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Artificial Neural Networks

Artificial Neural Networks are

I able to approximately represent any function f : Rm → Rn

with arbitrary precision

Figure: [Nie15]
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Artificial Neural Networks

Layers are
I layers are composition of a linear map l and an element-wise

non-linear map σ, e.g. x → (σ ◦ l)x
I l contains trainable weights Mij and biases bi

l(x) = Mx + b

Figure: [Nie15]
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Training Artificial Neural Networks

I train from a set of n examples {(xn, y(xn)}n
I minimize some metric

∑
n ||y(xn)− net(xn)|| via gradient

descent with respect to the trainable weights

I training successful if prediction is accurate for inputs not
included in examples

I the ANN is able to generalize

Figure: [Wik]
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Physics-inspired Neural Networks

Physics-inspired Neural Networks

I exploit domain knowledge to construct network architecture

I replace layers by polynomial maps with trainable weights Wk

l(x) = x + W1x + W2x2 + ...

I weight matrices Wk can be obtained from beam dynamics,
e.g. affiliated from MAD-X, elegant, ...

I represent each element in beamline by a layer
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Physics-inspired Neural Networks

Figure: [IA20]
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Physics-inspired Neural Networks

I NNs prone to overfitting
I usually if NN is too large / training set is small

I can be reduced by regularization

I append penalty term to loss by adding constraints on trainable
weights

I symplectic regularization

I derive constraints from symplectic property(
∂M

∂x

)−1

J

(
∂M

∂x

)
− J = 0; J =

[
0 I
−I 0

]

I alternatively: use thin-lens approximation

I symplectic by design
I fewer trainable weights
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Goals

I use PNNs for fast particle tracking
I exploit common machine-learning libraries

I offers building blocks for NNs
I provides tools for model training like optimizers, gradient

calculation, ...
I use optimized code from high-level programming language
I access to GPUs

I use PNNs to obtain accurate accelerator model by fitting
measured data

I predict chromaticity of SIS18 and correct it

I optional: try to include space charge effects
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Current Status
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