Dielectrons as pre-equilibrium probes in heavy ion collisions

Zafar Momtaz
Goethe-Universität Frankfurt am Main
IKF-LMEE

Calculations for pre-equilibrium dileptons

- focusing on dilepton production $\mathrm{M}>1 \mathrm{GeV}$
- initial stage is expected to be highly gluon dominated
- due to rapid longitudinal expansion \rightarrow momentum distribution of quarks is strongly anisotropic at early times
- using hydrodynamic attractor to calculate pre-equilibrium contributions
- Dilepton production provides Shear viscosity $\eta / s \rightarrow$ control the equilibrium time
\rightarrow only free parameter in calculation
- Drell-Yan production calculation based on EPPS nPDFs.

Invariant mass spectrum

- model is set so that charged-particle multiplicity $\left(d N_{c h} / d \eta\right)$ reproduced at mid-rapidity
- system is approximately described by viscous hydrodynamics by time $\tau_{\text {hydro }} \sim(\eta / s)^{3 / 2}$
- For lower η / s, system approaches hydro regime faster
- For fixed $d N_{c h} / d \eta$, lower $\eta / s \rightarrow$ higher initial energy density \& higher temperature through-out the out-of-equilibrium evolution \rightarrow larger dilepton yields
- pre-equilibrium contribution: $\tau<\tau_{\text {hydro }}$
- hydrodynamic contribution: $\tau>\tau_{\text {hydro }}$

Corresponds to fig. 7 Physics
Letters B 821 (2021) 136626

p_{T}-spectrum

Acceptance

- Calculate acceptance for $\left|\eta_{e}\right|<0.8,0.2<\mathrm{p}_{\mathrm{T}, \mathrm{e}}<10 \mathrm{GeV} / \mathrm{c}$ with $-1<y_{\text {ee }}<1$
- Flat $y_{\text {ee }}$ distribution around [-1,1] rapidity range and in $\Phi_{\text {ee }}$
- Decay with TGenPhasespace

Acceptance (m_{ee})

Acceptance ($\mathrm{p}_{\mathrm{t}, \mathrm{ee}}$)

Comparison data and RalfRapp-Model (m_{ρ})

- Data from Daiki preliminary
- RalfRapp:
R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253
P.M. Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103
- Preequilibrium-calculations:
M. Coquet, X. Du, J-Y Ollitrault, S. Schlichting, M. Winn, Physics Letters B 821 à(2021) 136626
- 0-5\% centrality for the pre-equilibrium calculations, rest 0-10\% centrality

Comparison data and RalfRapp-Model (m_{ee})

Comparison data and RalfRapp-Model ($\mathrm{p}_{\mathrm{t}, \mathrm{ee}}$)

Backup

