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Fluid dynamics

long distances, long times or strong enough interactions

quantum fields form a fluid!
@ needs macroscopic fluid properties

e thermodynamic equation of state p( 7T, u)
shear + bulk viscosity (T, 1), ¢(T, u)
heat conductivity (T, u), ...

relaxation times, ...

°
o
°
o electrical conductivity o (T, u)

fixed by microscopic properties encoded in Lagrangian Zqcp
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Relativistic fluid dynamics
Energy-momentum tensor and conserved current
™ = euu” + (p + moun) A" 4 7
JE=nut + 0"
@ tensor decomposition using fluid velocity u*, A*” = ¢*” + v u
@ thermodynamic equation of state p = p(T', i)

v

Covariant conservation laws V,T"” =0 and V,N* = 0 imply
@ equation for energy density €
@ equation for fluid velocity u*
@ equation for particle number density or charge density n

Need further evolution equations [e.g Israel & Stewart]
@ equation for shear stress "
@ equation for bulk viscous pressure Ty

w _ I
Toulk U OpToulk + . + Touk = —C Vyu

@ equation for diffusion current v*

@ non-hydrodynamic degrees of freedom are needed for relativistic causality!
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Electric current

o quarks carry electric charge

@ electromagnetic current
JH = nut + *

@ conservation law for electromagntic current

V' =udun+ nV,ut + V' =0

o supplemented by evolution equation for diffusion current

v 4+ TAQHUHVHI/B =oA*YE, — DA*Y0,n

@ electric conductivity o
o diffusion coefficient D = o/x
e charge susceptibility x = (On/0u)|r
o relaxation time 7 constrained by causality
T>D= 7
X
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Spectral function from fluid dynamics

@ Retarded response function

GR (¢ —y) = (" — " )([J"(2), 7" (4)])

o determines current response

5T (2)) = / G (z— ) 64, (3)

o Inverse propagator encodes equations of motion
—iNiw iN1p p(w,p)\ _ (Ao(w,p)
iN2Dp  No(l —iwt)l ) \J(w,p)) ~ \ A(w,p)
=P(w,p)=Gg ' (w.p)
o coefficients N1 = 1/(ixw) and Na = 1/(iow) can be determined from
homogeneous and static limit p=0, w — 0
@ spectral function obtains from

p(w,p) =gu Im(GE” (w,p))
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Photon production rate in local thermal equilibrium

@ photon production rate per unit volume and time
dR 1
0 _
d3p - (27r)3n3(w)p(w)v

electromagnetic spectral function p(w)

o frequency in the fluid rest frame

w = —up"
o Bose-Einstein distribution factor
1
ng(w) = T
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Dilepton production rate in local thermal equilibrium

o thermal dilepton production rate per unit volume and time

dR a 1
Tip 1m0 a2 B Pl M)

e momentum of the dilepton pair p* = p{’ + pf
@ lepton mass m

o electromagnetic fine structure constant a = ¢*/(4)
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Electric conductivity

@ Kubo relation for electric conductivity

1. 1
g ngl}) ;p(w7 p)‘p:()

1
tim Lo, )]s =

1
o=~
2 w—0 w pP=w?

o small frequency limit either at p? = w? or at p =0

e ratio p/w has transport peak at small frequency
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Predictions of electrical conductivity
e many predictions of electric conductivity in the literature
@ perturbative predictions [Arnold, Moore & Yaffe] 0.19 < o/ T < 2
o lattice estimates vary
@ would be great to have some experimental constraints
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[figure compiled by Greif et al. (2014)]
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Electric current spectral function

e from equations of motion we find the spectral function

ow(w?® —p*)

(@,p) n ow
w,p) = .
plw, P (Tw? — Dp?)? + w? T2w2 + 1
o height of peak proportional to conductivity
@ decay governed by width ~ 1/7
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Fluid dynamics
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@ integrate over the QGP fire ball using T'(r, t) and u(r, t) from FluiduM
[Floerchinger et al. 2019]

@ Pb-Pb-collisions at /syny = 5.02 TeV

e centrality class 0-5%
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Freeze-out surface
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@ kinetic freeze out surface: hypersurface after which particle momenta
don’t change any more

@ integrate photon and dielectorn production rate up to this freeze-out
surface

@ electromagnetic currents freeze in, no radiation afterwards
o take here T;, = 140 MeV
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Decay contributions

o Calculate also photons from resonance decays with FastReso
[Mazeliauskas, Floerchinger, Grossi, Teaney, EPJC 79, 284 (2019)]
o Cooper-Frye with resonance decays

dN, 1

Ve = | Sesken, @ = [ Dok 00

o decay map relates spectra before and after resonance decays

o dN.
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o dielectron from resonances calculated with PYTHIA
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Photon spectrum

o Transverse momentum spectrum of photons

e Four possible choices for electic conductivity to temperature ratio

@ Photons from hadronic resonance decays also shown

dNy/(prdpTdndg) [GeV 2]
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Dielectron spectrum

@ Transverse momentum spectrum of electron-positon pairs
o Four possible choices for electic conductivity to temperature ratio

@ Dielectrons from hadronic resonance decays also shown
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Dielectron mass spectrum

@ Invariant mass spectrum of electron-positon pairs

o Four possible choices for electic conductivity to temperature ratio

o Dielectrons from hadronic resonance decays also shown

dNge/(MdMdnde) [GeV 2]
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How to deal with resonance decays?

o for dielectrons it helps to accept only pairs at M > 100 MeV to reduce the
decay background

@ for photons one could use Hanbury-Brown-Twiss interferometry to
disentangle contributions from resonance decays and thermal photons

@ could one use Hanbury-Brown-Twiss methods also for dielectrons?
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Conclusion

o Electric current spectral function at small frequencies and momenta
determined by fluid dynamics

o Electric conductivity can be constrained experimentally

e Background from resonance decays must be subtracted
(e. g. with Hanbury-Brown-Twiss method)
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