encyclopedia. Polynomial overfitting.
[Online; accessed November 4, 2020].

10 / 10

	Physics-inspired Neural Networks
	Goals
	Results
	References
	References

