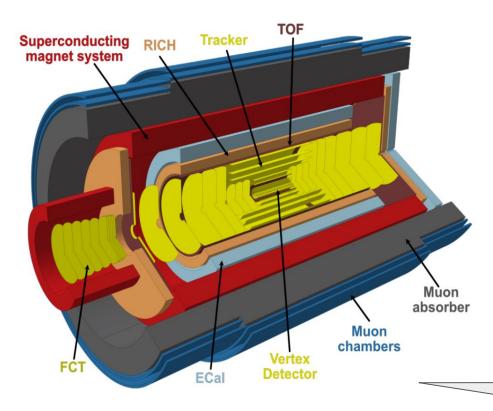


Simulation studies for the Forward Conversion Tracker for ALICE 3

Casper van Veen Physikalisches Institut, Ruprecht-Karls Universität, Heidelberg

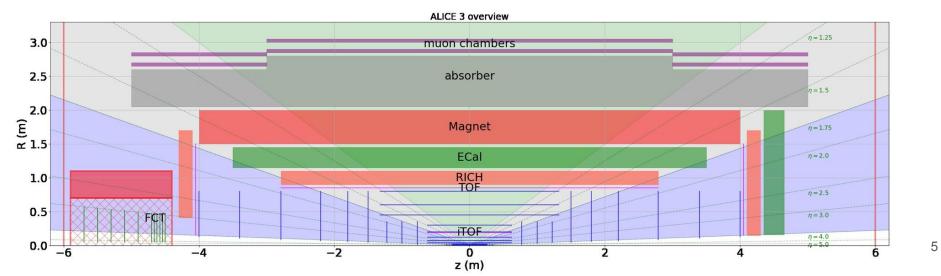


- Introduction of the FCT in ALICE 3
- Latest developments
- Open issues
- Future developments and prospects

Introduction of the FCT in ALICE 3

ALICE 3 will have an all silicon vertex detector and tracker

The FCT will measure soft photons in the forward direction via photon conversion


 $-3 > \eta > -5$

~9 consecutive silicon discs

Small mistake: the FCT will have a dipole magnet instead of a solenoid

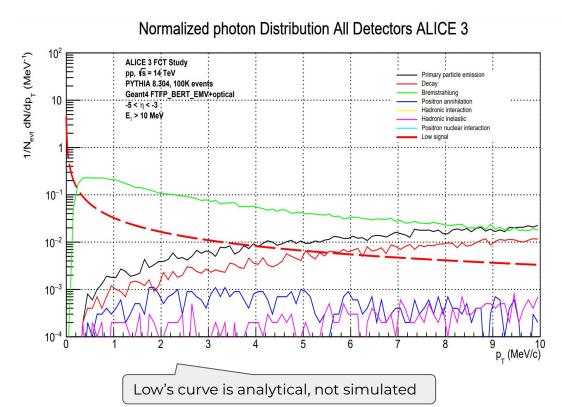
The FCT will be placed at a distance of z = -4 to -6m with a dipole magnet to provide a magnetic field in the y-direction.

Low's theorem predicts $1/k_T$ leading term for the soft photon spectrum

To measure the photons at $\,p_{
m T}$ ~2 MeV/c, exploit the Lorentz Boost in forward direction

$p_T \sim 2 \,\mathrm{MeV}/c \rightarrow E_\gamma \sim 50 \,\mathrm{MeV}$ at $\eta = 4$

To measure these photons via pair production, electrons need to be reconstructed down to a few MeV/c.


The goal of the FCT is to shine light on the soft photon puzzle and Low's theorem

Latest developments & Simulation studies using O2

What is O2?

"All detectors" includes (O2 names)

- TRK (Barrel layers of Tracker)
- FT3 (Disc layers of Tracker)
- A3IP (ALICE 3 Beam Pipe)
- FCT

Decent agreement with previous

simulations

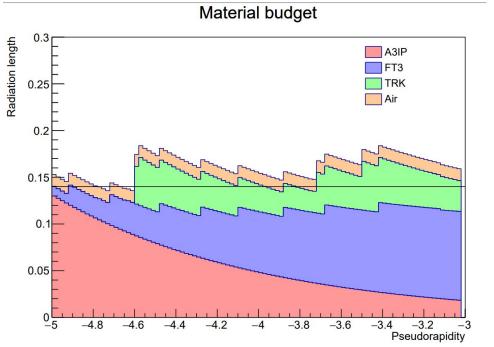
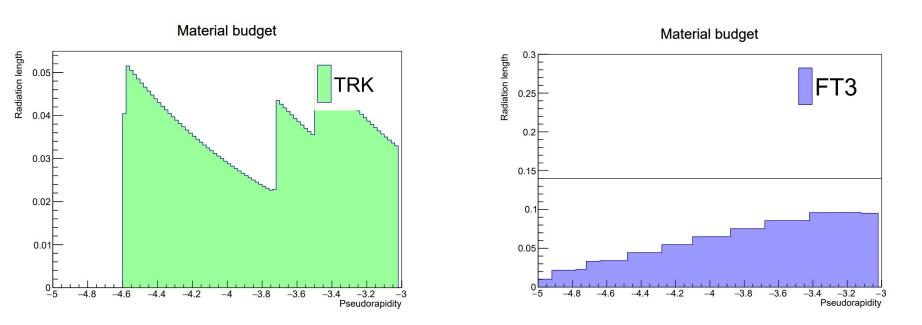
Background is very prevalent. What

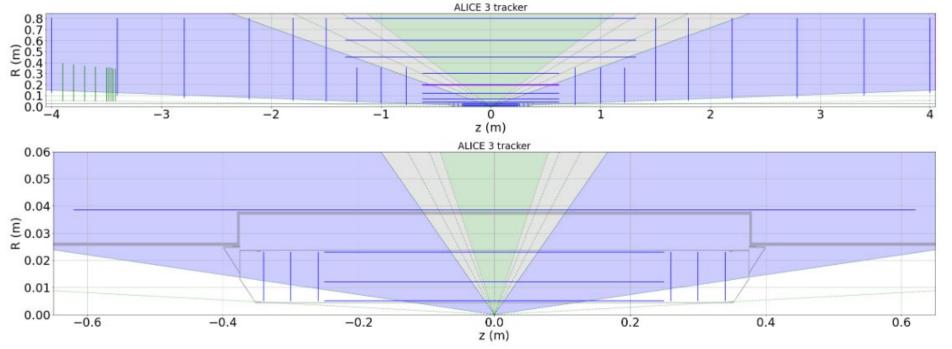
about the signal? Will we see it?

Contribution from UPC not significant

9

Layer	Material	Intrinsic	Barrel layers		Forward discs		
	thickness $(\%X_0)$	resolution (µm)	$\frac{1}{(cm)}$	Radius (r) (cm)	Position (z) (cm)	R _{in} (cm)	R _{out} (cm)
0	0.1	2.5	50	0.50	26	0.005	3
1	0.1	2.5	50	1.20	30	0.005	3
2	0.1	2.5	50	2.50	34	0.005	3
3	1	10	124	3.75	77	0.05	35
4	1	10	124	7	100	0.05	35
5	1	10	124	12	122	0.05	35
6	1	10	124	20	150	0.05	80
7	1	10	124	30	180	0.05	80
8	1	10	264	45	220	0.05	80
9	1	10	264	60	279	0.05	80
10	1	10	264	80	340	0.05	80
11	1				400	0.05	80


 Table 8: Geometry and key specifications of the tracker.

Material in front of FCT - TRK and FT3 specific

Zoom in on Vertex Locator

Open issues

Background reduction strategies - 1/2

- Select events without primary e+/e-
 - Low's photons are generated close to a charged particle which is not necessarily an electron.
 - No ePID in forward direction (except Time-Of-Flight up to 0.5 GeV/c) in current setup
 - -> Study effect of ePID in the forward direction
- Reduce material in front of the FCT
 - Either very expensive or impedes physics programs of other detectors
 - -> Displacement of the interaction vertex in z?
 - Reshaping of the beam pipe is being considered
- Check if a charged particle and photon originate from within a detector layer
 - Pointing angle resolution is probably not good enough

Background reduction strategies - 2/2

- Cut on opening angle such that photons originate from the Primary Vertex
 - Should reduce the amount of decay photons, but will have limited impact since bremsstrahlung photons are generated close to the charged particle
- When a VO is produced in the FT3, veto the event
 - A lot of photons are created by bremsstrahlung coming from electrons which come from photon conversions
- Ideas from the audience? Would be highly appreciated

Future developments and prospects

- Assume V0 finding for now
- Smear hits in detector to simulate pixels
- Reconstruct VO (Fast Circle Fit (Hansroul, Jeremie, Savard, 1987)
 - Figure out resolutions
 - Energy resolution of photon
 - Pointing resolution
 - Use this to cut on the background and see the effect

ACTS - A Common Track reconstruction Software

- Used in ATLAS
- Claimed to be detector independent
- Provides both Track Finding and Track Reconstruction
- Pavel Larionov is looking at how to integrate it in O2

- Github: <u>https://acts-project.github.io/</u>
- Paper: <u>https://cds.cern.ch/record/2243297</u>

Transform the current silicon layers of the FCT into layers containing

- Pixels (which come with charge sharing, fake hits and all things pixel)
- "Passive" material (including support structures, electronics and all that makes up a detector)

To do this, design of the FCT must be studied. Will require a lot of R&D.

Design of the pixels ongoing!

When done, do the analysis again and see if the results still hold.

Questions?