

Towards artificial intelligence in accelerator operation

Simon Hirlaender, Niky Bruchon, Verena Kain, Alexander Scheinker, B. Goddard, G. Valentino, F. Velotti and the ML Coffee

Overview

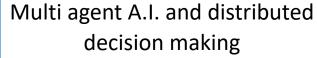
- ⇒ What is reinforcement learning (RL)?
- ⇒ Introduction to RL at accelerator operation
 - ⇒ How does it work?
 - ⇒ Overview of the methods and concepts Model free reinforcement learning (MFLR)
- ⇒ Applications trajectory steering:
- ⇒ Applications model based reinforcement learning (MBRL):
 - ⇒ Uncertainties in deep models probabilistic deep learning
 - □ The AE-Dyna idea
 - ⇒ Applications at FERMI
- **⇒** Conclusions and discussion

Progress of artificial intelligence

Google DeepMind

UCL

covariant



Decision making

https://rlchina.org

AI = RL?

"Intelligence is the **computational** part of the ability to achieve **goals** in the world"

John McCarthy

The **computer** is closely related to the computational part, but how to tell the computer our **goal**?

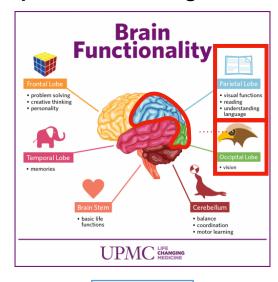
The reward hypothesis:

"All of what we mean by **goals** and purposes can be well thought of as maximisation of the expected value of the cumulative sum of a received scalar signal (**reward**)."

Reinforcement Learning and Artificial Intelligence (RLAI)

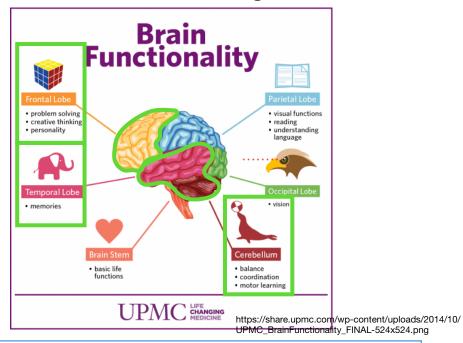
Decision making in machine learning

Supervised learning/modelling



Handcrafted? Prediction Decision Feedback?

Reinforcement learning



Direct sequential decisions (only objective is provided - reward).

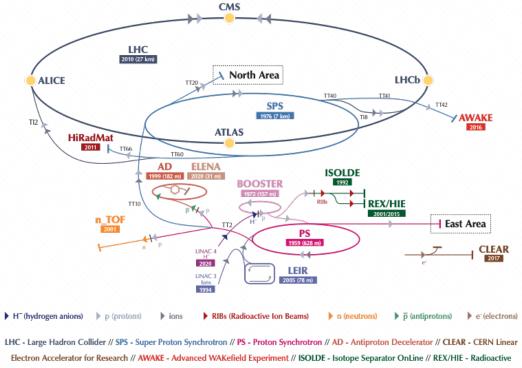
RL = optimising a sequential decision process

Motivation at CERN

RL history @ CERN accelerators

Hard to predict/model e.g.:

- Space charge dominated beam dynamics in LINACs
- E-cooling setting-up
- Transmission optimization during transition crossing
- Alignment of electrostatic septa with many degrees of freedom



EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials

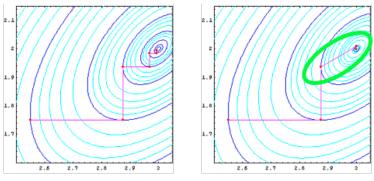
Example: Operating the Low Energy Ion Ring (LEIR)

Complex system per design:

- Several hours of manually maintaining/restoring the performance
- Introducing automatised optimisations
- Collaborations with other groups as Linac3...

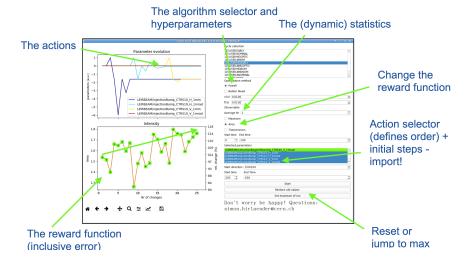
Partly cured with numerical optimisers

- Usage of classical DFO (derivative free optimiser) algorithms: Powell, Simplex, etc... (~from the 1960)
- Simple interfaces, scalable, robust...



Classical taxi-cab policy - search along fixed directions (human approach)

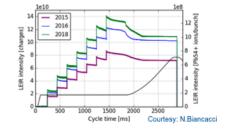
Powell's policy - take the direction of the average change



Highlights - Optimisation

Achievements - LEIR

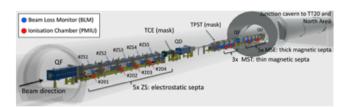
- 2018: record injected intensity into LEIR (and LHC)
- Fast recovery after LEIR machine stops and drifts
- Reproducible performance



Result LHC 2018 for LEIR extracted intensity

75 ns	Mean /10 ¹⁰ c	Typical/1010c	LIU/10 ¹⁰ c
LHC run	8.9	9.4	0.0
			8.8

http://cds.cern.ch/record/2715365/



Example: automatic alignment of electro-static septum for slow extraction at the SPS

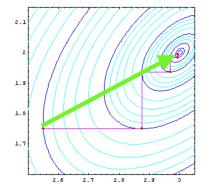
- 5 3.5 m long tanks with moveable anodes
 - 9 degrees of freedom to optimize; goal: minimize losses in extraction channel
 - Constrained to protect the hardware

Reduced alignment time from ~ 8 h (quasi- manual scans) to ~ 45 minutes

https://doi.org/10.18429/JACoW-IPAC2019-THPRB080

Natural next step: Reinforcement Learning!

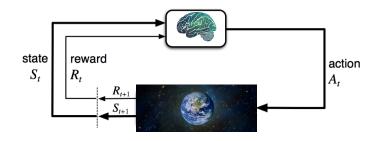
- Larger class of problems is covered.
- Optimization problems are not solved from scratch each time.



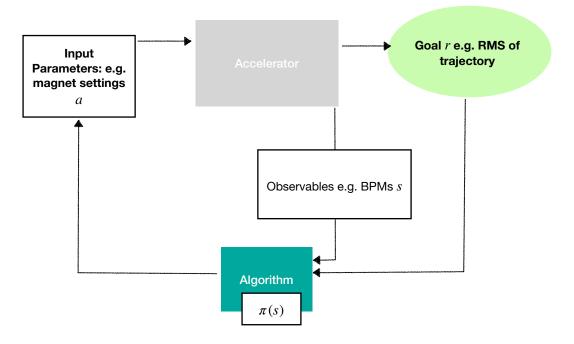
- Given data can be used.
- Possible insights into underlying (physical) structures of the problem.

Reinforcement learning

How does RL-work?



- ⇒ Self-learning algorithm (agent) is learning from interactions with the environment:
 - \Rightarrow Init: Read current state S_0 and taken an action A_0
 - - \Rightarrow Read S_t and R_t and set observe new state S_{t+1} .



Finally we obtain the function $\pi(s) \mapsto a$, the policy.

Terminology:

- Markov decision process: $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{T}, d_0, \gamma)$
- Dynamics of the system: $\mathcal{T}(s_{t+1} | s_t, a_t)$
- Trajectory is a sequence $\tau = (s_0, a_0, s_1, a_1, \dots s_H, a_H)$
- The trajectory distribution using the policy $\pi(a_t \mid s_t)$ is:

$$p_{\pi} = d_0(s_0) \prod_{t_0}^{H} \pi(a_t, s_t) \mathcal{T}(s_{t+1} | s_t, a_t)$$

Goal learn a function $\pi(a_t | s_t)!$

$$J(\pi) = \mathbb{E}_{\tau \sim p_{\pi}} \left[\sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}) \right]$$

Maximise return:

$$\max J(\pi) = \mathbb{E}_{\tau \sim p_{\pi}} \left[\sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}) \right]$$

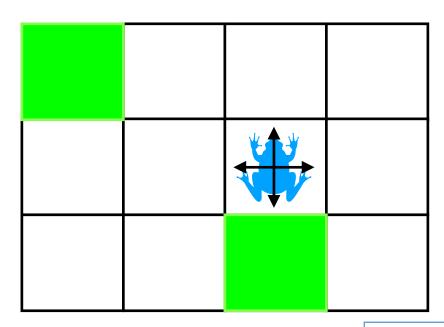
Taxonomy of RL

Main approaches of RL: Main schemes of training: (a) online reinforcement learning (b) off-policy reinforcement learning (c) offline reinforcement learning rollout data $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$ rollout data $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$ $\{(s_i, a_i, s'_i, r_i)\}$ **Model-Free** \mathbf{s}, r \mathbf{s}, r buffer buffer **Actor Value Function Policy** π_k update π_{β} Critic π_{k+1} update learn \mathbf{a} \mathbf{a} **Policy-Based** Value-Based π_{k+1} rollout(s) rollout(s) deployment rollout(s) π_{k+1} $\widetilde{\pi_{k+1}}$ Model-Base data collected once training phase with any policy https://arxiv.org/pdf/2005.01643 Model ~ 100 iterations > 1e6 iterations Model-based Off-policy Actor-critic On-policy Evolutionary/ Q-learning Policy gradient gradient free In accelerators each iteration is expensive!

15

Concept: State Value function

Frog wants to reach quickly the gras!

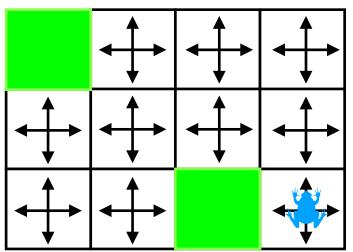


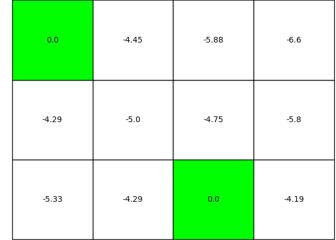
- Landing on white tiles gives a reward of -1.
- Landing on green tiles gives a reward of 0.

$$V^{\pi}(s_t) = \mathbb{E}_{\tau \sim p_{\pi}(\tau|s_t)} \left[\sum_{t=t'}^{H} \gamma'^{t-t} r(s_t, a_t) \right]$$

Concept: State Value function

$$\pi(s_t) = \text{random } a_t$$





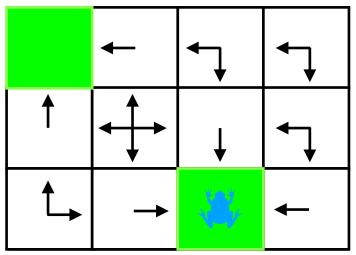
How good is a state s_t following a policy π ?

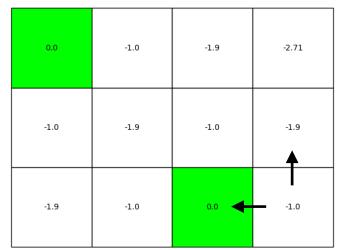
$$V^{\pi}(s_t) = \mathbb{E}_{\tau \sim p_{\pi}(\tau|s_t)} \left[\sum_{t=t'}^{H} \gamma^{'t-t} r(s_t, a_t) \right]$$

Concept: State-Action Value function

How good is an action a_t in a state s_t following a policy π ?

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}_{\tau \sim p_{\pi}(\tau \mid s_{t}, a_{t})} \left[\sum_{t=t}^{H} \gamma^{t'-t} r(s_{t}, a_{t}) \right] = r(s_{t}, a_{t}) + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}(s_{t+1} \mid s_{t}, a_{t})} \left[V^{\pi}(s_{t+1}) \right]$$





$$\pi(s_t) = \pi^*(s_t)$$
 optimal policy = $\arg\max_{a_t} Q^*(s_t, a_t)$
Policy based Value based

Dynamic programming

$$V^{\pi}(s_t) = \mathbb{E}_{\tau \sim p_{\pi}(\tau|s_t)} \left[\sum_{t='t}^{H} \gamma^{'t-t} r(s_t, a_t) \right]$$

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\tau \sim p_{\pi}(\tau | s_t, a_t)} \left[\sum_{t=t}^{H} \gamma^{t-t} r(s_t, a_t) \right]$$

$$Q^{\pi}(s_t, a_t) = r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}(s_{t+1}|s_t, a_t), a_{t+1} \sim \pi(a_{t+1}, s_{t+1})} \left[Q^{\pi}(s_{t+1}, a_{t+1}) \right]$$

Bellman operator: $\overrightarrow{Q}^{\pi} = \mathscr{B} \overrightarrow{Q}^{\pi}$ has a unique fixed point!

Insert
$$\pi(a_t) = \delta(a_t - \operatorname{argmax} Q(s_t, a_t))$$
:

$$Q^*(s_t, a_t) = r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}(s_{t+1}|s_t, a_t)} \left[\max Q^*(s_{t+1}, a_{t+1}) \right],$$

Bellman optimality equation:

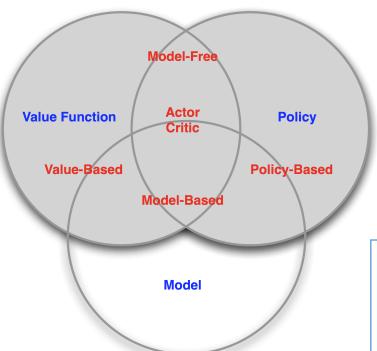
$$\overrightarrow{Q} = \mathscr{B}^* \overrightarrow{Q}$$

Nonlinear (due to max operator).

Policy gradient and approximative dynamic programming

Functions are approximated with high capacity function approximators as ANNs.

$$\max J(\pi) = \mathbb{E}_{\tau \sim p_{\pi}} \left[\sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}) \right]$$



Policy gradient methods - mainly parametrise the policy:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim p_{\pi_{\theta}}} \left[\sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}) \right]$$

Approximative dynamic programming methods - parametrise the value function <u>Q-learning</u>:

$$\min_{\phi} (\overrightarrow{Q}_{\phi} - \mathscr{B}^* \overrightarrow{Q}_{\phi})^2$$

Actor-critic methods - parametrise both:

$$Q_{\phi}^{\pi}(s_{t}, a_{t}) = r(s_{t}, a_{t}) + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}(s_{t+1}|s_{t}, a_{t}), a_{t+1} \sim \pi_{\theta}(a_{t+1}, s_{t+1})} \left[\sum_{t=t}^{H} \gamma^{t-t} r(s_{t+1}, a_{t+1}) \right]$$

Model free algorithms

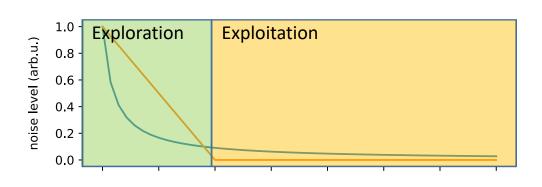
Policy gradients:

- Stable performance
- Some convergence guarantees
- Not sample efficient
- Examples:
 - TRPO
 - PPO
 - PG

Q-learning/Actor-critic

- Generally unstable performance
- <u>Sample efficient</u> reuse data in reply buffer
- Examples:
 - DDPG
 - TD3
 - NAF
 - SAC

How is Q-learning done?



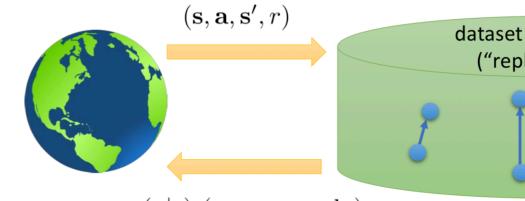
$$L(\phi) = (\overrightarrow{Q}_{\phi} - \mathcal{B}^* \overrightarrow{Q}_{\phi})^2$$

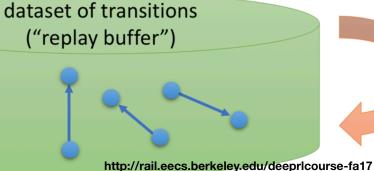
Bootstrapping

Estimate including new information

$$L(\phi_n) = (\qquad \widetilde{R_{t+1} + \gamma \max_{a'} Q^{\pi}(S_{t+1}, a'; \phi_{n-1})} \qquad -Q^{\pi}(S, A; \phi_n))^2$$

Bellman update





off-policy Q-learning

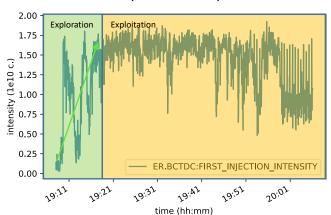
 $\pi(\mathbf{a}|\mathbf{s})$ (e.g., ϵ -greedy)

First Deep RL agent @CERN

The position of the elements **Dipole BPM** Beam **LEIR BCT**

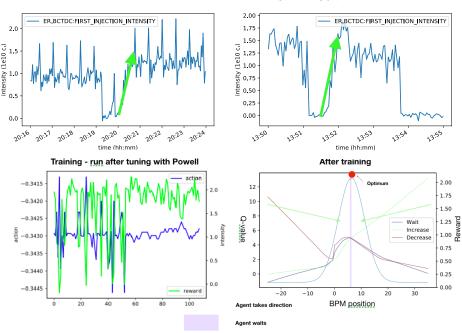
- The reward: intensity of BCT
- The state: position of the beam at BPM
- The action: change by $[+\Delta, -\Delta, 0]$ of dipole

Training from scratch on LEIR approx. 600-iterations (measurement):



- The agent was able to learn the task without any initial knowledge and applied it successfully to different situations - reproducibility.
- Discrete Q-learning approach (DQN).
- Double (DQN) around 100 interactions.
 - Playing Atari with Deep Reinforcement Learning

Apply the learned: real life test on different situations: recovered after a few moves although strongly perturbed



Q-learning issues:

• The max operator causes troubles in the Bellman update:

$$L(\phi) = (\overrightarrow{Q}_{\phi} - \mathcal{B}^* \overrightarrow{Q}_{\phi})^2$$

$$Q^*(s_t, a_t) = r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}(s_{t+1}|s_t, a_t)} \left[\underbrace{\max_{a} Q^*(s_{t+1}, a)}_{a} \right]$$

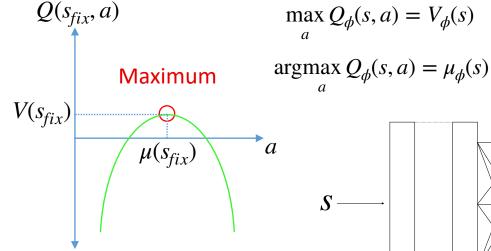
$$\pi^*(s_t) = \underset{a}{\operatorname{argmax}} Q^*(s_t, a)$$

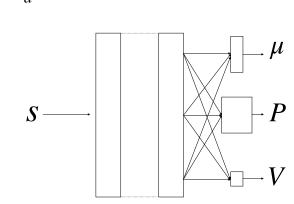
Simplify Q function - Why? **Tailored solution**

Normalised advantage function (NAF) Q learning algorithm

$$Q_{\phi}(s, a) = -\frac{1}{2}(a - \mu_{\phi}(s))^{T} P_{\phi}(s)(a - \mu_{\phi}(s)) + V_{\phi}(s)$$

$$\max_{a} Q_{\phi}(s, a) = V_{\phi}(s)$$





- Simple analytical form to (automatically) get best action.
- NAF is a "natural" extension of the DQN algorithm to continuous problems.
- NAF is an off-policy algorithm.
- Highly sample efficient.
- Low of representational power.

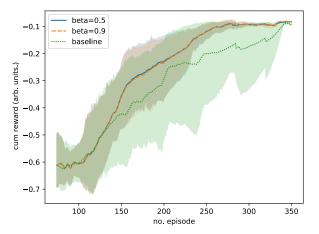
Prioritised experience replay - PER

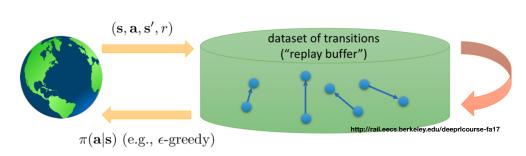
Weighting the tuples in the buffer by the Bellmann-error:

$$|\delta_i| = (\overrightarrow{Q}_{\phi} - \mathcal{B}^* \overrightarrow{Q}_{\phi})^2$$

$$p_i = |\delta_i| + \epsilon, P(i) = \frac{p_i^{\alpha}}{\sum_k p_k^{\alpha}}$$

<u>pip install pernaf</u> own implementation as used for all CERN the tests.
 Stabler training





Code: simon.hirlaender@sbg.ac.at

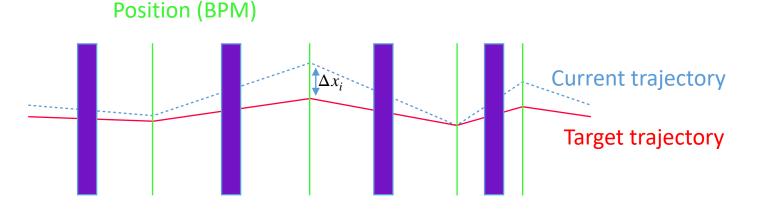
Applications

Trajectory steering

- ⇒ Target: trajectory steering correct the trajectory in as little steps as possible.
- **⇒ AWAKE model given**
- ⇒ Linac4 no model given

State =
$$\{\Delta x_1, \Delta x_2, \dots \Delta x_n\}$$

 $\Delta x_i := x_i - x_i \text{target}$
Actions = $\{k_0, k_1, k_2, \dots, k_n\}$, limited k_{max}

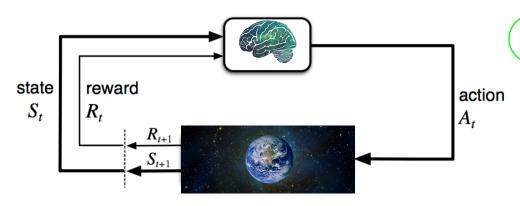


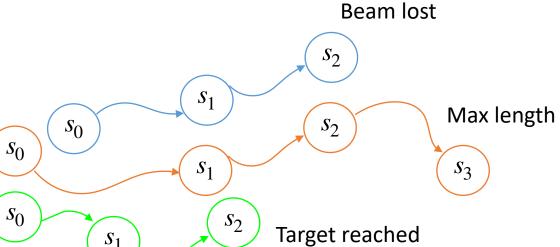
Reward
$$\propto -\sum_{i}^{N} \Delta x_{i}^{2}$$

Correction = actions (Dipoles)

Episodic training

- Loop until finished:
 - Randomly init the position s_0 .
 - Take action a_t and measure new state s_{t+1} .
 - Define a target threshold r_{min} and stop if $r < r_{min}$ or step number reaches a maximum or beam is lost.

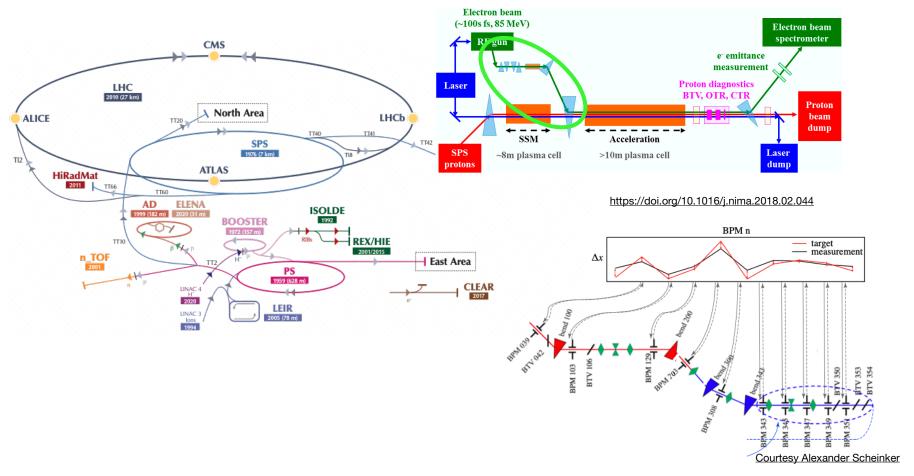




AWAKE

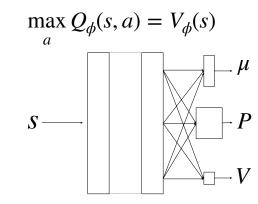
AWAKE Overview

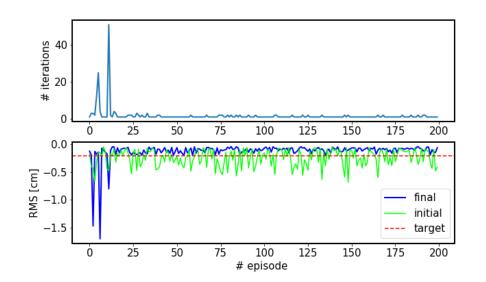
Proof of principle proton driven plasma wake field accelerator

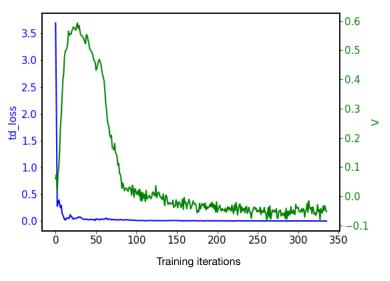


Training - machine only

- The AWAKE transfer line!
- 10 DOF magnets *a* to steer electron beam, 10 BPM to measure the trajectory *s*, RMS to be minimised.
- Problem learned in ~ 200 iterations with threshold of 1 mm.



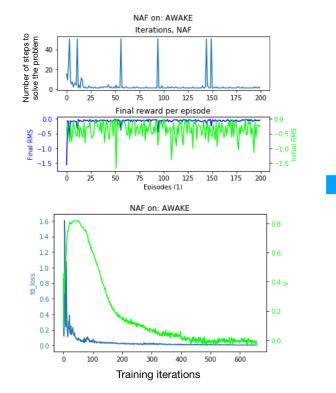




Model to machine

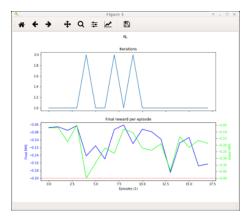
• The AWAKE transfer line - we have a model!

Training of the controller on the simulation



Applied on the machine.

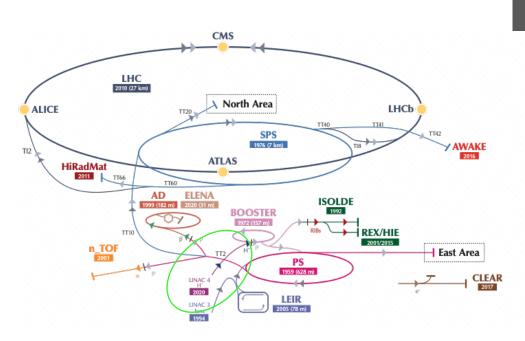
Training a meta policy: Fine tuning could be done directly with a small number of interactions!



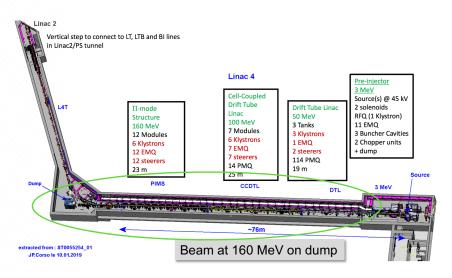
Linac 4

Linac4 Overview

• 16 DOF - magnets *a* to steer H⁻ ion beam, 16 BPM to measure the trajectory *s*, RMS to reference trajectory to be minimised.



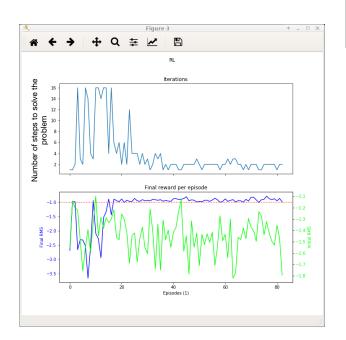
LINAC 4 layout and overview



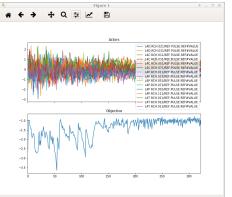
□ Repetition rate 0.833 Hz (one shot/BP)

Linac 4 results

- The controller converges after ~250 steps.
- First successful test of deep-reinforcementlearning @ Linac4.



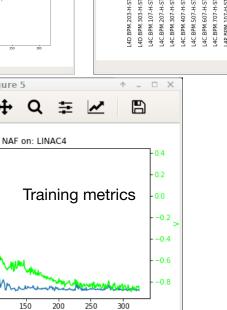
Action space



0.30

0.25 ន្ត 0.20 ₽ 0.15 0.10 0.05 Figure 5

Observation space

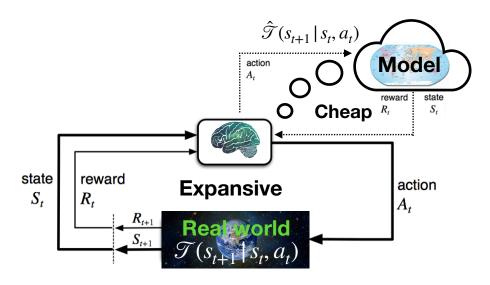


-5

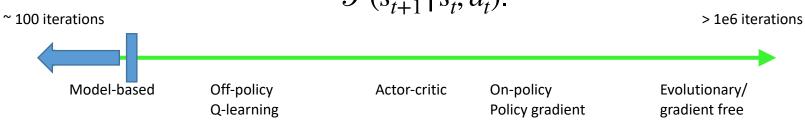
Training iterations

Model based reinforcement learning MBRL

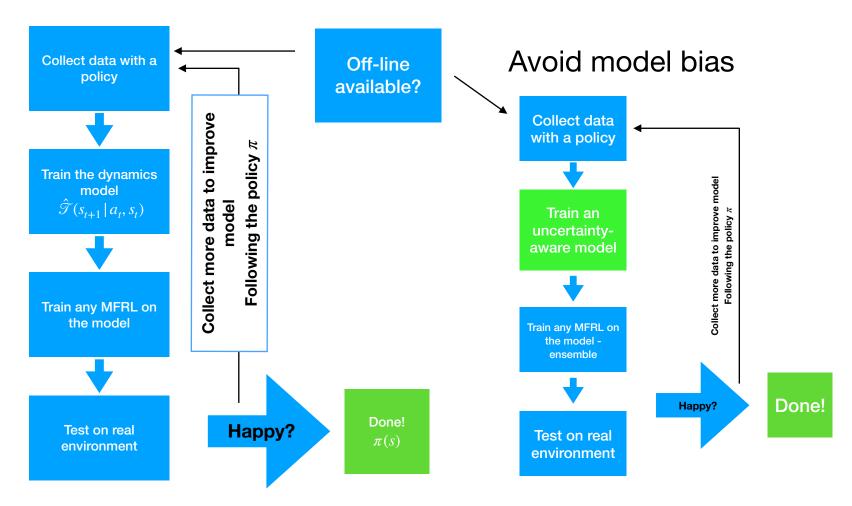
Overview MBRL



- If the interaction with the system is expensive.
- Dynamics of the system: $\mathcal{T}(s_{t+1} | s_t, a_t)$ is approximated via $\hat{\mathcal{T}}(s_{t+1} | s_t, a_t)$.



Dyna style work flow



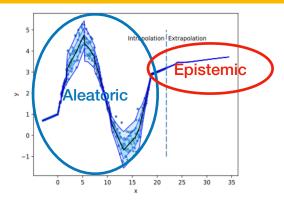
Uncertainty aware modelling

There is no elephant in the room?

• The high performant VGG16-CNN trained on ImageNet data fails to see the elephant in the room:



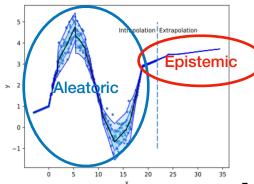
The big DL-lie: P(train) = P(test)



Star Trek motto: "Boldly go where no one has gone before."

Probabilistic deep learning

How to capture uncertainties of the data?



Answered by probabilistic models

How to capture uncertainties of the model?

Answered by Bayesian statistics

Classic: Maximum likelihood approach The mother of all loss functions

The Maximum Likelihood Principle Mantra:

Choose the parameter(s) of the model so that the observed data has the highest likelihood (lowest negative log likelihood NLL)

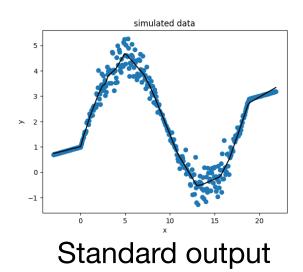
or

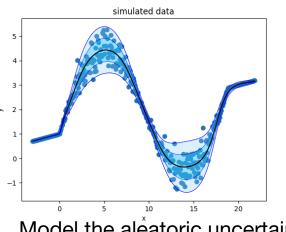
Tune the parameter of a model such that the resulting model can produce the observed data with higher probability than all other models with different parameter values

- It is still a probability!

Aleatoric uncertainty: probabilistic modelling

- How to fit a probabilistic model: use a neural network (NN) to determine the parameters of the predicted conditional probability distribution (CPD) for the outcome.
 - 1. You pick an appropriate distribution model for the outcome.
 - 2. You set up an NN that has as many output nodes as the model has parameters.
 - 3. You derive from the picked distribution the negative-log-likelihood function and use that function as the loss function to train the model.





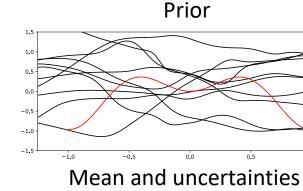
Model the aleatoric uncertainty (heteroscedastic)

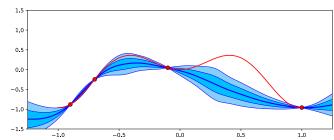
Anchored ensembles (AE)

- **⇒** Capture both uncertainties
- **⇒** Mimics true Bayesian posterior
- ⇒ The aleatoric error is taken into account via anchored regularisation.

0.5 0.0 -0.5 -1.0 Single predictions 1.0 0.0 -0.5

True function





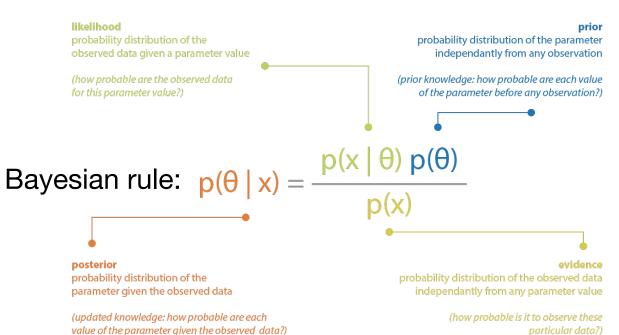
https://arxiv.org/abs/1810.05546

⇒ Fast and intuitive!!!!

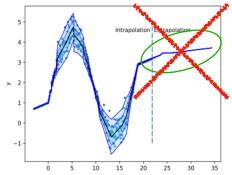
1.0

Epistemic uncertainty

- The Bayesian interpretation of uncertainty is a lack of knowledge.
- More data → less uncertainty



Extrapolation of a standard approach fails

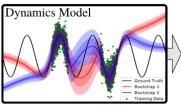


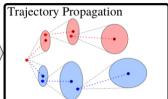
Ways to compute the probability:

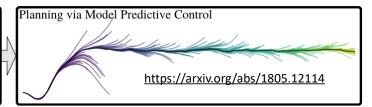
- 1. Variational inference: parametrised approximation cheap but not accurate.
- 2. Markov Chain Monte Carlo (MCMC)- sampling. Accurate but expensive.
- 3. Drop out: https://arxiv.org/abs/1506.02142
- 4. Ensemble techniques.

https://Miro.medium.com/max/1260/1*04pd7c6QIHXYHgAelzzWIg@2x.png

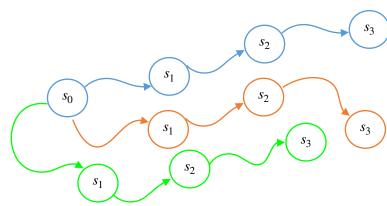
How to take the uncertainty into account?



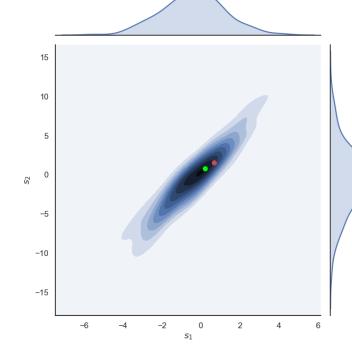




Example: AWAKE steering



- Take each step a model randomly
- Take the lowest reward/mean
- Randomly select a model for each episode

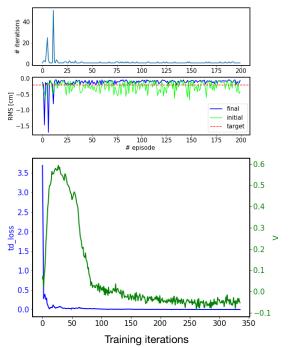


- Only two elements (s_1, s_2) and an action (a_1, a_2) to $(s_1', s_2').$
- A multivariate normal distribution to represent the posterior probability.
- We obtain a transition probability
- Gets non-feasibly for longer trajectories...

Applications

Comparing the performance

Highly sample efficient algorithm learning the controller directly PER-NAF Assumes specific problem structure



Highly sample efficient algorithm learning the controller indirectly on a model ensemble

Ability to overcome limitations while being sample efficient

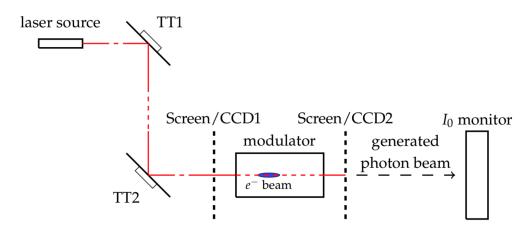
ME-TRPO on AWAKE Iterations, number of iterations: 94, AWAKE time: 0.2 h Test Training Number of steps to solve the problem 50 100 150 200 250 300 350 Episodes (1)

Done on the machine!

Simulation!

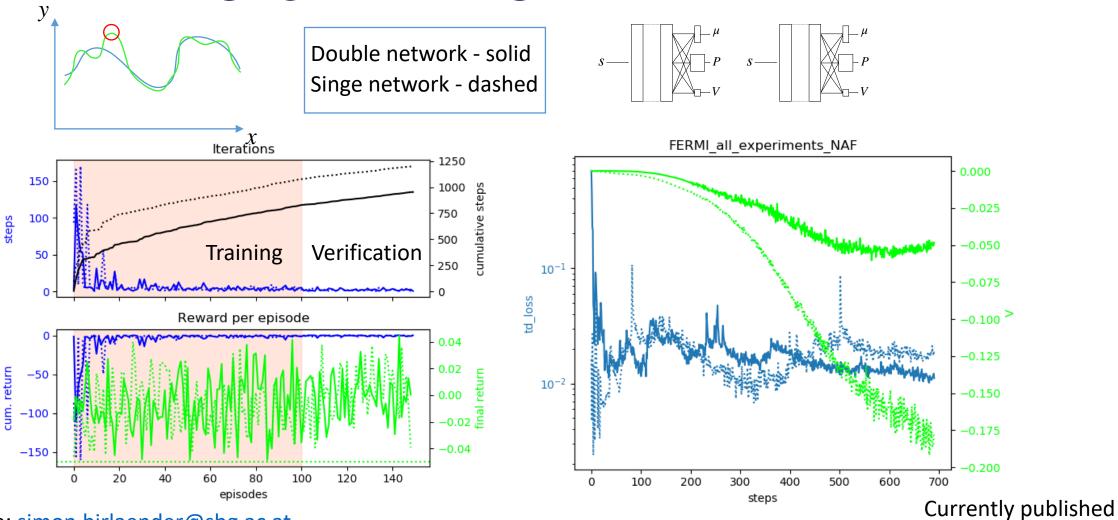
In principle reduction up to factor 3!

The Fermi FEL Studies



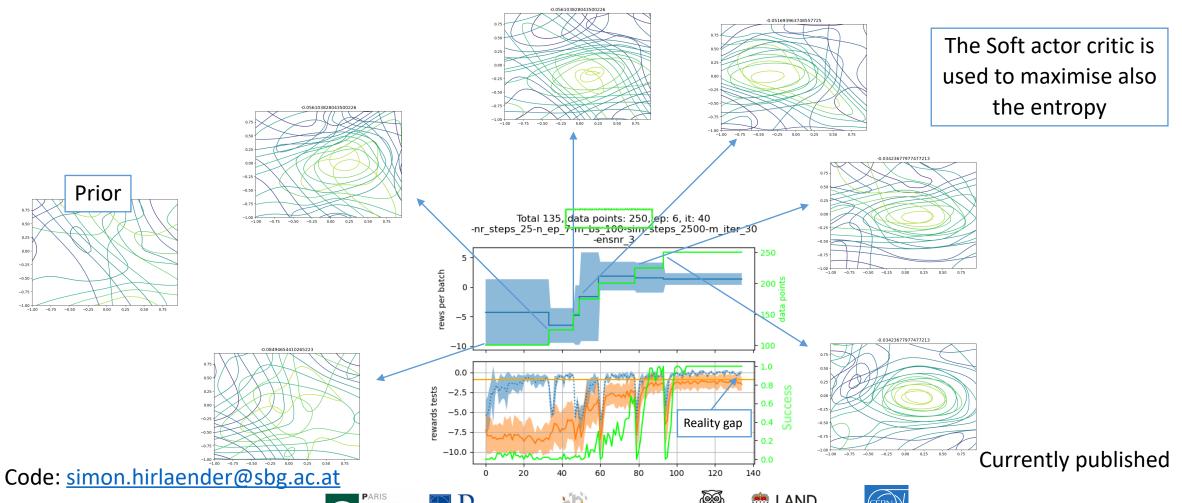
- Laser is interfering with electron beam
- 4 DOF in action and state
- Nonlinear in nature

Novel NAF2 on FERMI - FEL



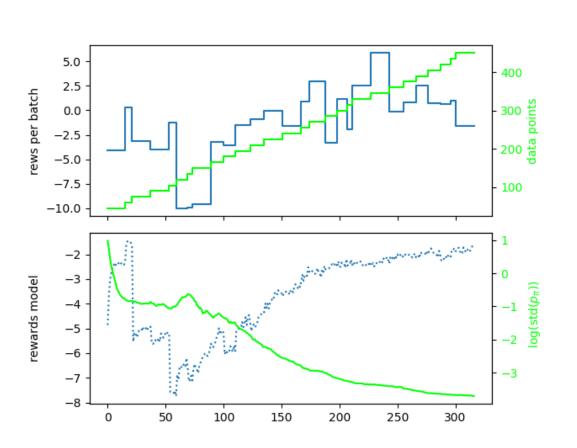
Code: simon.hirlaender@sbg.ac.at

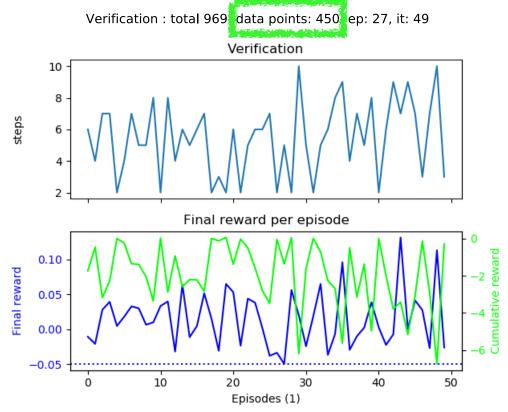
Novel AE-Dyna Theoretical aspects - learning evolution



Salzburgresearch FH Salzburg

ME-TRPO variant on FERMI - FEL





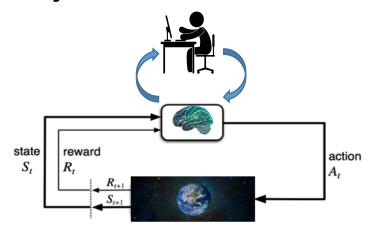
Code: simon.hirlaender@sbg.ac.at

Conclusions

 RL is powerful - enormous potential for many applications in accelerator operation:

Optimiste a sequence of decissions

- RL is a highly popular research topic
- RL is specific adjust method needs some experience.

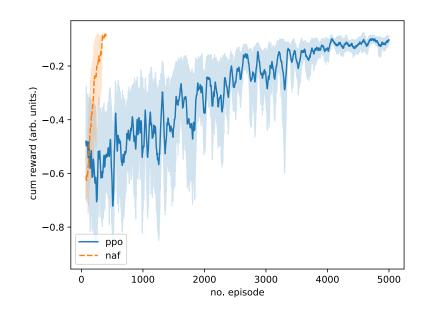


PER-NAF vs. state of the art

TD3 - offline Twin Delayed DDPG

-0.1 - -0.2 - (signal - 0.3 - -0.4 - -0.5 - -0.5 - -0.6 - -0.7 - -0.8 - -0.9 - -0.7 - -0.9 -

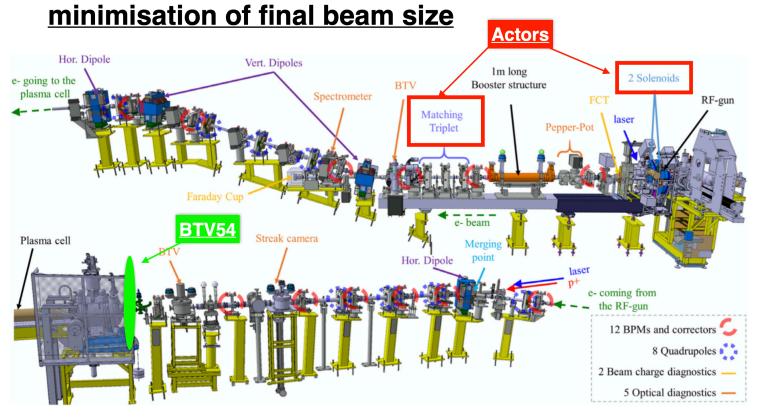
Proximal Policy Optimization (on-policy):



Additional AWAKE studies

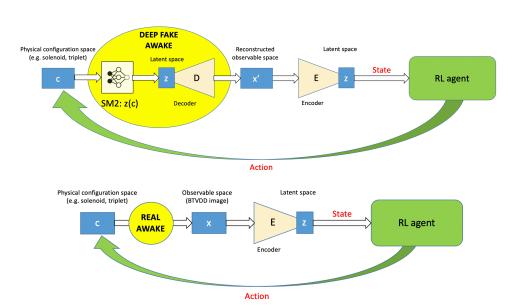
Auto-matching of AWAKE

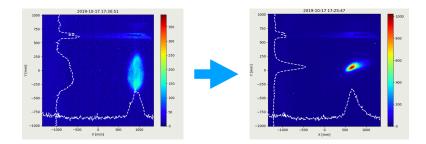
 Thanks to the convexity of the final beam size at the end of the TL wrt optics initial conditions =>

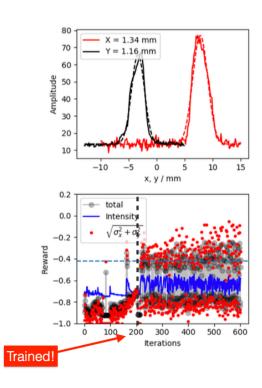


VAE for off-line RL agents training

- · Variational Auto-Encoder (VAE) used in AWAKE
- Basically, **VAE gives access to latent space** representation of the CNN of the input images
- · In AWAKE, we exploited this in 2 ways:
 - · 1) to build a data-based model of the TL (at least of the parameters we were interested in)
 - 2) to extract features from images to be used as environment observables

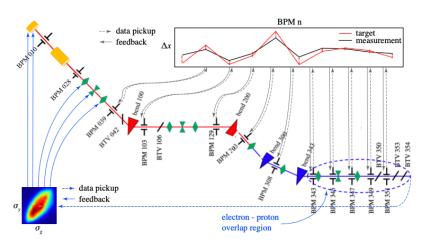






Extremum seeking ES

- Running two independent instances:
 - One is stabilising the trajectory
 - The other one is optimising the emittance



Courtesy of Alexander Scheinker

