

Simulation of (p,2p) reactions for fission studies: Reconstruction with ALPIDE detectors

José Luis Rodríguez-Sánchez University of Santiago de Compostela 3rd December 2020

What could be investigated

Fission barriers

- Most of the measurements were performed in direct kinematics within neutron induced fission reactions or using transfer reactions
- Only experimental data for stable nuclei with resolutions from few keVs to 3 MeV

What could be investigated

Fission barriers with (p,2p) reactions

- Exotic nuclei covering a large range

- Fission probabilities from SOFIA

on charge and neutron excess (N/Z)

Inverse kinematics

Neutron Number N

What could be investigated

Fission barriers with (p,2p) reactions

Inverse kinematics

- Exotic nuclei covering a large range on charge and neutron excess (N/Z)
- Excitation energy from CALIFA+Si-tracker
- Fission probabilities from SOFIA

Observables

- Fission barriers for nuclei in the transitions from symmetric to asymmetric fission
- Measure fission barriers of neutron-rich nuclei

Important inputs for r-process calculations

Requirement:

```
Missing mass resolutions of 1-2 MeV (FWHM)
```

Measuring fission barriers with an uncertainty of $\sim 150 \; keV$

Fission yields

- Most of the measurements were performed in direct kinematics for stable nuclei
- Inverse kinematics allowed to measure this observable for exotic nuclei using coulex induced fission reactions (K.-H. Schmidt, J. Taïeb et al.)

Fission yields with (p,2p) reactions

Evolutions with the excitation energy

- Excitation energy from CALIFA+Si-tracker
- Mass and charge distributions from SOFIA

Observables

- Mass and charge distributions for different excitation energies (E^*) , in particular for **low** excitations energies between 0 & 5 MeV

Also an important input for r-process calculations

Requirement: Missing mass resolutions of 1-2 MeV (FWHM)

Requirements

Missing mass resolution

We will need thin Si-detectors to get resolutions better than 2 MeV

This could be reached using ALPIDE detectors (50 μ m thickness)

R³B collab. meeting

Simulations within ALPIDE sensors

Two barrels of pixel sensors Parameter IB Sensor thickness (µm) 50 Spatial resolution (µm) 5 Dimensions (mm²) 15×30 Power density (mW cm^{-2}) 300 Time resolution (µs) 30 Detection efficiency (%) 99 10^{-5} Fake hit rate^a TID radiation hardness^b (krad) 2700 NIEL radiation hardness^b 1.7×10^{13} Nuclear Instruments and Methods in Physics Research A 824 (2016) 434-438 Vacuum chamber 3 cm 30 mm 1024 x 29.24 um = 29941.76 um Pads over pixels 15 mm Matrix 12 x 26. (512 × 1024 pixels) Analog DACs Digital Periphery

R³B collab. meeting

Two barrels of pixel sensors

Barrel	Radius (cm)	ALPIDE sensors per ring	Distance between sensors (µm)	Number of rings
Inner	4.08	17	2	9
Outer	5.05	21	2	10

Two barrels of pixel sensors

Barrel	Radius (cm)	ALPIDE sensors per ring	Distance between sensors (µm)	Number of rings	⊖ range in degrees
Inner	4.08	17	2	9	8 - 80
Outer	5.05	21	2	10	8 - 80

Energy loss range for protons

- We will need at least a threshold of (20±2) keV

- ALPIDE sensors allow to set up the thresholds with resolutions of a few electron volts

LH2 target and vacuum chamber

Geometry from technical drawings (E. Casarejos, A. Corsi et al.)

ALPIDE barrel: Tracking resolution

R³B collab. meeting

CALIFA + ALPIDE barrels

- Califa rates around 6 % of the total number of projectiles
- **High rates** in the Si-tracker due to delta electrons, from simulations **80** % of the total projectiles will induce at least one signal in the detectors
- CALIFA trigger can be used to reduce the rates for DAQ

Particle multiplicities in the ALPIDE barrels for (p,2p) induced fission

- CALIFA angles reduce the particle multiplicities in the barrels a factor of 10
- Around **37%** of pure (p,2p) events in both barrels (mult=2), without delta electrons inside the angular CALIFA windows

Vertex reconstruction to select the rest of (p,2p) events

- Around **37%** of pure (p,2p) events in both barrels (mult=2)

Vertex reconstruction to select the rest of (p,2p) events

- Around **37%** of pure (p,2p) events in both barrels (mult=2)
- Around 56% of (p,2p) events can be recovered from vertex reconstruction
- In total, we recover 37+56 = 93 % of (p,2p) events

Contributions

- ALPIDE tracking resolution of 5 μ m (FWHM)
- CALIFA energy resolutions of around 1 % (FWHM)

(p,2p) induced fission reactions could be used to measure fission barriers and fission yields of heavy exotic nuclei between Hg (Z=80) and U (Z=92)

The measurement of fission barriers and fission yields to provide inputs for r-process calculations needs missing mass resolutions of 1-2 MeV (FWHM), in particular, for obtaining the excitation energy dependece at very low energies (< 5 MeV)

ALPIDE sensors

- Energy loss range between 20 and 500 keV
- Vertex reconstruction with a resolution of **0.5 mm (FWHM)**
- Angular resolution better than 1 mrad (FWHM)

CALIFA angles and the vertex reconstruction allow to distinguish delta electrons from protons, recovering the 93% of the total (p,2p) events

Missing mass spectra could be obtained with a resolution of **2 MeV (FWHM)** for LH2 target with a thinkness between 5 and 10 mm

Thank you for your attention!