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Fluid dynamics

long distances, long times or strong enough interactions
quantum fields form a fluid!
needs macroscopic fluid properties

thermodynamic equation of state p(T , µ)
shear + bulk viscosity η(T , µ), ζ(T , µ)
heat conductivity κ(T , µ), . . .
relaxation times, ...
electrical conductivity σ(T , µ)

fixed by microscopic properties encoded in Lagrangian LQCD
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Relativistic fluid dynamics
Energy-momentum tensor and conserved current

Tµν = ε uµuν + (p + πbulk)∆
µν + πµν

Jµ = n uµ + νµ

tensor decomposition using fluid velocity uµ, ∆µν = gµν + uµuν

thermodynamic equation of state p = p(T , µ)

Covariant conservation laws ∇µTµν = 0 and ∇µNµ = 0 imply
equation for energy density ε

equation for fluid velocity uµ

equation for particle number density or charge density n

Need further evolution equations [e.g Israel & Stewart]
equation for shear stress πµν

equation for bulk viscous pressure πbulk

τbulk uµ∂µπbulk + . . .+πbulk = −ζ ∇µuµ

equation for diffusion current νµ

non-hydrodynamic degrees of freedom are needed for relativistic causality!
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Electric current
quarks carry electric charge
electromagnetic current

Jµ = nuµ + νµ

conservation law for electromagntic current

∇µJµ = uµ∂µn + n∇µuµ +∇µν
µ = 0

supplemented by evolution equation for diffusion current

να + τ∆α
βuµ∇µν

β = σ∆ανEν − D∆αν∂νn

electric conductivity σ

diffusion coefficient D = σ/χ

charge susceptibility χ = (∂n/∂µ)|T
relaxation time τ constrained by causality

τ > D =
σ

χ
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Spectral function from fluid dynamics
Retarded response function

Gµν
R (x − y) = iθ(x0 − y0)〈[Jµ(x), Jν(y)]〉

determines current response

δ〈Jµ(x)〉 =
∫

y
Gµν

R (x − y) δAν(y)

Inverse propagator encodes equations of motion(
−iN1ω iN1p
iN2Dp N2(1 − iωτ)1

)
︸ ︷︷ ︸

=P(ω,p)=G−1
R (ω,p)

(
ρ(ω, p)
J(ω, p)

)
=

(
A0(ω, p)
A(ω, p)

)

coefficients N1 = 1/(iχω) and N2 = 1/(iσω) can be determined from
homogeneous and static limit p = 0, ω → 0
spectral function obtains from

ρ(ω, p) =gµν Im(Gµν
R (ω, p))
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Photon production rate in local thermal equilibrium

photon production rate per unit volume and time

p0 dR
d3p =

1
(2π)3 nB(ω)ρ(ω),

electromagnetic spectral function ρ(ω)

frequency in the fluid rest frame

ω = −uµpµ

Bose-Einstein distribution factor

nB(ω) =
1

eω/T − 1
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Dilepton production rate in local thermal equilibrium

thermal dilepton production rate per unit volume and time

dR
d4p =

α

12π4
1

M 2 nB(ω) ρ(ω,M)

×
(

1 +
2m2

M 2

)√
1 − 4m2

M 2 Θ(M 2 − 4m2),

momentum of the dilepton pair pµ = pµ
1 + pµ

2

lepton mass m
electromagnetic fine structure constant α = e2/(4π)
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Electric conductivity

Kubo relation for electric conductivity

σ =
1
2 lim

ω→0

1
ω
ρ(ω, p)

∣∣
p2=ω2 =

1
3 lim

ω→0

1
ω
ρ(ω, p)

∣∣
p=0

small frequency limit either at p2 = ω2 or at p = 0
ratio ρ/ω has transport peak at small frequency
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Predictions of electrical conductivity
many predictions of electric conductivity in the literature
perturbative predictions [Arnold, Moore & Yaffe] 0.19 < σ/T < 2
lattice estimates vary
would be great to have some experimental constraints

7

running coupling at the momentum transfer of each mi-
croscopic interaction leads to an effective temperature
dependence of the coupling [42], and hence a qualita-
tively different temperature dependence of the electric
conductivity is obtained. The interaction strength de-
creases with increasing temperature, and accordingly the
effective cross section decreases. The filled dark red cir-
cles are results for the most realistic scenario. Here we
employ elastic 2 ↔ 2 and inelastic 2 ↔ 3 scatterings,
and the running coupling αs. The LPM effect is mod-
eled as described in Ref. [42], using the LPM parameter
XLPM = 0.3. The result is sensitive to the LPM cut-
off XLPM, but its value is fixed by comparing BAMPS
simulations of full heavy-ion collisions with experimental
data for the nuclear modification factor; see Sec. III. As
an example, changing XLPM = 0.3 to XLPM = 0.5 or
XLPM = 1.0 increases the electric conductivity by about
16% or 40%. We emphasise again that the scattering
rates of radiative processes are governed by the improved
Gunion-Bertsch matrix elements, which were developed
in Refs. [38, 42]. The inclusion of inelastic collisions ac-
counts for an overall higher effective cross section than in
the elastic scenarios. Therefore, the electric conductivity
decreases by about 40%, and the slope of log(σel/T )(T )
decreases slightly. Nevertheless, the temperature depen-
dence seems to be dominated by the running of αs.

This study allows us in a unique way to study the
overall effective scattering rates for a hot QCD plasma
microscopically, including all leading-order elastic and in-
elastic processes. The electric conductivity reflects in a
profound way the effect of inelastic pQCD scattering and
the running of αs. We believe that this is an important
result of pQCD, and comparisons with other theories are
reasonable.

In Fig. 6, we contrast the electric conductivity obtained
using BAMPS with recent lQCD results, the transport
model PHSD, a conformal, and a nonconformal holo-
graphic computation. Comparison with lQCD data has
to be taken with care. Obviously, published results from
lQCD for the electric conductivity differ greatly, and gen-
eral trends cannot be concluded, other than that most
results lie within 0.001 ≤ σel/T ≤ 0.1. The error bars
are mostly large, or not quoted. The presented results
from the BAMPS transport simulation lie between 0.04 ≤
σel/T ≤ 0.08 for temperatures 0.2 GeV ≤ T ≤ 0.6 GeV.
The main differences amongst the lQCD setups are the
QCD actions, different methods to handle the inversion
problem and different numbers of dynamical and valence
quarks. It has to be mentioned, that the temperature, at
which certain results are valid, is often quoted in units of
the critical temperature. The precise value of the critical
temperature requires, in turn, a lattice analysis. We omit
at this point a further detailed comparison amongst the
lQCD results, which can be found elsewhere [54]. The
most recent results from lQCD are given by the authors
of Ref. [20](open blue diamonds, dashed line to guide the
eye). They provide the largest set of data for different
temperatures so far, and use ensembles of 2+1 dynamical
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Figure 6. Numerical results for the electric conductivity
(filled symbols) compared to recent results from literature.
The open symbols represent results from lattice QCD. PHSD:
[21], SYM: [55], nonconformal holographic model: [24], lat-
tice A: [15], lattice B: [19], lattice C: [20], lattice D: [14],
lattice E: [16], lattice F: [18], lattice G: [17]. The elec-
tric charge is explicitly multiplied out, e2 = 4π/137. Around
T = 0.3 GeV, results from Ref. [29] (not shown), using a
Dyson-Schwinger approach, are consistent with the results
from Ref. [20].

flavors. Their temperature dependence for σel/T above
T ∼ 250 MeV is similar to the results from BAMPS with
running coupling. This qualitative agreement supports
the physical validity of the implemented inelastic scatter-
ing processes of BAMPS. However, the results of Ref. [20]
are a factor ∼ 4 smaller than ours. In addition, we show
in Fig. 6 results from the PHSD transport approach by
the black dashed line [21, 22]. One observes a signifi-
cantly different temperature dependence. The value ob-
tained in a conformal Super-Yang Mills plasma is shown
by the constant grey dashed line [55]. The authors of
Ref. [24] used a nonconformal, bottom-up holographic
model to compute the electric conductivity (cyan dotted
line). Their model adequately describes recent lattice
data for QCD thermodynamics at zero chemical poten-
tial.

VII. CONCLUSION AND OUTLOOK

In this work we extracted the electric conductivity co-
efficient for a dilute gas of massless and classical par-
ticles described by the relativistic Boltzmann equation.
For this purpose we employed the microscopic transport
model BAMPS in a static multipartonic system. We use
two independent methods to extract the transport co-
efficient, and see nice agreement between the two. We
present results using binary collisions and a constant
isotropic cross section. Here we find agreement with the
relativistic generalization of the Drude formula for the
electric conductivity in the functional dependence as well

[figure compiled by Greif et al. (2014)]
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Electric current spectral function
from equations of motion we find the spectral function

ρ(ω, p) = σω(ω2 − p2)

(τω2 − Dp2)2 + ω2 + 2 σω

τ2ω2 + 1 .

height of peak proportional to conductivity
decay governed by width ∼ 1/τ
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Fluid dynamics

integrate over the QGP fire ball using T(r , t) and u(r , t) from FluiduM
[Floerchinger et al. 2019]

Pb-Pb-collisions at √sNN = 5.02 TeV
centrality class 0-5%
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Freeze-out surface

kinetic freeze out surface: hypersurface after which particle momenta
don’t change any more
integrate photon and dielectorn production rate up to this freeze-out
surface
electromagnetic currents freeze in, no radiation afterwards
take here Tfo = 140 MeV
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Decay contributions
Calculate also photons from resonance decays with FastReso
[Mazeliauskas, Floerchinger, Grossi, Teaney, EPJC 79, 284 (2019)]
Cooper-Frye with resonance decays

Ep
dNa

d3p
= −

1
(2π)3

∫
dΣµ gµa (x, p), gµb (x, p) =

∫
q

Da
b (p, q)fa(x, q)q

µ

decay map relates spectra before and after resonance decays

Ep
dNb
d3p

=

∫
q

Da
b (p, q) Eq

dNa

d3q
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Photon spectrum

Transverse momentum spectrum of photons
Four possible choices for electic conductivity to temperature ratio
Photons from hadronic resonance decays also shown
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Dielectron spectrum

Transverse momentum spectrum of electron-positon pairs
Four possible choices for electic conductivity to temperature ratio
Dielectrons from hadronic resonance decays also shown
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Dielectron mass spectrum

Invariant mass spectrum of electron-positon pairs
Four possible choices for electic conductivity to temperature ratio
Dielectrons from hadronic resonance decays also shown
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How to deal with resonance decays?

for dielectrons it helps to accept only pairs at M > 100 MeV to reduce the
decay background
for photons one could use Hanbury-Brown-Twiss interferometry to
disentangle contributions from resonance decays and thermal photons
could one use Hanbury-Brown-Twiss methods also for dielectrons?
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Conclusion

Electric current spectral function at small frequencies and momenta
determined by fluid dynamics
Electric conductivity can be constrained experimentally
Background from resonance decays must be subtracted
(e. g. with Hanbury-Brown-Twiss method)
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