The MESA Energy-recovery LINAC

-new possibilities for accelerator-based experiments at low energies

GSI accelerator seminar November, 19, 2020 by Kurt Aulenbacher

The ERL – not a new idea

- MESA

 Mainz
 Energy-recovering
 Superconducting
- 1960's: Maury Tigner proposes to recuperate the kinetic energy of an beam to operate colliders....
- ...Concept similar to hybrid car recuperation system
- very few ERL's have been realized so far why?

wikipedia

AD 1900: C. Lohner/ F. Porsche: Hybrid electric car: (look at the all wheel drive!): But - commercial failure!

→ Progress and the appearance of new requirements may change the issue!

Experiments at RF-accelerators

The synchrotron is cost/energy efficient, the linac experiment is easier: Combine both advantages by using an ERL:

- High luminosity at low costs of RF-system
- Stationary beam conditions, low emittance, no beam cooling required

Recirculating accelerators and ERL's

upper picture: "Conventional one turn recirculating linac": particles are accelerated twice

lower picture: "One turn ERL" only one accleration takes place particles are decellerated in second pass.

ideally, there is no beam loading

Extension Building "CFP-1" (Hall-1)

Building status November 2020

Occupation readiness planned for November 2021

17.11.2020

MESA Experiments

MESA Accelerator Layout

MESA Accelerator Layout

Source/beam preparation (MELBA) until July 2019

- → Operation with up to 100keV beam and up to 10mA beam current (>150kV possible, but not required)
- → 4 PhD theses finished within this subproject
- → MELBA was dis-assembled and put in storage due to start of hall renovation for MESA

Buncher cavity assembly

Source/beam preparation (MELBA) comissioning in 2021

10mA "spin-polarized mode" beam with source "STEAM"

Surface charge limit effect in NEA photocathodes!

S. Friederich et al. IPAC 2019 doi:10.18429/JACoW-IPAC2019-TUPTS011 Fits according to model by G.A. Mulhollan et al. / Physics Letters A 282 (2001) 309–318

No.	QE_0
1	2.40 %
2	1.55 %
3	1.15 %
4	0.85 %
(5)	0.50%
6	0.39 %

PhD thesis Simon Friederich

steady state-current measurements with the MESA-source at 2.5MV/m, 500µs long pulses, doping level 1-2*10¹⁹

For practical purposes it is obviously important to avoid reduction of q.e.

MELBA result - spin polarized beam after beam preparation system

Unpolarized (MESA-2)

See also proceddings IPAC 2019 CH. Matejcek et al. doi:10.18429/JACoW-IPAC2019-TUPGW028

MELBA with STEAM: Specs for polarized beam achieved/falls a little short of stage-1 goal for unpolarized beam

Deviation to simulation is attributed to sextupoles of correctors and large excitations because of insufficient magnetic shielding.

Non interfering bunch length measurement at buncher focus by coherent Smith Purcell radiation - controlling function of harmonic buncher

P. Heil et al. Proceedings IPAC 18 doi:10.18429/JACoW-IPAC2018-THPMF062

SPR power P for different beam currents with adjusted second harmonic buncher.

RMS 4ps is required for Injection in MAMBO...

- Achievable for beam currents of a few mA
- Minimum buch length at lower charge <1ps.

MESA Accelerator Layout

MAMBO Booster Linac

- Design inspired by the robust MAMI injector LINAC
- Energy gain 4.9MeV, beam power up to 50kW
- 4 room temperature RF structures
- RF-Amplifiers: one with ~75 kW (section 1) and 3 x ~60 kW (sections 2-4)

MAMBO Booster: Prototype Cavity

 Prototype needed for testing "multipacting" behavior (Result: Prototype is stable also with longitudinal field, if processed correctly)

Pictures: R. Heine

MAMBO Booster: Prototype RF-Amplifier

- 15kW RF-powersource prototype:
- Modular (8*2kW, combined) Solid State Amplifier
- Used for tests of MAMBO RF-section ...and also for Cryomodule tests
- ~25 Amplifiers needed for MESA RF-system
- Redesign/optimization completed

Pictures: R. Heine

MAMBO Booster Linac-Status

- Final design and ordering of Rf-cavities in Spring 19 (delivery starts Jan 21)
- Ordering of Rf-amplifiers: December 19 (delivery of first unit mid 21)

Cryomodules

SRF-System: MEEC-Cryomodules

3.5 meter

Specs: 25MeV Energy gain at <40 Watt thermal loss at 2Kelvin

Production of 2 Cryomodules

- 2015: 2 MEEC's ordered at RI Research Instruments GmbH
- Until 2017 SRF testing infrastructure became available at HIM
- 9/2018: First cryomodule does not meet specs at HIM → refurbishment by vendor,
- 3/2019: Second tested cryomodule achieves specs during test at HIM/Mainz
- 8/2020 :refurbished cryomodule tested and fulfills specs.

PhD thesis Timo Stengler See also: T. Stengler et al. Proc. SRF 2019 doi:10.18429/JACoW-SRF2019-TUP041

Lattice ERL/EB mode

Lattice

ERL-Lattice – not completely symmetrical due to enery (gain) dependend focussing of RF-structures.

BBU investigation

13mA BBU limit at Target in 4pass configuration 2up/2down (without countermeasures)

PhD thesis Christian Stoll, See also: C. Stoll and F. Hug: proceedings IPAC 2019 doi:10.18429/JACoW-IPAC2019-MOPGW025

Note:

Technical limitation: Heating of HOM coupler in TESLA cavities. (~1mA CW estimation, but needs to be determined experimentally)

Beschleunigte Aufbaumassnahme MESA (BAM)

Status CC/BAM and implications for schedule

- Our goal: 5MeV injector operational when CFP-1 is finalized
- Installation of MESA recirculator can begin 1/2022
- 15 month installation, 6 month comissioning
- begin of operations for experiments 10/2023

Thank you

