Dielectrons as pre-equilibrium probes in heavy ion collisions

Zafar Momtaz Goethe-Universität Frankfurt am Main IKF-LMEE

Calculations for pre-equilibrium dileptons

- focusing on dilepton production M > 1 GeV
- initial stage is expected to be highly gluon dominated
- due to rapid longitudinal expansion \rightarrow momentum distribution of quarks is strongly anisotropic at early times
- using hydrodynamic attractor to calculate pre-equilibrium contributions
- Dilepton production provides Shear viscosity $\eta/s \rightarrow$ control the equilibrium time
 - \rightarrow only free parameter in calculation
- Drell-Yan production calculation based on EPPS nPDFs.

Invariant mass spectrum

- model is set so that charged-particle multiplicity ($dN_{ch}/d\eta$) reproduced at mid-rapidity
- system is approximately described by viscous hydrodynamics by time $\tau_{hydro} \sim (\eta/s)^{3/2}$
- For lower η /s, system approaches hydro regime faster
- For fixed $dN_{ch}/d\eta$, lower $\eta/s \rightarrow$ higher initial energy density & higher temperature through-out the out-of-equilibrium evolution \rightarrow larger dilepton yields

p_{T} -spectrum

Acceptance

- Calculate acceptance for $|\eta_{\rm e}|$ < 0.8, 0.2 < p_{\rm T,e} < 10 GeV/c with
 - $-1 < y_{ee} < 1$
- Flat y_{ee} distribution around [-1,1] rapidity range and in Φ_{ee}
- Decay with TGenPhasespace

Acceptance (m_{ee})

Acceptance (p_{t,ee})

Comparison data and RalfRapp-Model (m_{PP})

- Data from Daiki preliminary
- RalfRapp:
 R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253
 P.M. Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103
- Preequilibrium-calculations: M. Coquet, X. Du, J-Y Ollitrault, S. Schlichting, M. Winn, Physics Letters B 821 å(2021) 136626
- 0-5% centrality for the pre-equilibrium calculations, rest 0-10% centrality

Comparison data and RalfRapp-Model (m_{ee})

Comparison data and RalfRapp-Model $(p_{t,ee})$

Backup

